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1 Introduction

The overlap Dirac operator[1,2], which unlike other formulations of lattice
QCD has an exact lattice chiral symmetry [3] and a corresponding index the-
orem, offers numerous exciting possibilities for research in dynamical lattice
QCD [4,5,6,7]; but presents a number of distinct challenges. The first challenge
is the numerical cost, but this is not insurmountable on modern computers.
Today simulations on 16332 lattices are feasible [8], and it will not be long un-
til large scale simulations will not only be possible but entirely practical and
commonplace. The other difficulties involve the technical details of the algo-
rithm, and in this paper I will focus on one of these issues, so far unexplored
in the literature.

The overlap operator is defined as

D = (1 + µ) + (1− µ)γ5ǫ(Q), (1)

where µ is a mass parameter proportional to the bare fermion mass and Q
is the Hermitian form of a suitable lattice Dirac operator (the kernel) with
no fermion doublers and negative mass ρ. In this work, I will always use the
Wilson operator with ρ = 1.5, or, alternatively, κ = 1/(8− 2ρ) = 0.2:

Qxy = γ5

[

δxy − κ
∑

µ

(

(1− γµ)Uµ(x)δy,x+µ + (1 + γµ)U
†
µ(x− µ)δy,x−µ

)

]

. (2)

The matrix sign function is defined as

ǫ(Q) =
∑

i

|ψi〉〈ψi|sign(λi), (3)

where |ψi〉 and λi are the eigenvectors and eigenvalues of Q respectively, and
the sum is over the complete set of eigenvectors. In practice, given that the cal-
culation of the entire eigenvalue spectrum is impractical, it is usual to use an
approximation to the sign function, such as the Zolotarev Rational approxima-
tion [9], for the bulk of the eigenvalue spectrum. The spectral decomposition
is only used for for the eigenvalues closest to zero, where no approximation
can (realistically) be accurate enough without a large computational cost.

In terms of the Hermitian overlap operator H = γ5D, and the gauge action
Sg[U ] for a gauge field U , the lattice QCD partition function for two degenerate
flavours of fermion is

Z =
∫

dU det(H2[U, µ])e−Sg[U ] =
∫

dUdφdφ†e−Sg[U ]−φ†H−2φ, (4)

where I have used pseudo-fermion fields φ to approximate the fermion deter-
minant. The standard Hybrid Monte Carlo (HMC) algorithm [10] generates
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a new gauge field by introducing a momentum Π, updating the momentum
and gauge field along the classical trajectory using a numerical integration
algorithm (the molecular dynamics), and finishing with a metropolis step to
ensure that the update of the gauge field satisfies detailed balance. The nu-
merical integration must be reversible and ergodic. It does not have to be
area conserving, but in a non-area conserving molecular dynamics the Jaco-
bian must be calculated and included in the metropolis accept/reject step, as
discussed in section 2.

The numerical integration requires the calculation of a fermionic force, ob-
tained by differentiating the action with respect to the gauge field. For the
overlap operator, the action is discontinuous, leading to two problems: firstly
there is a delta function in the force whenever an eigenvalue of the kernel
operator, Q, changes sign; and secondly a large peak in the force when two
eigenvectors, whose eigenvalues have different signs, mix. The first problem
can be compensated for using the “transmission/reflection” algorithm, first
published by Zoltan Fodor and collaborators [4], and subsequently improved
by my own work [5,11]. There are still additional difficulties, particularly the
rate of topological charge changes at small mass [12] and the volume depen-
dence of the algorithm [13], but these can be resolved [14,15].

The second problem is a little more technical. Until this study, the eigenvalues
and eigenvectors of a sparse matrix have been differentiated using a procedure
analogous to first order perturbation theory. This method is outlined in refer-
ence [11], although the idea is not original to the cited paper. The differential
of the matrix sign function (neglecting the delta function) with respect to
the molecular dynamics time τ obtained from this method can be expressed
in terms of the complete basis of eigenvalues and eigenvectors of the kernel
operator

d

dτ
(|ψi〉〈ψi|) sign(λi) =

∑

j 6=i

|ψj〉〈ψj |
d

dτ
Q|ψi〉〈ψi|

sign(λi)− sign(λj)

(λi − λj)
. (5)

It is clear that there is a large differential, and thus large fermionic force,
when there is a pair of eigenvalues close to zero, but with different signs (see
figure 1). I refer to this as the “eigenvalue mixing problem” for reasons that
shall become obvious later. So far dynamical overlap simulations have tried
to avoid this problem by suppressing the number of small eigenvalues of the
kernel Dirac operator, either by smearing [6,16], or by adding an additional
term to the action [17]. 2 Neither of these methods are satisfactory: too much
smearing will distort the physics, and will not remove the problem on suf-
ficiently large volumes. The algorithm with the additional term may not be
ergodic if topological sectors are either not internally connected, or (if they
are connected) the computer time required to evolve to a different sub-sector

