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Abstract

Despite the tremendous advances made by the ab initio theory of electronic structure
of atoms and molecules, its applications are still not possible for very large systems.
Therefore, semi-empirical model Hamiltonians based on the zero-differential overlap
(ZDO) approach such as the Pariser-Parr-Pople, CNDO, INDO, etc. provide attrac-
tive, and computationally tractable, alternatives to the ab initio treatment of large
systems. In this paper we describe a Fortran 90 computer program developed by
us, that uses CNDO/2 and INDO methods to solve Hartree-Fock(HF') equation for
molecular systems. The INDO method can be used for the molecules containing the
first-row atoms, while the CNDO/2 method is applicable to those containing both
the first-, and the second-row, atoms. We have paid particular attention to compu-
tational efficiency while developing the code, and, therefore, it allows us to perform
calculations on large molecules such as Cgg on small computers within a matter of
seconds. Besides being able to compute the molecular orbitals and total energies, our
code is also able to compute properties such as the electric dipole moment, Mulliken
population analysis, and linear optical absorption spectrum of the system. We also
demonstrate how the program can be used to compute the total energy per unit
cell of a polymer. The applications presented in this paper include small organic
and inorganic molecules, fullerene Cgp, and model polymeric systems, viz., chains
containing alternating boron and nitrogen atoms (BN chain), and carbon atoms (C
chain).
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Program Summary

Title of program: cindo.x

Catalogue Identifier:

Program summary URL:

Program obtainable from: CPC Program Library, QQueen’s University of Belfast,
N. Ireland

Distribution format: tar.gz

Computers : PC’s/Linux

Linuzx Distribution: Code was developed and tested on various recent versions
of Fedora including Fedora 9 (kernel version 2.6.25-14)

Programming language used: Fortran 90

Compilers used: Program has been tested with Intel Fortran Compiler (non-
commercial version 10.1) and gfortran compiler (gce version 4.3.0) with opti-
mization option -O.

Libraries needed: This program needs to link with LAPACK/BLAS libraries
compiled with the same compiler as the program. For the Intel Fortran Com-
piler we used the ACML library version 3.6.0, while for gfortran compiler we
used the libraries supplied with the Fedora distribution.

Number of bytes in distributed program, including test data, etc.: size of the
tar file ...... bytes

Number of lines in distributed program, including test data, etc.: lines in the
tar file .......

Card punching code: ASCIL

Nature of physical problem: A good starting description of the electronic struc-
ture of extended many-electron systems such as molecules, clusters, and poly-
mers, can be obtained using the Hartree-Fock (HF) method. Solution of HF
equations within a fully ab initio formalism for large systems, however, is com-
putationally quite expensive. For such systems, semi-empirical methods such
as CNDO and INDO proposed by Pople and collaborators are quite attractive.
The present program can solve the HF equations for both open- and closed-
shell systems containing first- and second-row atoms using either the INDO
model or the CNDO model.

Method of Solution: The single-particle HF orbitals are expressed as linear
combinations of the Slater-type orbital (STO) basis set specified by Pople
and coworkers. Then using the parameters prescribed for the CNDO/INDO
methods, the HF integro-differential equations are transformed into a matrix
eigenvalue problem. Thereby, its solutions are obtained in a self-consistent
manner, using methods of computational linear algebra.

Unusual features of the program: None



1 Introduction

The linear combination of atomic orbitals (LCAO) method is one of the most
common approaches for solving the Schrodinger equation for many-electron
systems such as atoms, molecules, clusters, and solids. It consists of express-
ing the single-particle orbitals of the electrons of the system as a linear com-
bination of a known basis set, and then solving the mean-field equations such
as the Hartree-Fock (HF) or the Kohn-Sham equations. This converts these
integro-differential equations into a matrix eigenvalue problem, which is subse-
quently solved using computational approaches from the linear algebra. If one
intends to go beyond the mean-field to include the electron correlations effects,
approaches such as the configuration-interaction (CI), coupled-cluster, or the
Green’s function based formalisms can be used. If N is the total number of
basis functions used, the computational difficulty at the mean-field level scales
roughly as N4, which is the number of two-electron integrals needed to perform
such calculations. For post mean-field correlated calculations, integrals need to
be transformed from the basis-set atomic orbital (AO) representation to the
molecular-orbital representation (MO), a process which scales as N°, while
subsequent solution of the corresponding equations can be even more time
consuming[I]. Since N increases rapidly with the number of atoms (and hence
electrons) in the system, therefore, for very large systems solution of even the
mean-field equations can become computationally intractable. Therefore, it is
always advisable to devise methods of electronic structure theory which aim
at reducing the size of the basis set.

Using the zero-differential overlap (ZDO) approximation developed by Parr[2],
Pople and coworkers developed a series of semi-empirical methods for comput-
ing the electronic structure of molecules such as the Pariser-Parr-Pople (PPP)
model[3], the complete neglect of differential overlap (CNDO) method|4}56],
and the intermediate neglect of differential overlap (INDO) method[7]. Of
these, the PPP model is applicable only to m-conjugated systems, however,
the CNDO and INDO models with suitable parametrization, are in principle,
applicable to all molecular systems[§]. CNDO and INDO methods are a class
of valence-electron models which utilize a minimal Slater-type orbital (STO)
basis set for the representation of the valence orbitals[8]. Additionally, in the
representation of the Hamiltonian, only one- and two-center integrals are re-
tained, leading to a drastic reduction in the computational effort as compared
to the ab initio calculations|8]. Therefore, the CNDO/INDO models share at-
tractive feature of semi-empirical parametrization with the PPP model, and a
spatial representation of the molecular orbital with the ab initio approaches|8§].
And, unlike the PPP model, the CNDO/INDO methods can also be used for
the geometry optimization of molecules[8]. Therefore, for large molecular sys-
tems and clusters, for which the applications of fully ab initio approaches can
be computationally intractable, the CNDO/INDO methods provide an attrac-



tive alternative for the theoretical description of their electronic structure.

