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Abstra
t

Despite the tremendous advan
es made by the ab initio theory of ele
troni
 stru
ture

of atoms and mole
ules, its appli
ations are still not possible for very large systems.

Therefore, semi-empiri
al model Hamiltonians based on the zero-di�erential overlap

(ZDO) approa
h su
h as the Pariser-Parr-Pople, CNDO, INDO, et
. provide attra
-

tive, and 
omputationally tra
table, alternatives to the ab initio treatment of large

systems. In this paper we des
ribe a Fortran 90 
omputer program developed by

us, that uses CNDO/2 and INDO methods to solve Hartree-Fo
k(HF) equation for

mole
ular systems. The INDO method 
an be used for the mole
ules 
ontaining the

�rst-row atoms, while the CNDO/2 method is appli
able to those 
ontaining both

the �rst-, and the se
ond-row, atoms. We have paid parti
ular attention to 
ompu-

tational e�
ien
y while developing the 
ode, and, therefore, it allows us to perform


al
ulations on large mole
ules su
h as C60 on small 
omputers within a matter of

se
onds. Besides being able to 
ompute the mole
ular orbitals and total energies, our


ode is also able to 
ompute properties su
h as the ele
tri
 dipole moment, Mulliken

population analysis, and linear opti
al absorption spe
trum of the system. We also

demonstrate how the program 
an be used to 
ompute the total energy per unit


ell of a polymer. The appli
ations presented in this paper in
lude small organi


and inorgani
 mole
ules, fullerene C60, and model polymeri
 systems, viz., 
hains


ontaining alternating boron and nitrogen atoms (BN 
hain), and 
arbon atoms (C


hain).
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Program Summary

Title of program: 
indo.x

Catalogue Identi�er:

Program summary URL:

Program obtainable from: CPC Program Library, Queen's University of Belfast,

N. Ireland

Distribution format: tar.gz

Computers : PC's/Linux

Linux Distribution: Code was developed and tested on various re
ent versions

of Fedora in
luding Fedora 9 (kernel version 2.6.25-14)

Programming language used: Fortran 90

Compilers used: Program has been tested with Intel Fortran Compiler (non-


ommer
ial version 10.1) and gfortran 
ompiler (g

 version 4.3.0) with opti-

mization option -O.

Libraries needed: This program needs to link with LAPACK/BLAS libraries


ompiled with the same 
ompiler as the program. For the Intel Fortran Com-

piler we used the ACML library version 3.6.0, while for gfortran 
ompiler we

used the libraries supplied with the Fedora distribution.

Number of bytes in distributed program, in
luding test data, et
.: size of the

tar �le ...... bytes

Number of lines in distributed program, in
luding test data, et
.: lines in the

tar �le .......

Card pun
hing 
ode: ASCII

Nature of physi
al problem: A good starting des
ription of the ele
troni
 stru
-

ture of extended many-ele
tron systems su
h as mole
ules, 
lusters, and poly-

mers, 
an be obtained using the Hartree-Fo
k (HF) method. Solution of HF

equations within a fully ab initio formalism for large systems, however, is 
om-

putationally quite expensive. For su
h systems, semi-empiri
al methods su
h

as CNDO and INDO proposed by Pople and 
ollaborators are quite attra
tive.

The present program 
an solve the HF equations for both open- and 
losed-

shell systems 
ontaining �rst- and se
ond-row atoms using either the INDO

model or the CNDO model.

Method of Solution: The single-parti
le HF orbitals are expressed as linear


ombinations of the Slater-type orbital (STO) basis set spe
i�ed by Pople

and 
oworkers. Then using the parameters pres
ribed for the CNDO/INDO

methods, the HF integro-di�erential equations are transformed into a matrix

eigenvalue problem. Thereby, its solutions are obtained in a self-
onsistent

manner, using methods of 
omputational linear algebra.

Unusual features of the program: None
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1 Introdu
tion

The linear 
ombination of atomi
 orbitals (LCAO) method is one of the most


ommon approa
hes for solving the S
hrödinger equation for many-ele
tron

systems su
h as atoms, mole
ules, 
lusters, and solids. It 
onsists of express-

ing the single-parti
le orbitals of the ele
trons of the system as a linear 
om-

bination of a known basis set, and then solving the mean-�eld equations su
h

as the Hartree-Fo
k (HF) or the Kohn-Sham equations. This 
onverts these

integro-di�erential equations into a matrix eigenvalue problem, whi
h is subse-

quently solved using 
omputational approa
hes from the linear algebra. If one

intends to go beyond the mean-�eld to in
lude the ele
tron 
orrelations e�e
ts,

approa
hes su
h as the 
on�guration-intera
tion (CI), 
oupled-
luster, or the

Green's fun
tion based formalisms 
an be used. If N is the total number of

basis fun
tions used, the 
omputational di�
ulty at the mean-�eld level s
ales

roughly asN4
, whi
h is the number of two-ele
tron integrals needed to perform

su
h 
al
ulations. For post mean-�eld 
orrelated 
al
ulations, integrals need to

be transformed from the basis-set atomi
 orbital (AO) representation to the

mole
ular-orbital representation (MO), a pro
ess whi
h s
ales as N5
, while

subsequent solution of the 
orresponding equations 
an be even more time


onsuming[1℄. Sin
e N in
reases rapidly with the number of atoms (and hen
e

ele
trons) in the system, therefore, for very large systems solution of even the

mean-�eld equations 
an be
ome 
omputationally intra
table. Therefore, it is

always advisable to devise methods of ele
troni
 stru
ture theory whi
h aim

at redu
ing the size of the basis set.

Using the zero-di�erential overlap (ZDO) approximation developed by Parr[2℄,

Pople and 
oworkers developed a series of semi-empiri
al methods for 
omput-

ing the ele
troni
 stru
ture of mole
ules su
h as the Pariser-Parr-Pople (PPP)

model[3℄, the 
omplete negle
t of di�erential overlap (CNDO) method[4,5,6℄,

and the intermediate negle
t of di�erential overlap (INDO) method[7℄. Of

these, the PPP model is appli
able only to π-
onjugated systems, however,

the CNDO and INDO models with suitable parametrization, are in prin
iple,

appli
able to all mole
ular systems[8℄. CNDO and INDO methods are a 
lass

of valen
e-ele
tron models whi
h utilize a minimal Slater-type orbital (STO)

basis set for the representation of the valen
e orbitals[8℄. Additionally, in the

representation of the Hamiltonian, only one- and two-
enter integrals are re-

tained, leading to a drasti
 redu
tion in the 
omputational e�ort as 
ompared

to the ab initio 
al
ulations[8℄. Therefore, the CNDO/INDO models share at-

tra
tive feature of semi-empiri
al parametrization with the PPP model, and a

spatial representation of the mole
ular orbital with the ab initio approa
hes[8℄.

And, unlike the PPP model, the CNDO/INDO methods 
an also be used for

the geometry optimization of mole
ules[8℄. Therefore, for large mole
ular sys-

tems and 
lusters, for whi
h the appli
ations of fully ab initio approa
hes 
an

be 
omputationally intra
table, the CNDO/INDO methods provide an attra
-
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tive alternative for the theoreti
al des
ription of their ele
troni
 stru
ture.