2 These two approaches also have the advantage of accelerating the computation.
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Fig. 1. The trace of the square of the fermionic force (top), molecular dynamics
energy (middle), and the Wilson operator eigenvalues (bottom) across one trajectory
on an 8316 ensemble with mass µ = 0.03, time-step τ = 0.01, two pseudo-fermion
fields, and two steps of stout smearing with parameter 0.1. By explicit calculation
during the molecular dynamics, I observed that there was no exactly zero Wilson
eigenvalue between between the 7th and 35th micro-canonical steps. The two low
lying eigenvectors mixed at the 19th micro-canonical step, but the eigenvalues did
not cross.
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is unreasonably large. My own approach so far has been to use a moderate
amount of smearing, regulate the force to prevent it from becoming too large
(leading to instabilities and a breakdown of reversibility), and to run short
trajectories (so that if I do encounter a problem I have not lost too much
computer time) with a small time-step (which, as shall be made clear later,
reduces the number of occurrences of the large forces). This allowed me to run
on small lattices (up to 12324), with the large forces sufficiently infrequent that
they did not significantly reduce the metropolis acceptance rate. However, as
the lattice volume is increased, the density of small eigenvalues also increases
and the time-step would have to be reduced to unmanageable proportions to
allow acceptance. Also, methods which use multiple times scales [18] com-
bined methods such as using additional pseudo-fermions to precondition the
force [19] and RHMC [20] are not as efficient as one might hope for. This is
because the time-step needed for the integration is determined by the differ-
ential of the sign function, common to all the terms in the terms in the forces
constructed in these methods, rather than the condition number of the overlap
operator. Clearly reducing the time-step as the density of small eigenvalues
increases is not an optimal solution.

The reason for these large forces becomes evident once it is realised that equa-
tion (5) is just the first term in a Taylor expansion in τ/(λi − λj) of the
mixing angle between the two eigenvectors, which is a function of the gauge
field, time-step and momenta. Including higher order terms would lead to a
force that does not conserve area or is not reversible. When τ/(λi−λj) is small,
the expansion is valid, and everything works well. When it is not so small, the
higher order terms start contributing, leading to an uncalculated and perhaps
substantial correction to the energy conservation. When it is larger still, the
series expansion may not converge at all. However, using the exact mixing an-
gles rather than the expansion would eliminate the large forces. In this paper,
I describe how this can be done. This approach is not area conserving; but the
Jacobian can be calculated, and corrected for in the metropolis accept/reject
step. No account of the Jacobian is made when trying to conserve energy,
but the size of the Jacobian contribution to the action is O(τ 3), the same as
the normal molecular dynamics energy violations. When the mixing becomes
large, there will be a large Jacobian, but this is still considerably smaller than
the action jump caused by the large forces using the old method. This new
method is not manifestly reversible, but it is possible to construct a reversible
algorithm by combining forward and backward updates. Stout smearing is
technically more challenging to apply efficiently with this new method; but it
is possible.

Section 2 outlines how a non-area conserving (NAC) HMC can be constructed,
and describes the calculation of the new fermionic force and the Jacobian.
Section 3 outlines numerical results comparing this algorithm with the old
method. Section 4 is a conclusion, and there are two appendices describing
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some of the more technical details of the proposed algorithm.

2 Non-area conserving HMC for overlap fermions

2.1 Hybrid Monte Carlo

To fix the notation I start by reviewing the hybrid Monte Carlo algorithm
for two flavours of fermion [10]. A Monte Carlo method satisfies the detailed
balance condition

P [U ′ ← U ]Wc[U ] = P [U ← U ′]Wc[U
′], (6)

where Wc[U ] is the canonical ensemble and P [U ′ ← U ] is the probability
of updating from gauge field U to gauge field U ′. In a Hybrid Monte Carlo
method, we introduce a momentum field Π, which contains a Hermitian trace-
less matrix on every link of the lattice, and which is generated according to a
Gaussian distribution. We evolve the gauge field and the momentum according
to a reversible and ergodic trajectory T [U,Π]. Finally, we include a metropolis
step to correct for small changes in the energy E = Π2/2 + Sg[U ] + φ†H−2φ.
Thus the probability of generating a field U ′ from a field U , for a canonical
ensemble,

Wc[U ] =
∫

dφ†dφe−Sg[U ]−φ†H−2[U ]φ, (7)

is

P [U ′ ← U ] =
∫

dΠdΠ′e−
1

2
Π2

δ([U ′,Π′]− T [U,Π])

min
(

1, e−Sg[U ′]−φ†H−2[U ′]φ− 1

2
Π′2+Sg[U ]+φ†H−2[U ]φ+ 1

2
Π2−log J

)

, (8)

where the fermion determinant is approximated using a pseudo-fermion field
φ, in the standard way, and J is the Jacobian

J =

∣

∣

∣

∣

∣

∣

∣

∂U
∂U ′

∂Π
∂U ′

∂U
∂Π′

∂Π
∂Π′

∣

∣

∣

∣

∣

∣

∣

. (9)

It is easy to show that this update satisfies the detailed balance condition (6).
The only non-standard part of equation (8) is the inclusion of the Jacobian [21].
Most applications use an area conserving molecular dynamics update, so that
the logarithm of the Jacobian is zero. However, if it is possible to calculate
the Jacobian, there is no restriction forcing the use of an area conserving
algorithm, should an alternative method prove to be advantageous.
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2.2 The new algorithm