It is with possible applications to large molecules, clusters, and polymers in
mind that we have developed the present computer program which imple-
ments the CNDO-2/INDO methods as formulated originally by Pople and
coworkers[8]. As per the original formulation by Pople and coworkers|§], the
INDO method can be used for the molecules containing the first-row atoms,
while the CNDO/2 method is applicable to those containing both the first-
, and the second-row, atoms. The fact that the code has been written in a
modern programming language, viz., Fortran 90, allows it to utilize dynamic
memory allocation, thereby freeing it from various array limits, and resultant
artificial restrictions on the size of the molecules. Thus our program can be
used on a given computer until all its available memory is exhausted. The
present computer program can perform restricted Hartree-Fock (RHF) cal-
culations on closed-shell systems, and unrestricted-Hartree-Fock (UHF) cal-
culations on open-shell systems. Additionally, it also allows one to compute
properties such as the molecular dipole moment, Mulliken population analysis,
and linear-optical absorption spectrum under the electric-dipole approxima-
tion. Apart from describing the computer program, we also present several
of its applications which include various small molecules, fullerene Cgy, and
polymeric chains consisting of carbon atoms (C-chain), and alternating boron
and nitrogen atoms (BN-chain).

The remainder of the paper is organized as follows. In section 2] we briefly
review the theory associated with the CNDO/INDO approaches. Next, in
section [3] we discuss the general structure of our computer program, and also
describe its constituent subroutines. In section [l we briefly describe how to
install the program on a given computer system, and to prepare the input
files. Results of various example calculations using our program are presented
and discussed in section [l Finally, in section [6] we present our conclusions,
as well as discuss possible future directions.

2 Theory

In this section we briefly review the theory associated with the CNDO/INDO
methods. The detailed discussion on the topic can be found in the book by
Pople and Beveridge[8]. Our discussion will be in the context of the UHF
method, the corresponding RHF equations can be easily deduced from them:.
As per the assumptions of the UHF method, we assume that the i-th up-
and down-spin orbitals are distinct, and are represented (say) as wi(a) and

wi(ﬁ ), respectively. We assume that these orbitals can be written as a linear



combination of a finite-basis set

P =3, (1)
I

where ¢,’s represent the basis functions in question, and the determination of

the unknown coefficients C’f;‘) amounts to the solution of the UHF equations.
In the equation above, we have only stated the expressions for the up-spin
orbitals, the case of the down-spin orbitals can be easily deduced. Assuming
the Born-Oppenheimer Hamiltonian for the electrons of the system
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where the first term represents the kinetic energy of IV, electrons of the system,
the second term represents the interaction energy of those electrons with its N,
nuclei, Z 4 represents the nuclear charge of the A-th nucleus, R4; denotes the
distance between that nucleus and the i-th electron, r;; represents the inter-
electronic distance, while m and e are electronic mass and charge, respectively.
We further assume that the total number of up-/down-spin electrons is N, /N3,
such that N, + Ng = N,. Using the conjecture of Eq. [Il in conjunction with
the Hamiltonian above, one obtains the so-called Pople-Nesbet equations

S (F —£28,,)C8) =0, (3)

v

where S, is the basis function overlap matrix, €' is the UHF eigenvalue of the
i-th up-spin orbital, Fyj, is the Fock matrix for the up-spin electrons defined
by

Fg, = hu + ) _[Pao(pv|ho) — PY(po|Av)], (4)
Ao

above hy,, represents the matrix elements of the one-electron part (kinetic en-
ergy and the electron-nucleus interaction) of the Hamiltonian of Eq. 2 (uv|\o)
represents two-electron Coulomb repulsion integral in the Mulliken notation

(w1 20) = [ [ dridro,(1)6, (15 6x(2)a(2), )

and Py and P),, are the up-spin and total density matrix elements, respec-
tively, defined as

PAo Z C)\z crz 7 (6)



and

Py, = Py, + Py, (7)

Equations M| through [l define the UHF method without any approximations.
Next we briefly describe the approximations involved in the CNDO/INDO
methods, leading up to corresponding UHF equations|§]:

(1) Only valence electrons are treated explicitly thus N, = N, where N,
represents the number of valence electrons in the system.

(2) A STO basis set centered on the individual atoms of the system is em-
ployed, with the basis functions of the form

QSM(T? 97 ¢) = RZI(T)Y}M(Q ¢)> (8)

where n, [, m represent the principal, orbital, and magnetic quantum num-
bers associated with the p-th basis function, Y, (0, ¢) is the real spherical
harmonic, and the radial part of the basis function is given by

RY(r) = (2¢)™ 2 (2n)) 72"  exp(—Cur), (9)

where (, is the orbital exponent associated with the p-th basis func-
tion, and is atom specific. In the CNDO method a minimal basis set is
employed for the first row atoms, while an augmented basis set consist-
ing also of d-type functions is employed for the second-row atoms. The
present implementation of the INDO method, which is restricted only the
to the first-row atoms, uses a basis set identical to the CNDO method.