It is with possible appli
ations to large mole
ules, 
lusters, and polymers in

mind that we have developed the present 
omputer program whi
h imple-

ments the CNDO-2/INDO methods as formulated originally by Pople and


oworkers[8℄. As per the original formulation by Pople and 
oworkers[8℄, the

INDO method 
an be used for the mole
ules 
ontaining the �rst-row atoms,

while the CNDO/2 method is appli
able to those 
ontaining both the �rst-

, and the se
ond-row, atoms. The fa
t that the 
ode has been written in a

modern programming language, viz., Fortran 90, allows it to utilize dynami


memory allo
ation, thereby freeing it from various array limits, and resultant

arti�
ial restri
tions on the size of the mole
ules. Thus our program 
an be

used on a given 
omputer until all its available memory is exhausted. The

present 
omputer program 
an perform restri
ted Hartree-Fo
k (RHF) 
al-


ulations on 
losed-shell systems, and unrestri
ted-Hartree-Fo
k (UHF) 
al-


ulations on open-shell systems. Additionally, it also allows one to 
ompute

properties su
h as the mole
ular dipole moment, Mulliken population analysis,

and linear-opti
al absorption spe
trum under the ele
tri
-dipole approxima-

tion. Apart from des
ribing the 
omputer program, we also present several

of its appli
ations whi
h in
lude various small mole
ules, fullerene C60, and

polymeri
 
hains 
onsisting of 
arbon atoms (C-
hain), and alternating boron

and nitrogen atoms (BN-
hain).

The remainder of the paper is organized as follows. In se
tion 2 we brie�y

review the theory asso
iated with the CNDO/INDO approa
hes. Next, in

se
tion 3 we dis
uss the general stru
ture of our 
omputer program, and also

des
ribe its 
onstituent subroutines. In se
tion 4 we brie�y des
ribe how to

install the program on a given 
omputer system, and to prepare the input

�les. Results of various example 
al
ulations using our program are presented

and dis
ussed in se
tion 5. Finally, in se
tion 6, we present our 
on
lusions,

as well as dis
uss possible future dire
tions.

2 Theory

In this se
tion we brie�y review the theory asso
iated with the CNDO/INDO

methods. The detailed dis
ussion on the topi
 
an be found in the book by

Pople and Beveridge[8℄. Our dis
ussion will be in the 
ontext of the UHF

method, the 
orresponding RHF equations 
an be easily dedu
ed from them.

As per the assumptions of the UHF method, we assume that the i-th up-

and down-spin orbitals are distin
t, and are represented (say) as ψ
(α)
i and

ψ
(β)
i , respe
tively. We assume that these orbitals 
an be written as a linear
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ombination of a �nite-basis set

ψ
(α)
i =

∑

µ

C
(α)
µi φµ, (1)

where φµ's represent the basis fun
tions in question, and the determination of

the unknown 
oe�
ients C
(α)
µi amounts to the solution of the UHF equations.

In the equation above, we have only stated the expressions for the up-spin

orbitals, the 
ase of the down-spin orbitals 
an be easily dedu
ed. Assuming

the Born-Oppenheimer Hamiltonian for the ele
trons of the system

H = −
~
2

2m

Ne
∑

i=1

∇2
i −

Nn
∑

A=1

Ne
∑

i=1

ZAe
2

RAi

+
∑

i>j

e2

rij
, (2)

where the �rst term represents the kineti
 energy ofNe ele
trons of the system,

the se
ond term represents the intera
tion energy of those ele
trons with itsNn

nu
lei, ZA represents the nu
lear 
harge of the A-th nu
leus, RAi denotes the

distan
e between that nu
leus and the i-th ele
tron, rij represents the inter-
ele
troni
 distan
e, whilem and e are ele
troni
 mass and 
harge, respe
tively.
We further assume that the total number of up-/down-spin ele
trons isNα/Nβ,

su
h that Nα + Nβ = Ne. Using the 
onje
ture of Eq. 1 in 
onjun
tion with

the Hamiltonian above, one obtains the so-
alled Pople-Nesbet equations

∑

ν

(F α
µν − εαi Sµν)C

(α)
vi = 0, (3)

where Sµν is the basis fun
tion overlap matrix, ǫ
α
i is the UHF eigenvalue of the

i-th up-spin orbital, F α
µν is the Fo
k matrix for the up-spin ele
trons de�ned

by

F α
µν = hµν +

∑

λσ

[Pλσ(µν|λσ)− P α
λσ(µσ|λν)], (4)

above hµν represents the matrix elements of the one-ele
tron part (kineti
 en-

ergy and the ele
tron-nu
leus intera
tion) of the Hamiltonian of Eq. 2, (µν|λσ)
represents two-ele
tron Coulomb repulsion integral in the Mulliken notation

(µν | λσ) =
∫ ∫

dτ1dτ2φµ(1)φν(1)r
−1
12 φλ(2)φσ(2), (5)

and P α
λσ and Pλσ, are the up-spin and total density matrix elements, respe
-

tively, de�ned as

P α
λσ =

Nα
∑

i=1

C
(α)∗
λi C

(α)
σi , (6)
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and

Pλσ = P α
λσ + P β

λσ. (7)

Equations 4 through 7, de�ne the UHF method without any approximations.

Next we brie�y des
ribe the approximations involved in the CNDO/INDO

methods, leading up to 
orresponding UHF equations[8℄:

(1) Only valen
e ele
trons are treated expli
itly thus Ne = Nv, where Nv

represents the number of valen
e ele
trons in the system.

(2) A STO basis set 
entered on the individual atoms of the system is em-

ployed, with the basis fun
tions of the form

φµ(r, θ, φ) = Rµ
nl(r)Ylm(θ, φ), (8)

where n, l,m represent the prin
ipal, orbital, and magneti
 quantum num-

bers asso
iated with the µ-th basis fun
tion, Ylm(θ, φ) is the real spheri
al
harmoni
, and the radial part of the basis fun
tion is given by

Rµ
nl(r) = (2ζµ)

n+1/2(2n!)−1/2rn−1 exp(−ζur), (9)

where ζµ is the orbital exponent asso
iated with the µ-th basis fun
-

tion, and is atom spe
i�
. In the CNDO method a minimal basis set is

employed for the �rst row atoms, while an augmented basis set 
onsist-

ing also of d-type fun
tions is employed for the se
ond-row atoms. The

present implementation of the INDO method, whi
h is restri
ted only the

to the �rst-row atoms, uses a basis set identi
al to the CNDO method.

(3) The e�e
tive one-ele
tron matrix elements hµν are 
alled 
ore integrals,

and determined semi-empiri
ally. Diagonal elements of the one-ele
tron

element hµµ are determined through various parameters su
h as ele
tron

a�nity Aµ, and ionization potential Iµ of the atoms involved, while the

o�-diagonal elements (µ 6= ν) are determined by

hµν = β0
ABSµν , (10)

where A and B denote the atoms on whi
h basis fun
tions µ and ν are

lo
ated, β0
AB is a semiempiri
al parameter dependent on A and B, and

Sµν is the overlap matrix element for basis fun
tions µ and ν.
(4) For orbital orthonormalization purposes it is assumed that the basis set

is orthonormal.