For simplicity, I start by considering a system with two eigenvectors of Q,
|ψ1〉 and |ψ2〉, with eigenvalues λ1 and λ2. I intend to differentiate the eigen-
vector with respect to the gauge field, which requires finding the change in
the eigenvectors caused by a small change in the gauge field. I write the new
eigenvectors as

|ψ′
1〉 =|ψ1〉 cos θ + |ψ2〉e

iδ sin θ,

|ψ′
2〉 =|ψ2〉 cos θ − |ψ1〉e

−iδ sin θ. (10)

If δQ is the change in the kernel operator Q, and δλ the change in the eigen-
value, then by considering the eigenvalue equations,

Q |ψi〉 =λi |ψi〉 ,

(Q + δQ) |ψ′
i〉 =(λi + δλi) |ψ

′
i〉 , (11)

it is easy to show that

tan 2θ =
2
√

〈ψ2|δQ|ψ1〉〈ψ1|δQ|ψ2〉

λ1 − λ2 + 〈ψ1|δQ|ψ1〉 − 〈ψ2|δQ|ψ2〉
(12)

and

eiδ =

√

√

√

√

〈ψ2|δQ|ψ1〉

〈ψ1|δQ|ψ2〉
. (13)

Using the usual equation of motion (d/dτU = iτΠU), it is possible to expand
δQ in τ , which gives

δQxy =− iτκγ5
∑

µ

[

(1− γµ)Πµ(x)Uµ(x)δy,x+µ−

(1 + γµ)U
†
µ(x− µ)Πµ(x− µ)δy,x−µ

]

. (14)

The molecular dynamics momentum, Π, can be written as

Πµ(x) = πixµT i
µ(x), (15)

where T i
µ(x) is a generator of SU(3) (normalised so that Tr T iT j = δij)

on a link proceeding from lattice site x in direction µ, and πixµ is a vector
representation of the momentum field. Now it is straightforward to express
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the change in the sign function in terms of the mixing angles θ and δ:

FNAC,ǫ
ij αij(τ,Π)π

=|ψ′
1〉〈ψ

′
1|ǫ(λ

′
1) + |ψ

′
2〉〈ψ

′
2|ǫ(λ

′
2)− (|ψ1〉〈ψ1|ǫ(λ1) + |ψ2〉〈ψ2|ǫ(λ2))

=|ψ1〉〈ψ1| sin
2 θ(ǫ(λ2)− ǫ(λ1))

1

2

(

〈ψ1|δQ|ψ2〉

〈ψ1|δQ|ψ2〉
+
〈ψ2|δQ|ψ1〉

〈ψ2|δQ|ψ1〉

)

+

|ψ2〉〈ψ2| sin
2 θ(ǫ(λ1)− ǫ(λ2))

1

2

(

〈ψ1|δQ|ψ2〉

〈ψ1|δQ|ψ2〉
+
〈ψ2|δQ|ψ1〉

〈ψ2|δQ|ψ1〉

)

+

|ψ1〉〈ψ2| cos θ sin θe
−iδ(ǫ(λ1)− ǫ(λ2))

〈ψ1|δQ|ψ2〉

〈ψ1|δQ|ψ2〉
+

|ψ2〉〈ψ1| cos θ sin θe
iδ(ǫ(λ1)− ǫ(λ2))

〈ψ2|δQ|ψ1〉

〈ψ2|δQ|ψ1〉
. (16)

FNAC,ǫ
ij , defined by this equation, shall be used to construct the NAC (non-

area conserving) fermionic force. αij are defined below. The terms such as
〈ψ2|δQ|ψ1〉/〈ψ2|δQ|ψ1〉 = 1 have been added for reasons that will be outlined
in the discussion following equation (20). Note that by expanding equation (16)
around τ = 0, and neglecting terms of order τ 2 and higher, one recovers the
original expression for the derivative of the sign function (equation (5)). But
when θ becomes large, giving a large mixing between the two eigenvectors, this
expansion breaks down. In order to construct a fermionic force from equation
(16), I require the momentum vectors,

αnxµ
ij =− iκτ〈ψi|xγ5

[

(1− γµ)T
n
µ (x)Uµ(x)δy,x+µ−

(1 + γµ)U
†
µ(x)T

n
µ (x)δx,y+µ

]

|ψj〉y, (17)

which are defined so that

πnxµαnxµ
ij = 〈ψi| δQ |ψj〉 . (18)

The (non-area conserving) fermionic force for this two eigenvalue system is
thus

FNAC
µ (x)(τ,Π) = 〈X|

[

γ5F
NAC,ǫ
ij (τ,Π) + FNAC,ǫ

ij (τ,Π)γ5|X
]

〉αnxµ
ij T n

µ (x), (19)

where |X〉 is the inverse of the overlap operator acting on the pseudo-fermion
field |φ〉:

|X〉 =
1

H2
|φ〉, (20)

and the fermionic force Fµ(x) is defined as the quantity added to the old mo-
mentum to obtain the new momentum, i.e. Π′

µ(x) = Πµ(x) + Fµ(x). F
NAC

refers to the term in F which is constructed from the eigenvectors close
to zero and not area conserving. The force is usually constructed as F =
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−iτU∂/∂U(Sg + φH−2φ) + h.c., although in practice any Hermitian traceless
matrix field which conserves energy and (up to a small, calculable, Jacobian)
the measure will suffice. The dependence on the molecular dynamics time, τ ,
is, in this notation, absorbed into the definition of the force.