(3) The effective one-electron matrix elements h,, are called core integrals,
and determined semi-empirically. Diagonal elements of the one-electron
element 7, are determined through various parameters such as electron
affinity A,, and ionization potential I, of the atoms involved, while the
off-diagonal elements (u # v) are determined by

h;w = /BgBS;wa (10)

where A and B denote the atoms on which basis functions 1 and v are
located, 395 is a semiempirical parameter dependent on A and B, and
S, is the overlap matrix element for basis functions p and v.

(4) For orbital orthonormalization purposes it is assumed that the basis set
is orthonormal.

(5) For the two-electron integrals (uv | Ao), following approximation is adopted

(47 | A7) = G800 st | AN), (11)
and this set of integrals is further reduced by assuming
(e | AX) = VB, (12)



where it is assumed that basis functions p and A belong to atoms A
and B, respectively. The value v45 is computed using the s-type orbitals
located on A and B . Thus, all the two-electron integrals, apart from
one- and two-center integrals, are ignored. As compared to the CNDO
method, the following one-center integrals of the type (uv|uv) are as-
sumed nonzero in the INDO method. The values of these integrals are
determined semiempirically through the Slater-Condon parameters.

Once all the approximations listed above are implemented, the diagonal ele-
ments of the Fock matrix for the CNDO/2 model are given by

(0% 1 (0%
Fup = _§(IM +Ayu) + ZB:(PBB — Zp)vap — (B, — 1/2)7a4, (13)

while the off-diagonal elements for both the CNDO-2 and the INDO are

Fﬁézx = 6%BS/W - PSV'YAB- (14)

In the equations above, Zp represents the effective nuclear charge of atom B,
and Ppp = > ,cp Py is the sum of those diagonal elements of the total density
matrix which are centered on atom B. In the INDO method, however, one uses
different expressions for the one-center diagonal and off-diagonal elements,
given by

F = Uy + S [PA(ulAN) = P (uAlah)]

AeA
+ > (Peg — ZB)7VaB, (15)
BZA
and
Fg, = (2P, — Pp)(pvlpv) — Pp, (uplvy), (16)

where p,v € A. Above U,,, and the one-center two electron integrals are
obtained through I,, A,, and various Slater-Condon parameters|7]. The two-
center off-diagonal elements of the Fock matrix for the INDO model are ob-
tained through [[4l Once the Fock matrix is constructed, both for the CNDO/2
and INDO models, one solves the eigenvalue problem for the up-spin Fock ma-
trix

ut o

Y Ee .l =0 (17)

as well as the down-spin Fock matrix, using the iterative diagonalization tech-
nique, to achieve selfconsistency. From the equations given above, it is easy



to deduce the expressions for ny, as well as the Fock matrix elements for the
RHEF case.

3 Description of the Program

Our computer code consists of the main program, and various subroutines and
modules, all of which have been written in Fortran 90 language. Additionally,
the program must link to the LAPACK/BLAS library, whose diagonalization
routines are used by our program. In the following we briefly describe the main
program, and each subroutine.

3.1 Main program CINDO

This is the main program of our package which reads input data such as atomic
numbers of the atoms constituting the system, and their positions, from the
input file. The program also calculates the number of valence electrons of the
system under consideration, and the total number of basis functions needed.
It dynamically allocates various arrays, and then calls other subroutines to
accomplish the remainder of the calculations. Because of the dynamical array
allocation, the user need not worry about various array sizes, as the program
will automatically terminate when it exhausts all the available memory on the
computer.

3.2 Subroutine BASEGEN

This subroutine generates various arrays containing information to the basis
functions used in the calculations. This includes quantities such as principal
quantum number (n), orbital angular momentum (/), magnetic quantum num-
ber (m), orbital exponent ((,) associated with each STO type basis function
defined in Eqs. B and @ Additionally, it also stores some semi-empirical data
associated with the Hamiltonian such the 8° . and various Slater-Condon pa-

p>
rameters. This routine is called from the main program CINDO.

3.3 Subroutine FACTCAL

The primary task of this subroutine is to generate the factorials of various
integers. The factorials thus generated are stored in global arrays accessible



via the MODULE factorials. This subroutine is also called from the main
program CINDO.

3.4 Subroutine ASSOC _LEGNDRE

This subroutine initializes the expansion coefficients which define associated
Legendre polynomials of various degrees, needed to represent the angular part
of the basis functions. The data is stored in global arrays through MODULE
legendre. This subroutine is also called from the main program.

3.5 function SS

A very important quantity used in computing Hamiltonian matrix elements

is the so-called reduced overlap integral between two basis functions (labeled
a, and b)[8|

oo 1

8Ny lay My M, by, 0, B) // A v) e (p—v)™ exp[—%(oz—l—ﬁ)u]
11
>< exp[—§<a — BT (. v)dpd, (18)

where

—m l—m

T(,U,, ) la,lb, Z Z ClamuClbmu ,U/ - 1) (1 - V2)m

x(1+ pv)" (1 - /W) (n+v)" " (p—v)™"" (19)

Above (ng,le, m) and (np, [, m) are the quantum numbers of two basis func-
tions, C,mu, D(la, Iy, m) etc. are coefficients associated with the angular part
of the basis functions, and a = (, R, and § = (,R, where (,, (;, are the ba-
sis function exponents, and R is the distance between the atoms on which
basis functions are located. If we define the so-called Yj;\ coefficients defined
through the relation

la—m lp—m

Z Z Clamuclbmu(lu2 - 1)™(1 - Vz)m

u

X (L4 )" (1= ) ()" 7" (= )™= Y Vi, (20)
4,7=0



we obtain the expression

S0 Loy 0, 0,1, 8) = DIy, m) X Vi Al o+ BB [ o~ B (21)