(5) For the two-ele
tron integrals (µν | λσ), following approximation is adopted

(µν | λσ) = δµνδλσ(µµ | λλ), (11)

and this set of integrals is further redu
ed by assuming

(µµ | λλ) = γAB, (12)
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where it is assumed that basis fun
tions µ and λ belong to atoms A
and B, respe
tively. The value γAB is 
omputed using the s-type orbitals
lo
ated on A and B . Thus, all the two-ele
tron integrals, apart from

one- and two-
enter integrals, are ignored. As 
ompared to the CNDO

method, the following one-
enter integrals of the type (µν|µν) are as-

sumed nonzero in the INDO method. The values of these integrals are

determined semiempiri
ally through the Slater-Condon parameters.

On
e all the approximations listed above are implemented, the diagonal ele-

ments of the Fo
k matrix for the CNDO/2 model are given by

F α
µµ = −

1

2
(Iµ + Aµ) +

∑

B

(PBB − ZB)γAB − (P α
µµ − 1/2)γAA, (13)

while the o�-diagonal elements for both the CNDO-2 and the INDO are

F α
µν = β0

ABSµν − P α
µνγAB. (14)

In the equations above, ZB represents the e�e
tive nu
lear 
harge of atom B,
and PBB =

∑

µ∈B Pµµ is the sum of those diagonal elements of the total density

matrix whi
h are 
entered on atom B. In the INDO method, however, one uses

di�erent expressions for the one-
enter diagonal and o�-diagonal elements,

given by

F α
µµ =Uµµ +

∑

λ∈A

[Pλλ(µµ|λλ)− P α
λλ(µλ|µλ)]

+
∑

B 6=A

(PBB − ZB)γAB, (15)

and

F α
µν = (2Pµν − P α

µν)(µν|µν)− P α
µν(µµ|νν), (16)

where µ, ν ∈ A. Above Uµµ, and the one-
enter two ele
tron integrals are

obtained through Iµ, Aµ, and various Slater-Condon parameters[7℄. The two-


enter o�-diagonal elements of the Fo
k matrix for the INDO model are ob-

tained through 14. On
e the Fo
k matrix is 
onstru
ted, both for the CNDO/2

and INDO models, one solves the eigenvalue problem for the up-spin Fo
k ma-

trix

∑

ν

F α
µνC

(α)
νi = εαi C

(α)
µi , (17)

as well as the down-spin Fo
k matrix, using the iterative diagonalization te
h-

nique, to a
hieve self
onsisten
y. From the equations given above, it is easy

7



to dedu
e the expressions for F β
µν , as well as the Fo
k matrix elements for the

RHF 
ase.

3 Des
ription of the Program

Our 
omputer 
ode 
onsists of the main program, and various subroutines and

modules, all of whi
h have been written in Fortran 90 language. Additionally,

the program must link to the LAPACK/BLAS library, whose diagonalization

routines are used by our program. In the following we brie�y des
ribe the main

program, and ea
h subroutine.

3.1 Main program CINDO

This is the main program of our pa
kage whi
h reads input data su
h as atomi


numbers of the atoms 
onstituting the system, and their positions, from the

input �le. The program also 
al
ulates the number of valen
e ele
trons of the

system under 
onsideration, and the total number of basis fun
tions needed.

It dynami
ally allo
ates various arrays, and then 
alls other subroutines to

a

omplish the remainder of the 
al
ulations. Be
ause of the dynami
al array

allo
ation, the user need not worry about various array sizes, as the program

will automati
ally terminate when it exhausts all the available memory on the


omputer.

3.2 Subroutine BASEGEN

This subroutine generates various arrays 
ontaining information to the basis

fun
tions used in the 
al
ulations. This in
ludes quantities su
h as prin
ipal

quantum number (n), orbital angular momentum (l), magneti
 quantum num-

ber (m), orbital exponent (ζµ) asso
iated with ea
h STO type basis fun
tion

de�ned in Eqs. 8 and 9. Additionally, it also stores some semi-empiri
al data

asso
iated with the Hamiltonian su
h the β0
µν , and various Slater-Condon pa-

rameters. This routine is 
alled from the main program CINDO.

3.3 Subroutine FACTCAL

The primary task of this subroutine is to generate the fa
torials of various

integers. The fa
torials thus generated are stored in global arrays a

essible

8



via the MODULE fa
torials. This subroutine is also 
alled from the main

program CINDO.

3.4 Subroutine ASSOC_LEGNDRE

This subroutine initializes the expansion 
oe�
ients whi
h de�ne asso
iated

Legendre polynomials of various degrees, needed to represent the angular part

of the basis fun
tions. The data is stored in global arrays through MODULE

legendre. This subroutine is also 
alled from the main program.

3.5 fun
tion SS

A very important quantity used in 
omputing Hamiltonian matrix elements

is the so-
alled redu
ed overlap integral between two basis fun
tions (labeled

a, and b)[8℄

s(na, la, m, nb, lb, α, β)=

∞
∫

1

1
∫

−1

(µ+ ν)na(µ− ν)nb exp[−
1

2
(α + β)µ]

× exp[−
1

2
(α− β)ν]T (µ, ν)dµdν, (18)

where

T (µ, ν)=D(la, lb, m)
la−m
∑

u

lb−m
∑

v

ClamuClbmu(µ
2 − 1)m(1− ν2)m

×(1 + µν)u(1− µν)v(µ+ ν)−m−u(µ− ν)−m−v. (19)

Above (na, la, m) and (nb, lb,m) are the quantum numbers of two basis fun
-

tions, Clamu, D(la, lb, m) et
. are 
oe�
ients asso
iated with the angular part

of the basis fun
tions, and α = ζaR, and β = ζbR, where ζa, ζb are the ba-
sis fun
tion exponents, and R is the distan
e between the atoms on whi
h

basis fun
tions are lo
ated. If we de�ne the so-
alled Yijλ 
oe�
ients de�ned

through the relation

la−m
∑

u

lb−m
∑

v

ClamuClbmu(µ
2 − 1)m(1− ν2)m

×(1 + µν)u(1− µν)v(µ+ ν)na−m−u(µ− ν)nb−m−v =
∑

i,j=0

Yijλµ
iνj , (20)

9



we obtain the expression

s(na, la, m, nb, lb, α, β) = D(la, lb, m)
∑

i,j

YijλAi[
1

2
(α + β)]Bj[

1

2
(α− β)], (21)

where

Ak(ρ) =

∞
∫

1

xk exp(−ρx)dx, (22)

and

Bk(ρ) =

1
∫

−1

xk exp(−ρx)dx. (23)

For the s fun
tions ( la = lb = m = 0), the redu
ed overlap integrals (
f. Eq.