Now the reason why the terms equal to one have been added in equation (16)
should be clear. We need a construction of the force such that FNAC,ǫ

ij παij

is indeed proportional to the momentum vectors, so that we can easily ex-
tract FNAC,ǫ

ij . This requires that the right hand side of (16) is proportional to
〈ψi| δQ |ψj〉 for some i and j. Hence we have to introduce the additional terms
equal to unity. The numerator of these terms provides the αikπik of the left
hand side of (16). In principle, there is a choice between using
〈ψ1| δQ |ψ1〉 / 〈ψ1| δQ |ψ1〉 and 〈ψ1| δQ |ψ2〉 / 〈ψ1| δQ |ψ2〉. However, we cannot
introduce terms such as 〈ψ1| δQ |ψ1〉 in the denominator of the force because
of instabilities when this quantity becomes zero. Since sin2 θ is proportional to
〈ψ1| δQ |ψ2〉, there are no infinities in the definition of FNAC,ǫ

ij given in equa-
tion (16), although obviously care is needed in its numerical implementation
to avoid dividing zero by zero.

Of course, in real life we have more than two eigenvectors. Only the eigen-
vectors whose eigenvalues are close to zero need to be treated with the NAC
algorithm. However, all eigenvectors with eigenvalues below a suitable cutoff,
Λ, which has to be tuned for each set of simulation parameters, must be dif-
ferentiated in this way. To include additional eigenvectors in the NAC setup,
we need to include additional mixing angles. To simplify the expressions, I
assume that only one mixing angle is large at any time, so that I can write
the new eigenvector as

|ψ′
i〉 =



1 +
∑

j 6=i

(cos θij − 1)



 |ψi〉+
∑

j 6=i

sin θije
iδij |ψj〉+

1

Q− λi



1−
∑

j

|ψj〉 〈ψj |



 δQ |ψi〉 , (21)

where the sum runs over all eigenvectors with eigenvalues below the cutoff.
If there is more than one large mixing angle the new eigenvector defined in
equation (21) is no longer normalised. Although this problem has not occurred
in my tests, the solution would be to use the full expansion in terms of Euler
angles. For example, for three eigenvectors we would write

|ψ′
1〉 = cos θ12 cos θ13 |ψ1〉+ cos θ13 sin θ12e

iδ12 |ψ2〉+ sin θ13e
iδ13 |ψ3〉 . (22)

For equation (21), the mixing angles calculated in equations (12) and (13)
can be used. If equation (22) is used, it would be necessary to derive new
expressions for the mixing angles.
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The non area-conserving force is a function of the momenta and is not an
odd function of the time. Therefore, to ensure reversibility it is necessary to
update the momentum field in two steps:

Π0.5 = Π0 + FAC
(

τ

2

)

+ FNAC
(

τ

2
,Π0.5

)

,

Π0.5 = Π1 + FAC
(

−
τ

2

)

+ FNAC
(

−
τ

2
,Π0.5

)

. (23)

The first step requires an iterative procedure. This iteration does not signifi-
cantly slow down the HMC algorithm because the time-consuming parts of the
force calculation, including the overlap inversions, eigenvalue calculation and
the calculation of the momentum vectors αij , are the same for each iteration
and thus only need to be computed once for each calculation of the force. The
iteration always converged to numerical precision within three or four steps.
Given that the force is a highly non-linear function of the momentum, there
is a danger that there may be multiple solutions to the iteration or chaotic
effects. For this reason, the reversibility must be carefully checked. My numer-
ical results on 8316 lattices are given in section 3.1, and show no breakdown
in reversibility across a large range of molecular dynamics time-steps.

Because this momentum update is not area conserving, two Jacobians must be
calculated, one for each of the updates in equation (23). Both Jacobians can
be computed using the same method. Since only the momentum is updated,
∂U ′/∂U = 1 and ∂U ′/∂Π = 0. Therefore, to calculate the Jacobian we need
to calculate only ∂Π′/∂Π. For the second update in (23), this is

∂πixµ
1

∂πjyν
0.5

=δixµ,jyν + αixµ
nm〈X|

[

γ5
∂

∂πjyν
0.5

FNAC,ǫ
nm (−τ/2,Π0.5) +

∂

∂πjyν
0.5

FNAC,ǫ
nm (−τ/2,Π0.5)γ5

]

|X〉

=δijδµνδxy − αixµ
nmα

jyν
op Anm,op. (24)

I obtain the second equality by noting that the only momentum dependence
within F is contained in terms such as 〈ψi| δQ |ψj〉, which, when differentiated,
gives terms proportional to αij . By rewriting the vectors αij in terms of a

complete orthonormal basis α′
k, so that αijαnmAij,nm = α′

kα
′
l
†A′

kl, it is easy to
calculate the Jacobian in terms of the small matrix A′:

J = det[1−A′]. (25)

For sufficiently large eigenvalues, the logarithm of the Jacobian should scale
as O(τ 3) for each molecular dynamics step. This is the same as the change in
the energy. The easiest way to see this is to note that the molecular dynamics
update is reversible, which means that the logarithm of the Jacobian must
be an odd function of time. Furthermore, at O(τ) this method is identical to

10



the old area conserving algorithm; therefore the highest order term which can
contribute to the Jacobian is O(τ 3). This is seen numerically in section 3.2.