2%

where

Ar(p) = /93'“ exp(—pz)dz, (22)
and

Bi(p) = /a:k exp(—px)dz. (23)

For the s functions ( [, = [, = m = 0), the reduced overlap integrals (cf. Eq.
08) can be written as

oo 1
$(na, 0,0,m,0, 0, 5) = %// (+v)"(p—v)™ exp[—%(oz—l—ﬂ)u]
1 -1
« exp[—%(oz ~ B)ldudv. (24)

If we define the so-called Zj) coefficients through

Ng+np

() (u—v)™ = > Zppvretmh), (25)
k=0
we obtain
Na+Np 1
$(nq,0,0,n4,0, 00, B) = 3 Z ZinAg|= (Oé+5)]Bna+nb—k[§(Oé — B)]. (26)

The task of this REAL(kind=8) function is to compute the reduced overlap
integral as defined in Eqs. 21l and 26] for a given pair of basis functions a and
b. The input to this routine is all the basis function related information such as
their quantum numbers, orbital exponents, and the distance between them. It
performs these calculations by calling subroutines GETYCOEF, GETZCOEF,
AINT, and BINT which described below.

10



3.6 Subroutine GETYCOEF

The task of this subroutine is to compute these Yj;\ coefficients, for a given
set of ng, ny, la, lp, and m as defined in Eq. It achieves this goal by calling
subroutines BINOMIAL and POL2MUL described below.

3.7 Subroutine GETZCOEF

The task of this subroutine is to compute the Zj, coefficients, defined in Eq.
25 for a given pair of s-type basis functions. As in case of subroutine GETY-
COEF, this routine also computes for these coefficients by calling routines
BINOMIAL and POL2MUL.

3.8 Subroutine BINOMIAL

Using the binomial expansion, expression (az™y" + baxPy?)! can be expanded
as

(az™y"™ + bx”yq)l = Z cijxiyj, (27)
,J

where ¢, j, m, n, p, q, and [, are integers, x, and y are variables, and a, b, and
c;j’'s are constants. This subroutine computes these expansion coefficients c;;’s
for a given set of input values of a, b, m, n, p, ¢, and [. It is called both from
routines GETZCOEF and GETYCOEF.

3.9 Subroutine POL2MUL

This subroutine computes the coefficients of the product polynomial when two
polynomial of the type >, ; a;;z*y’are multiplied, i.e.,

Z cijxiyj = (Z aklxkyl)(z blmxlym). (28)
ivj k,l l,m

The input to this routine are coefficients az; and by;, while the output consists
of ¢;;. The arrays meant for storing these coefficients are allocated dynamically.

11



3.10 Subroutine AINT

The value of the integral Ay(p), defined in Eq. 22| can be shown to be

Ak(p) = exp(—p) i p“(/{: _k;L T 1)!‘

p=1

(29)

Subroutine AINT uses this series to compute the value of Ax(p), for a given
value of k and p.

3.11 Subroutine BINT

The purpose of this subroutine is to compute integral By(p), defined in Eq.
23] for a given value of k and p. We use the following recursion relation to
perform the task

(=1)""" exp(p)
p
i)+ Blp))
p

Biyi(p) = —Apsa(p) +

ket 1) ( (30)

Thus first a call is made to the routine AINT to compute all the Ax(p) s
needed. Subsequently, the By(p)’s are generated using the recursion relation
of Eq.

3.12 Subroutine REDOVINT

This is a very important subroutine which evaluates overlap matrix elements
S, among the basis functions. It evaluates the reduced overlap integrals de-
scribed above for each pair of basis functions, by calling the function SS, using
a coordinate system in which the atoms corresponding to the basis function
pair are located along the z-axis. Then by a call to the subroutine TRANS
described below, it obtains the actual overlap integrals by transforming the
reduced integrals from the special coordinate system, to the actual molecular
coordinate system. The upper-triangle of the overlap matrix is stored in a
one-dimensional array.

12



3.13  Subroutine TRANS zmgrace

The formulas for reduced overlap integrals (Eqs. [[8 and 24)) assume that the
atoms on which the basis functions are centered are a distance R apart from
each other along the z-axis. But in practice, the molecules may have any kind
of orientation. Therefore, we need to transform the reduced overlap integrals
computed using these formulas, to the real orientation of the molecule. This is
achieved through a transformation matrix which depends upon angular mo-
menta of the basis functions, as well as on the angles by which the z-axis
should be rotated to align it with the real orientation of the atoms involv-
ing the two basis functions. The task of this subroutine is to construct this
transformation matrix, and then apply it to obtain the overlap integrals with
respect to the molecular frame.

3.14  Subroutine COUL_INT

This subroutine calculates the Coulomb integrals yap (¢f. Eq. I2) needed for
the construction of the Fock matrix. It can be shown that these integrals are
proportional to the reduced overlap integrals discussed above. Therefore, this
routine computes these integrals by calling the function SS, and stores the
values (one per atom pair) in a two-dimensional array.