18) 
an be written as

s(na, 0, 0, nb, 0, α, β)=
1

2

∞
∫

1

1
∫

−1

(µ+ ν)na(µ− ν)nb exp[−
1

2
(α + β)µ]

× exp[−
1

2
(α− β)ν]dµdν. (24)

If we de�ne the so-
alled Zkλ 
oe�
ients through

(µ+ ν)na(µ− ν)nb =
na+nb
∑

k=0

Zkλµ
kν(na+nb−k), (25)

we obtain

s(na, 0, 0, nb, 0, α, β) =
1

2

na+nb
∑

k=0

ZkλAk[
1

2
(α + β)]Bna+nb−k[

1

2
(α− β)]. (26)

The task of this REAL(kind=8) fun
tion is to 
ompute the redu
ed overlap

integral as de�ned in Eqs. 21 and 26, for a given pair of basis fun
tions a and
b. The input to this routine is all the basis fun
tion related information su
h as
their quantum numbers, orbital exponents, and the distan
e between them. It

performs these 
al
ulations by 
alling subroutines GETYCOEF, GETZCOEF,

AINT, and BINT whi
h des
ribed below.
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3.6 Subroutine GETYCOEF

The task of this subroutine is to 
ompute these Yijλ 
oe�
ients, for a given

set of na, nb, la, lb, and m as de�ned in Eq. 20. It a
hieves this goal by 
alling

subroutines BINOMIAL and POL2MUL des
ribed below.

3.7 Subroutine GETZCOEF

The task of this subroutine is to 
ompute the Zkλ 
oe�
ients, de�ned in Eq.

25, for a given pair of s-type basis fun
tions. As in 
ase of subroutine GETY-

COEF, this routine also 
omputes for these 
oe�
ients by 
alling routines

BINOMIAL and POL2MUL.

3.8 Subroutine BINOMIAL

Using the binomial expansion, expression (axmyn + bxpyq)l 
an be expanded

as

(axmyn + bxpyq)l =
∑

i,j

cijx
iyj, (27)

where i, j, m, n, p, q, and l, are integers, x, and y are variables, and a, b, and
cij 's are 
onstants. This subroutine 
omputes these expansion 
oe�
ients cij's
for a given set of input values of a, b, m, n, p, q, and l. It is 
alled both from

routines GETZCOEF and GETYCOEF.

3.9 Subroutine POL2MUL

This subroutine 
omputes the 
oe�
ients of the produ
t polynomial when two

polynomial of the type

∑

i,j aijx
iyjare multiplied, i.e.,

∑

i,j

cijx
iyj = (

∑

k,l

aklx
kyl)(

∑

l,m

blmx
lym). (28)

The input to this routine are 
oe�
ients akl and bkl, while the output 
onsists
of cij. The arrays meant for storing these 
oe�
ients are allo
ated dynami
ally.
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3.10 Subroutine AINT

The value of the integral Ak(ρ), de�ned in Eq. 22, 
an be shown to be

Ak(ρ) = exp(−ρ)
k+1
∑

µ=1

k!

ρµ(k − µ+ 1)!
. (29)

Subroutine AINT uses this series to 
ompute the value of Ak(ρ), for a given

value of k and ρ.

3.11 Subroutine BINT

The purpose of this subroutine is to 
ompute integral Bk(ρ), de�ned in Eq.

23, for a given value of k and ρ. We use the following re
ursion relation to

perform the task

Bk+1(ρ) =−Ak+1(ρ) +
(−1)

k+1

exp(ρ)

ρ

+(k + 1)

(

(Ak(ρ) +Bk(ρ))

ρ

)

. (30)

Thus �rst a 
all is made to the routine AINT to 
ompute all the Ak(ρ) 's

needed. Subsequently, the Bk(ρ)'s are generated using the re
ursion relation

of Eq. 30.

3.12 Subroutine REDOVINT

This is a very important subroutine whi
h evaluates overlap matrix elements

Sµν among the basis fun
tions. It evaluates the redu
ed overlap integrals de-

s
ribed above for ea
h pair of basis fun
tions, by 
alling the fun
tion SS, using

a 
oordinate system in whi
h the atoms 
orresponding to the basis fun
tion

pair are lo
ated along the z-axis. Then by a 
all to the subroutine TRANS

des
ribed below, it obtains the a
tual overlap integrals by transforming the

redu
ed integrals from the spe
ial 
oordinate system, to the a
tual mole
ular


oordinate system. The upper-triangle of the overlap matrix is stored in a

one-dimensional array.

12



3.13 Subroutine TRANS xmgra
e

The formulas for redu
ed overlap integrals (Eqs. 18 and 24) assume that the

atoms on whi
h the basis fun
tions are 
entered are a distan
e R apart from

ea
h other along the z-axis. But in pra
ti
e, the mole
ules may have any kind

of orientation. Therefore, we need to transform the redu
ed overlap integrals


omputed using these formulas, to the real orientation of the mole
ule. This is

a
hieved through a transformation matrix whi
h depends upon angular mo-

menta of the basis fun
tions, as well as on the angles by whi
h the z-axis
should be rotated to align it with the real orientation of the atoms involv-

ing the two basis fun
tions. The task of this subroutine is to 
onstru
t this

transformation matrix, and then apply it to obtain the overlap integrals with

respe
t to the mole
ular frame.

3.14 Subroutine COUL_INT

This subroutine 
al
ulates the Coulomb integrals γAB (
f. Eq. 12) needed for

the 
onstru
tion of the Fo
k matrix. It 
an be shown that these integrals are

proportional to the redu
ed overlap integrals dis
ussed above. Therefore, this

routine 
omputes these integrals by 
alling the fun
tion SS, and stores the

values (one per atom pair) in a two-dimensional array.

3.15 Subroutine CORE_INT

The aim of this subroutine is to 
ompute the one-ele
tron part of Fo
k ma-

trix, referred to as 
ore integrals, and dis
ussed in se
tion 2. The 
al
ulation

of o�-diagonal elements involves the use of the overlap matrix elements Sµν


omputed in the routine REDOVINT, dis
ussed earlier. The semiempiri
al

data needed for 
omputing these matrix elements is also passed to this rou-

tine through arguments. The upper-triangle of the one-ele
tron part of the

Fo
k matrix, along with the extended Hü
kel Hamiltonian, are �nally stored

in separate one-dimension arrays, and 
onstitute the output of this routine.

3.16 Subroutine DIPINT

The aim of this subroutine is to 
ompute matrix elements of dipole operator

over the basis set. This subroutine is 
alled only if the linear-opti
al absorption,

or permanent ele
tri
 dipole 
al
ulations are desired. Standard formulas are

13



utilized to 
ompute these matrix elements, and it is 
alled from the main

program CINDO.

3.17 Subroutine SCF_RHF

This subroutine solves the RHF equations for the system under 
onsidera-

tion in a self-
onsistent manner, using the iterative diagonalization pro
edure.