Of course, if the eigenvalues are small, and the Taylor expansion of sin θ in
τ/(λ1 − λ2) does not converge, then it is possible to get large Jacobians, just
as large forces blighted the old method. However, this method offers several
advantages. Firstly, the change in the logarithm of the Jacobian scales as
O(log(τ/(λ1−λ2))), rather than a fermionic force (and thus change in kinetic
energy) scaling as O(τ/(λ1 − λ2)). Secondly the absence of large fermionic
forces improves the stability of the algorithm (a small numerical error in a large
force could lead to a large error in the energy). Finally, because the trajectory is
smooth, there is a possibility of cancellations between a large positive Jacobian
as the eigenvalues approach and a negative Jacobian as they depart; while with
the old method the large force focused on one eigenvector meant that that
eigenvector changed rapidly, leaving no opportunity for any cancellation. In
our numerical tests on 8316 lattices I did not see any logarithms of Jacobians
larger than 0.4 even at relatively large time steps. Energy violations of order
100 or higher were common with the old algorithm. These results will be
discussed in section 3.3.

In this paper, I have presented the method without any smearing, and it is
not my intention to describe the smeared version of the algorithm in detail.
However it is prudent to make a few comments. I have adapted and successfully
run a version of this algorithm including stout smearing. From [16], equation
(71), I obtained an expression deriving the differential of the smeared link
with respect to the differential of the original link. To calculate the vectors
αnµx
ij , I simply applied this expression to the derivative of the gauge field,
iT iU . Equation (72) of [16], which is normally used to calculate the smeared
force, cannot be used because we need to efficiently calculate the Jacobian.
While this approach can almost certainly be improved, it worked. Efficiently
parallelising the code required adapting the algorithm so that it could calculate
the differential of links separated by sufficient distance (twice the number of
smearing steps plus one link) simultaneously. This procedure is acceptably
quick for one or two smearing steps, but is more costly for larger iterations of
smearing.

3 Numerical results

I tested the algorithm on a 8316 ensemble with mass µ = 0.05, β = 8.35 with
a tadpole improved Lüscher-Weisz gauge action [22,23,24,25], κ = 0.2, and no
additional pseudo-fermions. In order to test the routine in the most extreme
conditions possible on these lattices I did not use any stout smearing. In an
actual HMC simulation, I would, of course, use moderate smearing to remove
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Fig. 2. Test of the reversibility. The plot shows the difference between the initial en-
ergy and the energy after running a forwards and backwards trajectory, normalised
by the initial energy.

dislocations.

I will test the reversibility of the algorithm (section 3.1), whether the Jacobian
is sufficiently small to leave the acceptance rate unaffected, whether it scales
with the molecular dynamics time as predicted (section 3.2), and whether the
new algorithm is indeed successful in eliminating the large forces (section 3.3).

3.1 Test of reversibility

To test that the algorithm is reversible, I ran forward and backward trajec-
tories of length ten micro-canonical steps for twenty 8316 µ = 0.05 configu-
rations, and calculated the difference between the initial and final energies.
I tested time steps between δτ = 0.001 and 0.03, and the average difference
in the initial and final energies are plotted in figure 2. I see no breakdown in
reversibility at any of these timescales (the energy differences are consistent
with the accuracy which I use when inverting the overlap operator). I have
also checked the reversibility by comparing the smallest Wilson eigenvalues
during the forward and reverse trajectories; and again, there was no sign of a
breakdown of reversibility to the working precision.

3.2 Scaling of Jacobian

To confirm that the Jacobian scales as expected with the molecular dynamics
time, on the same configurations used in section 3.1, I calculated the average
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Fig. 3. The average change in the logarithm of the Jacobian for each micro-canonical
step as a function of molecular dynamics time.