3.15 Subroutine CORE _INT

The aim of this subroutine is to compute the one-electron part of Fock ma-
trix, referred to as core integrals, and discussed in section 2l The calculation
of off-diagonal elements involves the use of the overlap matrix elements S,
computed in the routine REDOVINT, discussed earlier. The semiempirical
data needed for computing these matrix elements is also passed to this rou-
tine through arguments. The upper-triangle of the one-electron part of the
Fock matrix, along with the extended Hiickel Hamiltonian, are finally stored
in separate one-dimension arrays, and constitute the output of this routine.

3.16 Subroutine DIPINT

The aim of this subroutine is to compute matrix elements of dipole operator
over the basis set. This subroutine is called only if the linear-optical absorption,
or permanent electric dipole calculations are desired. Standard formulas are

13



utilized to compute these matrix elements, and it is called from the main
program CINDO.

3.17 Subroutine SCF_RHF

This subroutine solves the RHF equations for the system under considera-
tion in a self-consistent manner, using the iterative diagonalization procedure.
The arrays which are needed during the calculations are allocated before the
calculations begins, and are deallocated upon completion. Before the first iter-
ation, extended Hiickel Hamiltonian is diagonalized to obtain a set of starting
orbitals. Subsequently, the Fock matrix corresponding to those orbitals is con-
structed and diagonalized. The process is repeated until the self-consistency
is achieved. During the self-consistency iterations, subroutine DSPEVX from
the LAPACK/BLAS library is used to obtain the occupied eigenvalues and
eigenvectors. Obtaining only the occupied eigenpairs, as against the entire
spectrum, leads to considerable savings of CPU time for large systems. How-
ever, if the entire spectrum of eigenvalues and eigenvectors is needed, say, to
perform optical absorption calculations, the Fock matrix is diagonalized using
the routine DSPEV from the LAPACK/BLAS library, upon completion of
the self-consistency iterations. Because the entire spectrum is obtained only
after self-consistency has been achieved, it does not strain the computational
resources too much. Apart from computing the RHF total energy, this sub-
routine also calculates the total binding energy of the system, and, if needed,
performs Mulliken population analysis as well.

3.18 Subroutine SCF_UHF

This subroutine is exactly the same in its logic and structure as the previously
described SCF _RHF, except that the task of this routine is to solve the UHF
equation for the system under consideration. Different Fock matrices for the
up- and the down-spin are constructed and diagonalized in each iteration, un-
til the self-consistency is achieved. Similar to the case of routine SCF _RHF,
during the iterations only the occupied eigenvalues and eigenvectors are com-
puted using the routine DSPEVX. The iterations are stopped once the total
UHF energy of the system converges to within a user defined threshold.

3.19 Subroutine PROPERTY

This is a driver subroutine whose task is to read the converged SCF orbitals
written onto the disk by the SCF routines, and then call other subroutines

14



meant for computing various properties of the system under investigation. It
is called from the main program CINDO after the SCF calculations, provided
the user has opted for one of the property calculations such as the permanent
electric dipole moment of the molecule, or its optical absorption spectrum.

3.20 Subroutine DIPIND

This subroutine transforms the dipole matrix elements from the basis-set AO
representation to the SCF MO representation, by means of a two-index trans-
formation. Therefore, it uses the dipole matrix elements computed in DIPINT,
and the SCF MOs as inputs. The transformed dipole matrix elements, which
constitute the output of this routine, are used in the calculation of linear op-
tical absorption spectrum of the molecule. This subroutine is called from the
routine PROPERTY described above, if the user has opted for the optical
absorption calculations.

3.21 Subroutine DIPMOM RHF

This subroutine calculates the total net electric dipole moment component of
the molecule under investigation for restricted Hartree-Fock case. It is called
from the routine PROPERTY if the user has opted for the dipole moment cal-
culation. It uses dipole matrix elements calculated in the subroutine DIPINT
and the SCF MOs as input, and computes the permanent dipole moment of
the system using a straightforward formula.

3.22  Subroutine DIPMOM _UHF

The purpose and logic of this routine is the same as DIPMOM RHF, except
that it is used for the case when UHF calculations have been performed. This
routine is also called from the subroutine PROPERTY.

3.23 Subroutine SPECTRUM

This is an important subroutine which calculates the linear optical absorption
of the system, under electric-dipole approximation, assuming a Lorentzian
line shape and a constant line width for all the levels. Thus, if this calculation
is opted, in the input file the user needs to provide the line width, along
with the range of frequencies over which the spectrum needs to be computed.

15



Additionally, the routine uses the dipole matrix elements over the MOs as
computed in routine DIPIND, along with the RHF single-particle energies.
The computed spectrum is written in an ASCII file ’spectrum.dat’, which can
be readily used for plotting using programs such as gnuplot|9] or xmgrace|10].
This subroutine is also called from the routine PROPERTY, if the user has
opted for linear absorption spectrum calculations.

3.24  Orbital and Charge Density Plotting Subroutines

For the purpose of orbital visualization, our code offers several options to
the user for plotting the MOs, and the corresponding charge density. It is
accomplished through four subroutines, PLOT 1D RHF, PLOT 2D RHF,
PLOT 1D UHF, and PLOT 2D UHF.

The task of subroutine PLOT 1D RHF is to compute and print out the
numerical values of RHF MOs, or their charge densities, on a one-dimensional
grid of points, whose direction and range is provided by the user. Output
of this program is written in an ASCII file called 'orbplot.dat’, and can be
readily used for plotting by gnuplot[9] and xmgrace[10]. This routine is called
from the routine PROPERTY, if the user has opted for it. To compute the
numerical values of RHF MOs (or their charge densities) at different points

in space, it uses the numerical values of basis functions computed at those
points, by calling function BASFUNC.