The arrays whi
h are needed during the 
al
ulations are allo
ated before the


al
ulations begins, and are deallo
ated upon 
ompletion. Before the �rst iter-

ation, extended Hü
kel Hamiltonian is diagonalized to obtain a set of starting

orbitals. Subsequently, the Fo
k matrix 
orresponding to those orbitals is 
on-

stru
ted and diagonalized. The pro
ess is repeated until the self-
onsisten
y

is a
hieved. During the self-
onsisten
y iterations, subroutine DSPEVX from

the LAPACK/BLAS library is used to obtain the o

upied eigenvalues and

eigenve
tors. Obtaining only the o

upied eigenpairs, as against the entire

spe
trum, leads to 
onsiderable savings of CPU time for large systems. How-

ever, if the entire spe
trum of eigenvalues and eigenve
tors is needed, say, to

perform opti
al absorption 
al
ulations, the Fo
k matrix is diagonalized using

the routine DSPEV from the LAPACK/BLAS library, upon 
ompletion of

the self-
onsisten
y iterations. Be
ause the entire spe
trum is obtained only

after self-
onsisten
y has been a
hieved, it does not strain the 
omputational

resour
es too mu
h. Apart from 
omputing the RHF total energy, this sub-

routine also 
al
ulates the total binding energy of the system, and, if needed,

performs Mulliken population analysis as well.

3.18 Subroutine SCF_UHF

This subroutine is exa
tly the same in its logi
 and stru
ture as the previously

des
ribed SCF_RHF, ex
ept that the task of this routine is to solve the UHF

equation for the system under 
onsideration. Di�erent Fo
k matri
es for the

up- and the down-spin are 
onstru
ted and diagonalized in ea
h iteration, un-

til the self-
onsisten
y is a
hieved. Similar to the 
ase of routine SCF_RHF,

during the iterations only the o

upied eigenvalues and eigenve
tors are 
om-

puted using the routine DSPEVX. The iterations are stopped on
e the total

UHF energy of the system 
onverges to within a user de�ned threshold.

3.19 Subroutine PROPERTY

This is a driver subroutine whose task is to read the 
onverged SCF orbitals

written onto the disk by the SCF routines, and then 
all other subroutines

14



meant for 
omputing various properties of the system under investigation. It

is 
alled from the main program CINDO after the SCF 
al
ulations, provided

the user has opted for one of the property 
al
ulations su
h as the permanent

ele
tri
 dipole moment of the mole
ule, or its opti
al absorption spe
trum.

3.20 Subroutine DIPIND

This subroutine transforms the dipole matrix elements from the basis-set AO

representation to the SCF MO representation, by means of a two-index trans-

formation. Therefore, it uses the dipole matrix elements 
omputed in DIPINT,

and the SCF MOs as inputs. The transformed dipole matrix elements, whi
h


onstitute the output of this routine, are used in the 
al
ulation of linear op-

ti
al absorption spe
trum of the mole
ule. This subroutine is 
alled from the

routine PROPERTY des
ribed above, if the user has opted for the opti
al

absorption 
al
ulations.

3.21 Subroutine DIPMOM_RHF

This subroutine 
al
ulates the total net ele
tri
 dipole moment 
omponent of

the mole
ule under investigation for restri
ted Hartree-Fo
k 
ase. It is 
alled

from the routine PROPERTY if the user has opted for the dipole moment 
al-


ulation. It uses dipole matrix elements 
al
ulated in the subroutine DIPINT

and the SCF MOs as input, and 
omputes the permanent dipole moment of

the system using a straightforward formula.

3.22 Subroutine DIPMOM_UHF

The purpose and logi
 of this routine is the same as DIPMOM_RHF, ex
ept

that it is used for the 
ase when UHF 
al
ulations have been performed. This

routine is also 
alled from the subroutine PROPERTY.

3.23 Subroutine SPECTRUM

This is an important subroutine whi
h 
al
ulates the linear opti
al absorption

of the system, under ele
tri
-dipole approximation, assuming a Lorentzian

line shape and a 
onstant line width for all the levels. Thus, if this 
al
ulation

is opted, in the input �le the user needs to provide the line width, along

with the range of frequen
ies over whi
h the spe
trum needs to be 
omputed.
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Additionally, the routine uses the dipole matrix elements over the MOs as


omputed in routine DIPIND, along with the RHF single-parti
le energies.

The 
omputed spe
trum is written in an ASCII �le 'spe
trum.dat', whi
h 
an

be readily used for plotting using programs su
h as gnuplot[9℄ or xmgra
e[10℄.

This subroutine is also 
alled from the routine PROPERTY, if the user has

opted for linear absorption spe
trum 
al
ulations.

3.24 Orbital and Charge Density Plotting Subroutines

For the purpose of orbital visualization, our 
ode o�ers several options to

the user for plotting the MOs, and the 
orresponding 
harge density. It is

a

omplished through four subroutines, PLOT_1D_RHF, PLOT_2D_RHF,

PLOT_1D_UHF, and PLOT_2D_UHF.

The task of subroutine PLOT_1D_RHF is to 
ompute and print out the

numeri
al values of RHF MOs, or their 
harge densities, on a one-dimensional

grid of points, whose dire
tion and range is provided by the user. Output

of this program is written in an ASCII �le 
alled 'orbplot.dat', and 
an be

readily used for plotting by gnuplot[9℄ and xmgra
e[10℄. This routine is 
alled

from the routine PROPERTY, if the user has opted for it. To 
ompute the

numeri
al values of RHF MOs (or their 
harge densities) at di�erent points

in spa
e, it uses the numeri
al values of basis fun
tions 
omputed at those

points, by 
alling fun
tion BASFUNC.

When a user is interested in obtaining a two-dimensional plot of the RHF or-

bitals/
harge densities in the Cartesian planes, subroutine PLOT_2D_RHF

is 
alled from the routine PROPERTY. The stru
ture of this routine is also

similar to that of PLOT_1D_RHF, ex
ept that for this 
ase the orbital/density

values are printed out with respe
t to the two 
artesian 
oordinates of the

plane. This routine also uses fun
tion BASFUNC to 
ompute the numeri
al

values of the orbitals/densities, and the output is also written in the �le 'orb-

plot.dat'. In order to fa
ilitate 
ontour plots of 
harge densities, the option of

making logarithmi
 plots is also available.

In 
ase of open-shell UHF 
al
ulations, the 
orresponding plots of the up- and

down-spin MOs are obtained through 
alls to subroutines PLOT_1D_UHF

and PLOT_2D_UHF, and the output is again written in the �le 'orbplot.dat'.

3.25 Fun
tion BASFUNC

It is a REAL(kind=8) fun
tion whose aim is to 
al
ulate the numeri
al value

of a given basis fun
tion, at a parti
ular point in spa
e. Therefore, the input
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to this fun
tion 
onsists of the 
oordinates of the point in spa
e with respe
t

to the lo
ation of the basis fun
tion, (n, l,m) quantum numbers of the basis

fun
tion, and its exponent ζ . This fun
tion is 
alled from all the orbital/density

plotting subroutines des
ribed above.

4 Installation, input �les, output �les

We believe that the installation and exe
ution of the program, as well as prepa-

ration of suitable input �les is fairly straightforward. Therefore, we will not

dis
uss these topi
s in detail here. Instead, we refer the reader to the README

�le for details related to the installation and exe
ution of the program. Ad-

ditionally, the �le 'input_prep.pdf' explains how to prepare a sample input

�le. Several sample input and output �les 
orresponding to various example

runs are also provided with the pa
kage.