τ 〈|∆ log J |〉 〈∆ log J〉 max |∆ log J |

0.001 4.0(6) × 10−6 1.5(9) × 10−6 3.14× 10−5

0.005 4.1(4)−4 0.9(52) × 10−5 3.11× 10−3

0.008 2.1(3) × 10−3 −0.2(39) × 10−4 0.02517

0.01 4.2(7) × 10−3 −4.0(76) × 10−4 0.0636

0.012 6.7(9) × 10−3 −1.8(10) × 10−3 0.0818

0.014 9.7(15) × 10−3 −2.0(16) × 10−3 0.0956

0.016 0.016(2) −5.8(23) × 10−3 0.139

0.02 0.090(36) -0.018(39) 0.187

0.03 0.095(44) 0.013(51) 0.343

Table 1
The average change in the absolute value of the logarithm of the Jacobian and
the logarithm of the Jacobian for each micro-canonical step as a function of the
molecular dynamics time, and the largest change in the Jacobian seen across the
test trajectories on one micro-canonical step.

change in the logarithm of the Jacobian, ∆ log J , for each micro-canonical
step. This average change is plotted against τ in figure 3, with the values
given in table 1. To confirm that the scaling is the expected O(τ 3), I fitted
the results using |∆ log J | = (aτ)n, using a and n as free parameters. The
best fit, with seven degrees of freedom, had a χ2 value of 5.7. It gave n =
3.005 ± 0.100, the expected value within the statistical errors. The largest
change in the logarithm of the Jacobian for a micro-canonical step observed
during the various test trajectories was 0.34: not large enough to cause the
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configuration to be rejected. The logarithm of the Jacobian, as can be seen
in table 1, is not noticeably biased towards being either positive or negative.
This means that over the course of a trajectory there will be cancellations
between positive and negative log J , so that the effect on the acceptance rate
will be even smaller than might be expected from the O(τ 3) scaling.

3.3 Comparison of fermionic forces

During my test trajectories, I calculated the fermionic force using both the
original algorithm and the new algorithm, although I only used the force from
the new algorithm when updating the momentum. This allowed me to directly
compare the two forces. From figure 4 it is clear that the new fermionic force
is stable, while the force from the old algorithm is considerably more unstable.
The instabilities in the old algorithm fermionic force are, of course, exaggerated
compared to a production run because I am not using any smearing (note that
the eigenvalue scale in figure 1, based on data taken from a production run
which used two levels of stout smearing, is a factor of ten larger than the scale
in figure 4). However, I expect the picture from figure 4 to be duplicated on
larger lattices with smearing, because the density of smaller eigenvalues would
increase. None of my test trajectories had any peaks in the fermionic force.
As mentioned earlier, and as can be seen from the bottom plot in figure 4, I
did see peaks in the Jacobians caused by the mixing (as expected), but these
were not large enough to reduce the metropolis acceptance rate.

4 Conclusion

I have presented a new method to differentiate the eigenvectors of the ker-
nel operator in an Hybrid Monte Carlo algorithm with overlap fermions. This
new algorithm is reversible, scales well with the molecular dynamics time, is
no slower to compute than the old algorithm (unless an excessive number of
smearing steps are used), and, unlike the old algorithm, has no large peaks
in the fermionic force. The method can easily be extended to variants of the
HMC algorithm, such as RHMC, using multiple pseudo-fermion, or differen-
tiable smearing. I therefore recommend that this new method is used in future
dynamical overlap calculations which allow small kernel eigenvalues.

14



-140000

-120000

-100000

-80000

-60000

-40000

-20000

 0

 2  4  6  8  10  12  14  16  18  20  22

microcanonical step

nac fermionic force
old algorithm fermionic force

-0.003

-0.002

-0.001

 0

 0.001

 0.002

 0.003

 0.004

 2  4  6  8  10  12  14  16  18  20  22

ei
g
en

v
al

u
e

microcanonical step

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 5  10  15  20

-lo
g 

(J
)

microcanonical step

Fig. 4. Comparison of the trace of the square of the fermionic forces for the proposed
and old algorithms with τ = 0.016 on one of the µ = 0.05 trajectories (top), together
with the Wilson operator eigenvalues (middle) and the log of the Jacobian (bottom).

15



Acknowledgements

I would like to thank Thomas Lippert, Andreas Schäfer, Stefan Krieg, Anna
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A Calculation of force and Jacobian

In this appendix, for simplicity I concentrate on the force and Jacobian from
the mixing of one eigenvector pair. However, to illuminate the generalisation to
the multiple eigenvector case of equation(21), and to avoid confusion between
θij and θji, I maintain the notation of equation (21) rather than reverting to
the simpler notation of equation (10). The argument outlined here can easily
be extended to include other pairs of eigenvectors. I also only consider the
momentum update from Π0.5 to Π1, since the fermionic force and Jacobian for
the update from Π0 to Π0.5 can be constructed in the same way.

I write the force in terms of the momentum vectors

αnxµ
ij =− iκτ〈ψi|xγ5

[

(1− γµ)T
n
µ (x)Uµ(x)δy,x+µ−

(1 + γµ)U
†
µ(x)T

n
µ (x)

]

δy,x−µ|ψj〉y, (A.1)

where T n are the Gell-Mann matrices normalised so that Tr(T nTm) = δnm.