When a user is interested in obtaining a two-dimensional plot of the RHF or-

bitals/charge densities in the Cartesian planes, subroutine PLOT 2D RHF

is called from the routine PROPERTY. The structure of this routine is also

similar to that of PLOT 1D RHF, except that for this case the orbital /density
values are printed out with respect to the two cartesian coordinates of the

plane. This routine also uses function BASFUNC to compute the numerical

values of the orbitals/densities, and the output is also written in the file 'orb-

plot.dat’. In order to facilitate contour plots of charge densities, the option of
making logarithmic plots is also available.

In case of open-shell UHF calculations, the corresponding plots of the up- and
down-spin MOs are obtained through calls to subroutines PLOT 1D UHF
and PLOT 2D UHF, and the output is again written in the file ’orbplot.dat’.

3.25 Function BASFUNC

It is a REAL(kind—8) function whose aim is to calculate the numerical value
of a given basis function, at a particular point in space. Therefore, the input
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to this function consists of the coordinates of the point in space with respect
to the location of the basis function, (n,[, m) quantum numbers of the basis
function, and its exponent ¢. This function is called from all the orbital /density
plotting subroutines described above.

4 Installation, input files, output files

We believe that the installation and execution of the program, as well as prepa-
ration of suitable input files is fairly straightforward. Therefore, we will not
discuss these topics in detail here. Instead, we refer the reader to the README
file for details related to the installation and execution of the program. Ad-
ditionally, the file "input_prep.pdf’ explains how to prepare a sample input
file. Several sample input and output files corresponding to various example
runs are also provided with the package.

5 Results and Discussions

In this section, we present and discuss the numerical applications of our re-
sults. First we present the results on a number of molecules. Next, we apply
our method to obtain the ground states of model polymeric systems C chain
and BN chain. Finally, we present the results of our calculations of optical
absorption in Buckminster fullerene Cgq. Wherever possible, we compare our
results to those published by other authors.

5.1 Molecular Systems

In this section we present the results of our calculations on a variety of
molecules, including fullerene Cgy. The aim of these calculations is to com-
pare our results with those published by other authors[8], and also with the
CNDO/INDO calculations performed using Gaussian 03|11], in order to check
the correctness of our program.

In table [l we compare the total HF energies of several molecules computed
by our program, to those computed using Gaussian 03|11]. We used the bond
length of 0.74 A for the Hy molecule as used also by Surjan[I2]. For water
molecule we used the geometry from Schaeffer et al. [13], for formic acid from
Schwartz et al.|[14], for borazane from Palke[15], and for fluoropropene from the
work of Scarzafava et al.[16]. For Cgo, we considered a dimerized configuration
with the [}, symmetry group and bond lengths 1.449 A and 1.397 A optimized
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Table 1

Comparison of the total Hartree-Fock energies (Erp) of several molecules obtained
using both the CNDO/2 and the INDO methods using our program, to those com-
puted using Gaussian 03[L1]. All results are in atomic units. S/E inside the parenthe-
ses imply staggered/eclipsed configurations. For the molecular geometries utilized in
these calculations, refer to the text.

Molecule Err(This work) Err(Gaussian03)
CNDO/2 INDO CNDO/2 INDO

Hy -1.474625 -1.474625 -1.474625 -1.474625

H»0O -19.868052 | -19.013606 | -19.868052 | -19.013606
cis-HCOOH -45.305164 | -43.364618 | -45.305163 | -43.364618
trans-HCOOH -45.301984 | -43.360996 | -45.301984 | -43.360996
Borazane (E) -20.169898 | -19.567825 | -20.169897 | -19.567824
Borazane (S) -20.172764 | -19.570726 | -20.172763 | -19.570730
cis-fluoropropene (E) -52.763845 | -50.693901 | -52.763845 | -50.693901
cis-fluoropropene (S) -52.762138 | -50.692238 | -52.762138 | -50.692238
trans-fluoropropene (E) | -52.761824 | -50.692176 | -52.761823 | -50.692175
trans-fluoropropene (S) | -52.759748 | -50.690019 | -52.759748 | -50.690019
Ceo -427.624631 | -412.293447 | -427.624631 | -412.293447

by Shibuya and Yoshitani [I7]. The Cartesian coordinates for the carbon atoms
of Cgp were generated using the computer program developed by Dharamvir
and Jindal[18]. Thus, for all the cases illustrated in the table, the agreement
on the total HF energies between our calculations and those obtained using
Gaussian 03[11] is excellent both for the CNDO/2 and the INDO methods.

Next we turn our attention to the comparison of results for geometry opti-
mization of a few closed- and open-shell molecules. In table 2] we compare the
bond lengths optimized by our program to those reported by Pople et al.[§]
for several closed- and open-shell diatomic molecules. Again the agreement ob-
tained between the two sets of calculations is excellent both for the CNDO /2
and the INDO calculations.

Finally, in table Bl we compare the molecular dipole moments and Mulliken
populations of several heteronuclear diatomic molecules obtained by our code
with those reported by Pople et al. [§]. Both for the CNDO/2 and the INDO
calculations the agreement between our results and those of Pople et al. [§]
is virtually exact. Thus, excellent agreement between our results with those
of other authors, not just for HF total energy, but also for other properties,
testifies to the essential correctness of our computer program.
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Table 2

Comparison of geometries optimized by our code to those reported by Pople et al.[§],
for several small molecules. Calculations for all the molecules with doublet or triplet
ground states were performed using the UHF method.