5 Results and Dis
ussions

In this se
tion, we present and dis
uss the numeri
al appli
ations of our re-

sults. First we present the results on a number of mole
ules. Next, we apply

our method to obtain the ground states of model polymeri
 systems C 
hain

and BN 
hain. Finally, we present the results of our 
al
ulations of opti
al

absorption in Bu
kminster fullerene C60. Wherever possible, we 
ompare our

results to those published by other authors.

5.1 Mole
ular Systems

In this se
tion we present the results of our 
al
ulations on a variety of

mole
ules, in
luding fullerene C60. The aim of these 
al
ulations is to 
om-

pare our results with those published by other authors[8℄, and also with the

CNDO/INDO 
al
ulations performed using Gaussian 03[11℄, in order to 
he
k

the 
orre
tness of our program.

In table 1 we 
ompare the total HF energies of several mole
ules 
omputed

by our program, to those 
omputed using Gaussian 03[11℄. We used the bond

length of 0.74 Å for the H2 mole
ule as used also by Surjan[12℄. For water

mole
ule we used the geometry from S
hae�er et al. [13℄, for formi
 a
id from

S
hwartz et al.[14℄, for borazane from Palke[15℄, and for �uoropropene from the

work of S
arzafava et al.[16℄. For C60, we 
onsidered a dimerized 
on�guration

with the Ih symmetry group and bond lengths 1.449 Å and 1.397 Å optimized
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Table 1

Comparison of the total Hartree-Fo
k energies (EHF ) of several mole
ules obtained

using both the CNDO/2 and the INDO methods using our program, to those 
om-

puted using Gaussian 03[11℄. All results are in atomi
 units. S/E inside the parenthe-

ses imply staggered/e
lipsed 
on�gurations. For the mole
ular geometries utilized in

these 
al
ulations, refer to the text.

Mole
ule EHF (This work) EHF (Gaussian03)

CNDO/2 INDO CNDO/2 INDO

H2 -1.474625 -1.474625 -1.474625 -1.474625

H2O -19.868052 -19.013606 -19.868052 -19.013606


is-HCOOH -45.305164 -43.364618 -45.305163 -43.364618

trans-HCOOH -45.301984 -43.360996 -45.301984 -43.360996

Borazane (E) -20.169898 -19.567825 -20.169897 -19.567824

Borazane (S) -20.172764 -19.570726 -20.172763 -19.570730


is-�uoropropene (E) -52.763845 -50.693901 -52.763845 -50.693901


is-�uoropropene (S) -52.762138 -50.692238 -52.762138 -50.692238

trans-�uoropropene (E) -52.761824 -50.692176 -52.761823 -50.692175

trans-�uoropropene (S) -52.759748 -50.690019 -52.759748 -50.690019

C60 -427.624631 -412.293447 -427.624631 -412.293447

by Shibuya and Yoshitani [17℄. The Cartesian 
oordinates for the 
arbon atoms

of C60 were generated using the 
omputer program developed by Dharamvir

and Jindal[18℄. Thus, for all the 
ases illustrated in the table, the agreement

on the total HF energies between our 
al
ulations and those obtained using

Gaussian 03[11℄ is ex
ellent both for the CNDO/2 and the INDO methods.

Next we turn our attention to the 
omparison of results for geometry opti-

mization of a few 
losed- and open-shell mole
ules. In table 2 we 
ompare the

bond lengths optimized by our program to those reported by Pople et al.[8℄

for several 
losed- and open-shell diatomi
 mole
ules. Again the agreement ob-

tained between the two sets of 
al
ulations is ex
ellent both for the CNDO/2

and the INDO 
al
ulations.

Finally, in table 3 we 
ompare the mole
ular dipole moments and Mulliken

populations of several heteronu
lear diatomi
 mole
ules obtained by our 
ode

with those reported by Pople et al. [8℄. Both for the CNDO/2 and the INDO


al
ulations the agreement between our results and those of Pople et al. [8℄

is virtually exa
t. Thus, ex
ellent agreement between our results with those

of other authors, not just for HF total energy, but also for other properties,

testi�es to the essential 
orre
tness of our 
omputer program.
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Table 2

Comparison of geometries optimized by our 
ode to those reported by Pople et al.[8℄,

for several small mole
ules. Cal
ulations for all the mole
ules with doublet or triplet

ground states were performed using the UHF method.

Mole
ule State Equilibrium Length (Å)

This work Pople et al.[8℄

CNDO/2 INDO CNDO/2 INDO

Li2
1
Σ
+
g 2.179 2.134 2.179 2.134

B2
3
Πg 1.278 1.278 1.278 1.278

C2
1
Σ
+
g 1.146 1.148 1.146 1.148

N

+
2

2
Σ
+
g 1.127 1.129 1.127 1.129

N2
1
Σ
+
g 1.140 1.147 1.140 1.147

O

+
2

2
Πg 1.095 1.100 1.095 1.100

O2
3
Σ
−
g 1.132 1.140 1.132 1.140

NH

3
Σ
−

1.061 1.069 1.061 1.070

OH

2
Πi 1.026 1.033 1.026 1.033

BeH

2
Σ
+

1.324 1.324 1.324 1.323

LiH

1
Σ
+

1.573 1.572 1.573 1.572

BN

3
Σ
+

1.269 1.269 1.268 1.269

LiF

1
Σ
+

2.161 2.162 2.161 2.162

HF

1
Σ
+

1.000 1.005 1.000 1.006

BF

1
Σ
+

1.404 1.408 1.404 1.408

5.2 Cal
ulations on Lithium Clusters

In this se
tion we dis
uss the optimized geometries of small lithium 
lusters


omputed using our program. The number of 
omputational studies of the

ele
troni
 stru
ture of small lithium 
lusters by other authors is too numerous

to list here. We will mainly refer to the ab initio works of Ray et al.[20℄,

Boustani et al.[21℄, Jones et al.[22℄ , and Wheeler et al.[23℄ who studied 
lusters

similar to the ones studied by us. Detailed 
omputational studies of several

large atomi
 
lusters 
ontaining various atoms are in progress in our group,

and will be published later.
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Table 3

Comparison of 
omputed ele
tri
 dipole moments and Mulliken populations of het-

eronu
lear diatomi
s mole
ules with the work of Pople et al.[8℄ The �rst number in

ea
h 
ategory is the CNDO/2 result, while the se
ond number represents the INDO

result.

Mole
ule Ele
tri
 Dipole Moment (Debye) Mulliken Population

This work Pople et al.[8℄ This work Pople et al.[8℄

NH 1.76/1.69 1.76/1.68 0.08/0.09 0.08/0.09

OH 1.78/1.80 1.78/1.79 0.16/0.18 0.17/0.18

BeH 0.67/0.65 0.67/0.64 0.14/0.14 0.14/0.14

LiH 6.16/6.20 6.16/6.20 0.27/0.29 0.27/0.29

BN 0.36/0.50 0.36/0.50 0.05/0.03 0.05/0.03

LiF 7.91/7.87 7.90/7.86 0.56/0.58 0.56/0.58

HF 1.86/1.99 1.86/1.98 0.23/0.27 0.23/0.27

BF 1.31/0.87 1.31/0.86 0.15/0.15 0.15/0.15

5.2.1 Li2

Results of our 
al
ulations on the optimized geometry of lithium dimer for the


losed-shell ground state were presented in Table 2. As is obvious from the

table that our optimized bond lengths of 2.179 Å(CNDO) and 2.134 Å(INDO)

for Li2 are in perfe
t agreement with similar 
al
ulations performed by Pople

et al.[8℄. As far as the 
omparison with the experiments is 
on
erned, both

these results are signi�
antly smaller than the measured value of 2.672 Å[19℄.