Neglecting the gauge action and area conserving fermionic action, the energy
conservation equation for an update from fields [Π, U ] to [Π′, U ′] reads

0 =
1

2
(Π′2 −Π2) + 〈φ|

1

H [U ′]2
|φ〉 − 〈φ|

1

H [U ]2
|φ〉 (A.2)

≈πnxµ
[

(π′nxµ − πnxµ)− F nxµ
ii − F nxµ

jj − F
nxµ
ij − F nxµ

ji

]

, (A.3)

where

πnxµ =Tr(T nΠµ(x)), Πµ(x) =T
nπnxµ (A.4)
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and

F nxµ
ii =

1

2
Cii sin

2 θij

(

αnxµ
ji

δQji
+
αnxµ
ij

δQij

)

,

F nxµ
ij =Cij sin θij cos θije

−iδij
αnxµ
ij

δQij

,

F nxµ
ji =Cji sin θij cos θije

iδij
αnxµ
ji

δQji
,

F nxµ
jj =−

1

2
Cjj sin

2 θij

(

αnxµ
ji

δQji

+
αnxµ
ij

δQij

)

,

Cab =(1− µ2) (〈X| γ5 |ψa〉 〈ψb|X〉+ 〈X|ψa〉 〈ψb| γ5 |X〉) (ǫ(λi)− ǫ(λj)) ,

δQab = 〈ψa| δQ |ψb〉 . (A.5)

Equation (A.4) can be used to convert between the vector form of the mo-
mentum (more useful in this formulation) and the matrix form (used in the
numerical implementation). δQ, θ and δ are all functions of Π.

Energy is conserved if

π′nxµ =πnxµ + F nxµ
ii + F nxµ

ij + F nxµ
ji + F nxµ

jj (A.6)

=πnxµ +Bijα
nxµ
ij , (A.7)

where the coefficients Bij can be determined from equation (A.5).

To calculate the Jacobian, ∂πnxµ/∂πmyν I note that

∂δQii

∂πmyν
=αmyν

ii ,

∂δQji

∂πmyν
=αmyν

ji ,

∂δQij

∂πmyν
=αmyν

ij ,

∂δQjj

∂πmyν
=αmyν

jj , (A.8)

giving

4

sin 4θij

∂θij
∂πmyν

=
αmyν
ji

2δQji
+
αmyν
ij

2δQij
−

αmyν
ii − αmyν

jj

λi − λj + δQii − δQjj
(A.9)

and

e−iδij
∂eiδij

∂πmyν
=
αmyν
ji

2δQji
−
αmyν
ij

2δQij
. (A.10)
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I use these expressions to differentiate Bij, and write the Jacobian in the form

∂π′nxµ

∂πmyν
= δn,mδxyδµν − α

nxµ
ij αmyν

op Aij,op, (A.11)

where

Aji,ii =
sin 4θij

(

(Cjj − Cii) sin 2θij − 2Cji cos 2θije
iδij
)

8δQji(λi − λj + δQii − δQjj)
,

Aji,ji =
(Cjj − Cii)

(

8 sin2 θij − sin 2θij sin 4θij
)

16(δQji)2
−

Cjie
iδij (2 sin 2θij − cos 2θij sin 4θij)

8(δQji)2
,

Aji,ij =
(Cjj − Cii) sin 2θij sin 4θij

16(δQji)(δQij)
+
Cjie

iδij (cos 2θij sin 4θij − 2 sin 2θij)

8(δQji)(δQij)
,

Aji,jj =−Aji,ii,

Aij,ii =
sin 4θij

(

(Cjj − Cii) sin 2θij − 2Cij cos 2θije
−iδij

)

8δQij(λi − λj + δQii − δQjj)
,

Aij,ji =
(Cii − Cjj) sin 2θij sin 4θij

16(δQji)(δQij)
+
Cije

−iδij (cos 2θij sin 4θij − 2 sin 2θij)

8(δQji)(δQij)
,

Aij,ij =
(Cjj − Cii)

(

8 sin2 θij − sin 2θij sin 4θij
)

16(δQij)2
−

Cije
−iδij (2 sin 2θij − cos 2θij sin 4θij)

8(δQij)2
,

Aij,jj =−Aij,ii, (A.12)

and all other components of A are 0.

It is my intention to use the standard result

∣

∣

∣1− αnxµ
i αmyν

j
†
Aij

∣

∣

∣ = |1−Aij | (A.13)

to calculate the determinant. There are two things which must be done before
applying this result. First of all, I have calculated αijαnmAij,nm not αiα

†
jAij ;

however since αij = α†
ji, the correct expression is obtained by exchanging the

12 and 21 columns of the matrix Aij,nm calculated above. Secondly, I need to
re-express the αs in terms of an orthonormal basis. It is easy, though only
necessary in the theoretical proof of equation (A.13) and not in a numerical
implementation, to construct other vectors orthonormal to the new αs so that
the basis spans the entire space.

I can construct an orthonormal basis for αij by, first of all, expressing the
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vectors in terms of a single index, and writing

α1 →α1/
√

(α1, α1),

A1i →A1i

√

(α1, α1),

Ai1 →Ai1

√

(α1, α1), (A.14)

then projecting α1 from the other vectors αj

x =(α1, αj);

αj →αj − xα1;

Aii →Aii + x†A1j + xAj1 + Ajjxx
†,

Ai1 →Ai1 + x†Aij ,

A1i →A1i + xAji,

A1j →A1j + xAjj ,

Aj1 →Aj1 + x†Ajj, (A.15)

for i 6= 1 and i 6= j. This procedure can then be repeated for the other
vectors in turn. Once recast into an orthonormal basis, I can use equation
(A.13) to express the Jacobian in terms of the determinant of a small matrix.
This determinant can then be easily calculated using a standard method, for
example LU decomposition [26].