Molecule | State Equilibrium Length (A)

This work Pople et al.[§]
CNDO/2 | INDO | CNDO/2 | INDO

Liy vy | 2179 | 2134 | 2179 | 2134
B, 311, 1.278 | 1.278 | 1.278 | 1.278
Cy 'oF ) 1146 | 1148 | 1146 | 1.148
Ny 2nt 1127 | 1129 | 1127 | 1.129

No Iyt 1.140 | 1.147 | 1.140 | 1.147
O3 211, 1.095 | 1.100 | 1.095 | 1.100
0, Sy 1.132 | 1.140 | 1.132 | 1.140
NH 3y - 1.061 1.069 1.061 1.070
OH 11, 1.026 1.033 1.026 1.033
BeH 2yt 1.324 | 1.324 | 1.324 | 1.323
LiH Iy+ 1.573 | 1.572 | 1573 | 1.572
BN Syt 1.269 1.269 1.268 1.269
LiF Iyt | 2161 | 2162 | 2161 | 2.162
HF Iy+ 1.000 1.005 1.000 1.006
BF Iyt 1.404 | 1.408 | 1.404 | 1.408

5.2 Calculations on Lithium Clusters

In this section we discuss the optimized geometries of small lithium clusters
computed using our program. The number of computational studies of the
electronic structure of small lithium clusters by other authors is too numerous
to list here. We will mainly refer to the ab initio works of Ray et al.[20],
Boustani et al.[21], Jones et al.[22] , and Wheeler et al.[23] who studied clusters
similar to the ones studied by us. Detailed computational studies of several
large atomic clusters containing various atoms are in progress in our group,
and will be published later.
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Table 3

Comparison of computed electric dipole moments and Mulliken populations of het-
eronuclear diatomics molecules with the work of Pople et al.[§] The first number in
each category is the CNDO/2 result, while the second number represents the INDO
result.

Molecule | Electric Dipole Moment (Debye) Mulliken Population
This work Pople et al.[8] This work | Pople et al.[8]
NH 1.76/1.69 1.76/1.68 0.08/0.09 0.08/0.09
OH 1.78/1.80 1.78/1.79 0.16/0.18 0.17/0.18
BeH | 0.67/0.65 0.67/0.64 0.14/0.14 | 0.14/0.14
LiH 6.16/6.20 6.16/6.20 0.27/0.29 0.27/0.29
BN 0.36/0.50 0.36/0.50 0.05/0.03 0.05/0.03
LiF 7.91/7.87 7.90/7.86 0.56/0.58 0.56/0.58
HF 1.86/1.99 1.86/1.98 0.23/0.27 0.23/0.27
BF 1.31/0.87 1.31/0.86 0.15/0.15 0.15/0.15
5.2.1 Liy

Results of our calculations on the optimized geometry of lithium dimer for the
closed-shell ground state were presented in Table 2l As is obvious from the
table that our optimized bond lengths of 2.179 A(CNDO) and 2.134 A(INDO)
for Liy are in perfect agreement with similar calculations performed by Pople
et al.[8]. As far as the comparison with the experiments is concerned, both
these results are significantly smaller than the measured value of 2.672 A[19].
Therefore, it will be of considerable interest whether, or not, the inclusion of
electron correlation effects will improve the results.

5.2.2  Lig

Geometrical configurations for a triatomic cluster can be broadly classified
as: (a) linear, and (b) triangular. For homonuclear systems such as Lis, the
possible triangular geometries can be further subclassified into: (i) equilat-
eral triangle, (ii) isosceles triangle, and (iii) a triangle with unequal arms. Of
course, the equilateral triangle geometry (Dsy,) is expected to undergo Jahn-
Teller distortion to a lower symmetry configuration. Indeed, several density-
functional theory (DFT) and ab initio correlated calculations have indicated
that the isosceles triangle geometry (Cb,) is the most stable configuration
for Li3[20021122123]. Our calculations were performed on the doublet ground
state using the UHF method, and the results are summarized in table @ We
found that equilateral triangular configuration is energetically more favorable
as compared to the Jahn-Teller distorted isosceles triangles, as well as equidis-
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Structure CNDO Results INDO Results
Bond Length (A) | Eyp(a.n.) | Bond Length (A) | Exp(an.)
Linear 1.461 -1.8870412 1.457 -1.8819986
D3y, 1.932 -2.0133753 1.919 -2.0066737
Table 4

Optimized CNDO and INDO geometries of Lig, and corresponding HF energies
(Enr). Calculations were performed on the doublet ground states using the UHF
method.

Structure CNDO Results INDO Results
Bond Length (A) | Egr(au.) | Bond Length (A) | Exp(au.)
Linear 1.186 -2.9683366 1.185 -2.9590571
Square 1.617 -3.3083610 1.612 -3.2976927
Table 5

Optimized geometries of Liy clusters of various shapes obtained by CNDO and INDO
methods, and corresponding HF energies (Epr). Calculations were performed on the
closed-shell ground state.

tant linear configuration, both for CNDO and INDO models. Optimized INDO
and CNDO geometries are in very good agreement with each other. The po-
tential energy surface of the triangular configuration shows interesting features
for both the models. We find that if the equal arms of the triangle are longer
or shorter than the optimized bond lengths of the Ds, geometry presented
in table [, the system does exhibit Jahn-Teller instability. For bond lengths
longer than those of the Ds, geometry, the distorted triangle has an angle
less than 60° between the equal arms, while for bond lengths smaller than
the optimized values, the corresponding angle is more than 60°. However, the
global minimum was found for the Ds;, geometry described in table [dl As far
as the ab initio correlated and the DFT calculations are concerned, most of
them report the length of equal arms of the Cy, geometry close to 2.8 A, and
the angle between them in excess of 70°[2012112223]. Therefore, it will be in-
teresting whether the inclusion of electron correlation effects will improve the
agreement between CNDO/INDO models and the ab initio results.