Therefore, it will be of 
onsiderable interest whether, or not, the in
lusion of

ele
tron 
orrelation e�e
ts will improve the results.

5.2.2 Li3

Geometri
al 
on�gurations for a triatomi
 
luster 
an be broadly 
lassi�ed

as: (a) linear, and (b) triangular. For homonu
lear systems su
h as Li3, the

possible triangular geometries 
an be further sub
lassi�ed into: (i) equilat-

eral triangle, (ii) isos
eles triangle, and (iii) a triangle with unequal arms. Of


ourse, the equilateral triangle geometry (D3h) is expe
ted to undergo Jahn-

Teller distortion to a lower symmetry 
on�guration. Indeed, several density-

fun
tional theory (DFT) and ab initio 
orrelated 
al
ulations have indi
ated

that the isos
eles triangle geometry (C2v) is the most stable 
on�guration

for Li3[20,21,22,23℄. Our 
al
ulations were performed on the doublet ground

state using the UHF method, and the results are summarized in table 4. We

found that equilateral triangular 
on�guration is energeti
ally more favorable

as 
ompared to the Jahn-Teller distorted isos
eles triangles, as well as equidis-
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Stru
ture CNDO Results INDO Results

Bond Length (Å) EHF (a.u.) Bond Length (Å) EHF (a.u.)

Linear 1.461 -1.8870412 1.457 -1.8819986

D3h 1.932 -2.0133753 1.919 -2.0066737

Table 4

Optimized CNDO and INDO geometries of Li3, and 
orresponding HF energies

(EHF ). Cal
ulations were performed on the doublet ground states using the UHF

method.

Stru
ture CNDO Results INDO Results

Bond Length (Å) EHF (a.u.) Bond Length (Å) EHF (a.u.)

Linear 1.186 -2.9683366 1.185 -2.9590571

Square 1.617 -3.3083610 1.612 -3.2976927

Table 5

Optimized geometries of Li4 
lusters of various shapes obtained by CNDO and INDO

methods, and 
orresponding HF energies (EHF ). Cal
ulations were performed on the


losed-shell ground state.

tant linear 
on�guration, both for CNDO and INDO models. Optimized INDO

and CNDO geometries are in very good agreement with ea
h other. The po-

tential energy surfa
e of the triangular 
on�guration shows interesting features

for both the models. We �nd that if the equal arms of the triangle are longer

or shorter than the optimized bond lengths of the D3h geometry presented

in table 4, the system does exhibit Jahn-Teller instability. For bond lengths

longer than those of the D3h geometry, the distorted triangle has an angle

less than 60o between the equal arms, while for bond lengths smaller than

the optimized values, the 
orresponding angle is more than 60o. However, the
global minimum was found for the D3h geometry des
ribed in table 4. As far

as the ab initio 
orrelated and the DFT 
al
ulations are 
on
erned, most of

them report the length of equal arms of the C2v geometry 
lose to 2.8 Å, and

the angle between them in ex
ess of 70o[20,21,22,23℄. Therefore, it will be in-
teresting whether the in
lusion of ele
tron 
orrelation e�e
ts will improve the

agreement between CNDO/INDO models and the ab initio results.

5.2.3 Li4

For Li4 
lusters various geometries, ranging from linear to tetrahedral are pos-

sible as investigated, e.g., by Ray et al.[20℄. However, as reported by various

authors, a rhombus stru
ture is energeti
ally most favorable. As a demonstra-

tion of our 
ode we 
ompute the relative stability of three possible stru
tures

of this system namely, linear, square, and rhombus.
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Results of our 
al
ulations are summarized in table 5. We found that, of

the three possible stru
tures 
onsidered, the square stru
ture had the min-

imum energy. The rhombus shaped stru
tures have lower energy than the

square stru
ture for bond lengths in ex
ess of 2.1 Å. However, the energies

of those stru
tures was found to be higher than those of square stru
tures

reported in table 5. This result is similar to what we obtained for Li3 for

whi
h the equilateral triangular stru
ture was found to be more stable than

the isos
eles triangular stru
ture, both within the CNDO and INDO mod-

els. Our result for Li4 disagrees with those obtained by 
orrelated ab initio,

and DFT 
al
ulations[20,21,22,23℄ whi
h predi
t the lowest energy for the

rhombus stru
ture with its a
ute angle 
lose to 50

o
. Additionally, all ab ini-

tio 
al
ulations predi
t bond lengths signi�
antly larger than obtained here.

Therefore, it is of 
onsiderable interest to explore whether the in
lusion of

ele
tron-
orrelation e�e
ts will bring our results in better agreement with the

ab initio ones.

5.3 Ground state of polymers

Our 
ode 
an be used to study both the ground and ex
ited state properties of

oligomers of various polymers be
ause they are nothing but �nite mole
ules,

ranging in size from small to large. However, in this se
tion we demonstrate

that our 
ode 
an also be used to obtain the ground state energy/
ell, in the

bulk limit, for one-dimensional periodi
 systems su
h as polymers. Thus, it


an be used, e.g., for the purpose of ground-state geometry optimization of

polymers, whi
h is what we demonstrate next.

The energy per unit 
ell of a one-dimensional periodi
 system 
an be obtained

using the formula

Ecell = lim
n→∞

∆E(n) = lim
n→∞

(E(n+ 1)− E(n)), (31)

where E(n + 1)/E(n) represent the total energies of oligomers 
ontaining

n+1/n unit 
ells. Thus, using this formula, for su�
iently large value of n, one

an obtain the energy/
ell of a polymer in the bulk limit, from oligomer based


al
ulations. In what follows we show that value of Ecell 
onverges quite rapidly

with respe
t to n, even for polymers whi
h have metalli
 ground states. For

the purpose of illustration we 
onsider two model polymers namely 
hains 
on-

sisting of: (a) 
arbon atoms (hen
eforth C-
hain), and (b) alternating boron

and nitrogen atoms (hen
eforth BN-
hain). A C-
hain 
onsisting of uniformly

spa
ed atoms will be metalli
, whi
h, as per Peierls theorem[24℄, is not al-

lowed. Therefore, su
h a system is expe
ted to dimerize leading to an insulat-

ing ground state[24℄. On the other hand Peierls theorem is not appli
able to

the BN-
hain, whi
h is a band insulator and isolele
troni
 with the C-
hain for
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Figure 1. Energy per two-atom unit 
ell, of an undimerized C-
hain, plotted as a

fun
tion of the number of unit 
ells. The C-C bond length was taken to be 1.297Å.

a two-atom unit 
ell. In an earlier from our group, we had studied the ground

state geometry of C- and BN-
hains using a fully ab initio methodology both

at the RHF and the 
orrelated levels, and 
on
luded that C-
hain does indeed

exhibit dimerization, while the BN 
hain prefers the uniform geometry[25℄. We

explore the ground state geometries of these two systems using our 
ode. In

order to take 
are of the dangling bonds, we terminate the ends of oligomers

of uniform C-
hain and the BN 
hain with two hydrogen atoms on the ea
h

end. The dimerized C-
hain 
onsisting of alternating single and triple bonds,

on the other hand, is terminated by one hydrogen atom on the ea
h end.