B The reflection/transmission update

During the transmission step, which occurs when an eigenvalue of the kernel
operator crosses zero (and the momentum is sufficiently large that I do not
have to reflect), I recommend using an momentum update

Π+ =Π− + τc(F )− ητc(η, F )+
(

η1(η1,Π
− +

τc
2
(F+ + F−)) + η2(η2,Π

− +
τc
2
(F+ + F−))

)

×




√

√

√

√1 +
d2

(η1,Π− + τc
2
(F+ + F−))2 + (η2,Π− + τc

2
(F+ + F−)2

− 1



+

η(Π−, η)





√

√

√

√−2
log (e−(Π−,η)2/2−2d + 1− e−2d)

(Π−, η)2
− 1



 , (B.1)

d2 =(−2τc(F
−, η)(Π−, η) + 2τc(F

+, η)(Π+, η) + τ 2c (F
− + F+, F )). (B.2)

The notation, which is chosen to be consistent with my earlier work, is outlined
in [5,11] together with the full details of the construction and why I believe it to
be superior to other algorithms. Here I will limit myself to explaining the most
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important features of each term. In this formula (in the case where there is no
smearing, and up to a normalisation factor) η = αii is a unit momentum vector
normal to the surface of zero eigenvalue (in the space of all possible gauge field
configurations), d is half of the change to the momentum energy, η1 and η2 are
arbitrary vectors perpendicular to η and the force difference F = (F+−F−)−
1
3
Tr(F+ − F−), the − superscript indicates a force or momentum calculated

with the smallest eigenvalue having its original sign, while + indicates that the
force or momentum was calculated with the eigenvalue having its final sign,
and all these quantities are calculated on the gauge field with zero eigenvalue.
In this section, when referring to αij in general (for example in the calculation
of the Jacobians), it should be understood that I am excluding η = αii. Even
with the old algorithm, this update is not area conserving, but it is constructed
to conserve the action, including the Jacobian term. The d2 term cancels out
an O(τ) energy difference caused because the momentum is not updated at
the moment of crossing [5]. The other improvement to the algorithm originally
published by Zoltan Fodor et al. [4] is in the term proportional to η, which
has an increased rate of transmission [11].

However, this update is a function of the fermionic force, and by using the non
area conserving fermionic force proposed in this paper, it is necessary to calcu-
late the Jacobian for the transmission step. For simplicity, I shall here write F
as a function of Π−, although in practice, to maintain reversibility, it is again
necessary to update the momentum in two steps, using an iterative procedure
for one of the updates. First of all, I need to construct an orthonormal basis,
α̃ij , η1 and η2 from the vectors αij , αii and two additional vectors, where I
ensure that η1 and η2 are both also normal to the area conserving part of F
(the non-area conserving part of F is of course proportional to the vectors αij

in any case). For convenience, I write that α̃ii = αii = η. It is easy to show

that because η1 and η2 are normal to F and all the vectors αij ,
∂(Π+,α̃ij)

∂(Π−,ηk)
= 0.

Similarly, ∂(Π+,η)
∂(Π−,αij)

= 0, (except, of course, when i = j = 1) and ∂(Π+,η)
∂(Π−,ηk)

= 0.

Thus, I write the Jacobian in the form

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(Π+,η)
∂(Π−,η)

∂(Π+,η)
∂(Π−,α̃ij)

∂(Π+,η)
∂(Π−,ηk)

∂(Π+,α̃ij)

∂(Π−,η)

∂(Π+,α̃ij)

∂(Π−,α̃ij)

∂(Π+,α̃ij)

∂(Π−,ηk)

∂(Π+,ηk)
∂(Π−,η)

∂(Π+,ηk)
∂(Π−,α̃ij)

∂(Π+,ηk)
∂(Π−,ηk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂(Π+,η)
∂(Π−,η)

0 0

6= 0
∂(Π+,α̃ij)

∂(Π−,α̃ij)
0

6= 0 6= 0 ∂(Π+,ηk)
∂(Π−,ηk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (B.3)

∂(Π+, η)/∂(Π−, η) and ∂(Π+, ηi)/∂(Π
−, ηi) have already been calculated in

[5,11]. All that remains is to calculate the Jacobian for ∂(Π+, α̃ij)/∂(Π
+, α̃ij).

For one of these two half-updates, I obtain

(Π+, α̃ij) =(Π0.5, α̃ij) + τc(F (Π
0.5), α̃ij)

=(Π0.5, α̃ij) + τc((F (Π
0.5), αk)− (F (Π0.5), η)(η, αk)). (B.4)
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Thus,

∂(Π+, α̃k)

∂(Π+, α̃n)
= δk,n +

1

2
A′

k,nα
′
kα

′†
n −

1

2
A′

kn(α
′
n, η)(η, α

′
k). (B.5)

And from here, I proceed as before.
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