First we examine the 
onvergen
e of Ecell obtained using Eq. 31 with respe
t

to the number of unit 
ells n. In Figs. 1 and 2 we plot ∆E(n) as a fun
tion of

n, for uniform C- and BN-
hains, respe
tively. In both the 
ases 
onvergen
e

with respe
t to n, for the two-atom unit 
ells, is quite rapid, and for n = 10
the bulk limit has been a
hieved to reasonable a

ura
y. This is quite remark-

able be
ause the C-
hain 
onsidered for this 
al
ulation is metalli
 be
ause

of uniformly pla
ed atoms. The 
onvergen
e is even more rapid for C-
hains

with dimerized geometry.
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Table 6

Comparison of our CNDO/2 and INDO geometries for uniform C-
hain, and the BN


hain, with our earlier ab initio RHF results[25℄.

Cal
ulation Bond Length (Å)

C-Chain BN-Chain

This Work (CNDO/2) 1.297 1.360

This Work (INDO) 1.300 1.362

Abdurahman et al.[25℄ 1.251 1.287
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Figure 2. Energy per unit 
ell of boron-nitrogen 
hain, plotted as a fun
tion of the

number of unit 
ells. The B-N bond length was taken to be 1.360Å.

Results of our 
al
ulations are summarized in tables 6and 7. From these tables,

the following trends are obvious: (a) CNDO/2 and INDO optimized geometries

in all the 
ases are in good agreement with ea
h other, and (b) optimized bond

lengths obtained here are slightly larger than those obtained using the ab initio

RHF method[25℄.

Additionally, the 
ondensation energy per atom of the C-
hain, de�ned as the

di�eren
e in Ecell per atom of the optimized geometries in the uniform and

dimerized 
on�gurations, are obtained to be 11.1 mHartrees/atom (CNDO/2),

and 11.3 mHartrees/atom (INDO). These numbers are in reasonable agree-

ment with the 
orresponding ab initio RHF value of 7.8 mHartrees/atom[25℄.
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Table 7

Comparison of our CNDO/2 and INDO geometries obtained for the dimerized C-


hain, with our earlier ab initio RHF results[25℄

Cal
ulation rsingle(Å) rtriple(Å)

This work (CNDO/2) 1.390 1.231

This work (INDO) 1.390 1.227

Abdurahman et al.[25℄ 1.360 1.174

5.4 Opti
al Absorption in Fullerene C60

Sin
e the dis
overy of the C60 in 1985[26℄, the �eld of the ele
troni
 stru
ture

and opti
al properties of fullerenes has be
ome one of the foremost resear
h

topi
s these days[27℄. Therefore, as the last appli
ation of our 
ode in this

paper, we present the results of linear opti
al absorption 
al
ulations in C60,

at the RHF level. For these 
al
ulations we utilized the same geometry of

Shibuya and Yoshitani[17℄, as was used for total energy 
al
ulations presented

in se
tion 5.1. In the CNDO/INDO models, with four basis fun
tions per


arbon atom, C60 has 120 o

upied and 120 uno

upied orbitals, with the

ground state being a 
losed shell with the Ag symmetry. The HOMO/LUMO

exhibit nearly π/π∗

hara
ter, with a �ve-fold degenerate HOMO (hu) and a

three-fold degenerate LUMO (t1u). Our HOMO-LUMO gap of 9.23 eV for the

INDO 
al
ualtions is in perfe
t agreement with that reported by Shibuya and

Yoshitani[17℄.
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Figure 3. Linear absorption spe
trum of C60, obtained from RHF 
al
ulations using

the INDO model, plotted as a fun
tion of the photon energy (in atomi
 units). A

line width of 0.02 a.u. was assumed.

Next we present the linear opti
al absorption spe
trum of C60 
omputed by

the INDO method under the ele
tri
-dipole approximation, in Fig. 3. Be
ause

the HOMO and LUMO orbitals have the same inversion symmetry (unger-

ade), the HOMO→LUMO transition is dipole forbidden leading to negligible

absorption intensity in the low-energy regions, in 
omplete agreement with

the experiments[27℄. We have intentionally plotted the spe
trum with a rel-

atively small line width to emphasize the fa
t that a number of transitions

among various orbitals 
ontribute to the linear absorption. Qualitative fea-

tures of our 
omputed spe
trum, namely the o

urren
e of two broad bands

with a number of subpeaks in the spe
trum, are in good agreement with other

theoreti
al 
al
ulations[28℄. As far as the quantitative 
omparison with the

experiments is 
on
erned, it is a well-known fa
t that the HF method over-

estimates the energy gaps signi�
antly. Therefore, in future works we intend

to 
arry out various levels of CI 
al
ulations to investigate the in�uen
e of

ele
tron-
orrelation e�e
ts on the linear absorption in C60.

6 Con
lusions and Future Dire
tions

In this paper we have des
ribed our Fortran 90 program whi
h solves the

HF equations for both the 
losed- and open-shell mole
ular systems using the

semiempiri
al CNDO/2 and INDO models. To demonstrate the 
orre
tness of
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our approa
h, we presented numerous test 
al
ulations on mole
ular systems

for whi
h CNDO/INDO results are known, and obtained essentially exa
t

agreement. Additionally, we presented results on systems su
h as 
lusters,

fullerene, and polymers to demonstrate the wide utility of our present program.

The reason behind developing the present program is twofold: (a) to develop

a 
ode in a modern language su
h as Fortran 90 whi
h 
an 
arry out dynami


array allo
ation and thus free the user from spe
ifying and 
hanging array

sizes, and (b) to provide an open software whi
h will be widely available to

users whi
h they 
an use and modify as per their needs. One 
ould write

programs to perform a 
hange of basis on the Hamiltonian matrix elements

from the basis set AO representation to the MO representation, and use the

transformed Hamiltonian to perform 
orrelated CI 
al
ulations. Additionally,

one 
ould also introdu
e an ele
tri
-�eld in the Hamiltonian to perform �nite-

�eld 
al
ulations to 
ompute quantities su
h as stati
 polarizabilities of various

orders.

The present version of our 
ode is restri
ted to �rst-row atoms using the INDO

method and up to the se
ond-row elements using the CNDO/2 approa
h. It

will be extremely desirable to extend these methods to elements further in

the periodi
 table, preferably up to the transition metals. However, there are

several versions of these models available for heavier elements su
h as the s-p-d

INDO, ZINDO, and other methods[29℄. Therefore, one 
ould implement these

methods in the present 
ode whi
h will allow the user to perform both INDO

and CNDO/2 
al
ulations on elments of se
ond-row and beyond.

Work along those dire
tions is 
ontinuing in our group, and results will be

published as and when they be
ome available.
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