5.2.3 Ly

For Li, clusters various geometries, ranging from linear to tetrahedral are pos-
sible as investigated, e.g., by Ray et al.[20]. However, as reported by various
authors, a rhombus structure is energetically most favorable. As a demonstra-
tion of our code we compute the relative stability of three possible structures
of this system namely, linear, square, and rhombus.
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Results of our calculations are summarized in table Bl We found that, of
the three possible structures considered, the square structure had the min-
imum energy. The rhombus shaped structures have lower energy than the
square structure for bond lengths in excess of 2.1 A. However, the energies
of those structures was found to be higher than those of square structures
reported in table B This result is similar to what we obtained for Lis for
which the equilateral triangular structure was found to be more stable than
the isosceles triangular structure, both within the CNDO and INDO mod-
els. Our result for Liy disagrees with those obtained by correlated ab initio,
and DFT calculations|2021122|23] which predict the lowest energy for the
rhombus structure with its acute angle close to 50°. Additionally, all ab ini-
tio calculations predict bond lengths significantly larger than obtained here.
Therefore, it is of considerable interest to explore whether the inclusion of
electron-correlation effects will bring our results in better agreement with the
ab initio ones.

5.3  Ground state of polymers

Our code can be used to study both the ground and excited state properties of
oligomers of various polymers because they are nothing but finite molecules,
ranging in size from small to large. However, in this section we demonstrate
that our code can also be used to obtain the ground state energy/cell, in the
bulk limit, for one-dimensional periodic systems such as polymers. Thus, it
can be used, e.g., for the purpose of ground-state geometry optimization of
polymers, which is what we demonstrate next.

The energy per unit cell of a one-dimensional periodic system can be obtained
using the formula

Eeen = lim AE(n) = lim (E(n+1) — E(n)), (31)

n—o0

where F(n + 1)/E(n) represent the total energies of oligomers containing
n—+1/n unit cells. Thus, using this formula, for sufficiently large value of n, one
can obtain the energy/cell of a polymer in the bulk limit, from oligomer based
calculations. In what follows we show that value of E..;; converges quite rapidly
with respect to n, even for polymers which have metallic ground states. For
the purpose of illustration we consider two model polymers namely chains con-
sisting of: (a) carbon atoms (henceforth C-chain), and (b) alternating boron
and nitrogen atoms (henceforth BN-chain). A C-chain consisting of uniformly
spaced atoms will be metallic, which, as per Peierls theorem|24], is not al-
lowed. Therefore, such a system is expected to dimerize leading to an insulat-
ing ground state[24]. On the other hand Peierls theorem is not applicable to
the BN-chain, which is a band insulator and isolelectronic with the C-chain for
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Figure 1. Energy per two-atom unit cell, of an undimerized C-chain, plotted as a
function of the number of unit cells. The C-C bond length was taken to be 1.297A.

a two-atom unit cell. In an earlier from our group, we had studied the ground
state geometry of C- and BN-chains using a fully ab initio methodology both
at the RHF and the correlated levels, and concluded that C-chain does indeed
exhibit dimerization, while the BN chain prefers the uniform geometry[25]. We
explore the ground state geometries of these two systems using our code. In
order to take care of the dangling bonds, we terminate the ends of oligomers
of uniform C-chain and the BN chain with two hydrogen atoms on the each
end. The dimerized C-chain consisting of alternating single and triple bonds,
on the other hand, is terminated by one hydrogen atom on the each end.

First we examine the convergence of F..; obtained using Eq. BT with respect
to the number of unit cells n. In Figs. [[l and 2 we plot AE(n) as a function of
n, for uniform C- and BN-chains, respectively. In both the cases convergence
with respect to n, for the two-atom unit cells, is quite rapid, and for n = 10
the bulk limit has been achieved to reasonable accuracy. This is quite remark-
able because the C-chain considered for this calculation is metallic because
of uniformly placed atoms. The convergence is even more rapid for C-chains
with dimerized geometry.
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Table 6
Comparison of our CNDO/2 and INDO geometries for uniform C-chain, and the BN
chain, with our earlier ab initio RHF results[25].

Calculation Bond Length (A)

C-Chain | BN-Chain
This Work (CNDO/2) 1.297 1.360
This Work (INDO) 1.300 1.362
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Figure 2. Energy per unit cell of boron-nitrogen chain, plotted as a function of the
number of unit cells. The B-N bond length was taken to be 1.360A.

Results of our calculations are summarized in tables[Bhnd [7. From these tables,
the following trends are obvious: (a) CNDO/2 and INDO optimized geometries
in all the cases are in good agreement with each other, and (b) optimized bond
lengths obtained here are slightly larger than those obtained using the ab initio
RHF method|25].

Additionally, the condensation energy per atom of the C-chain, defined as the
difference in E..; per atom of the optimized geometries in the uniform and
dimerized configurations, are obtained to be 11.1 mHartrees/atom (CNDO/2),
and 11.3 mHartrees/atom (INDO). These numbers are in reasonable agree-
ment with the corresponding ab initio RHF value of 7.8 mHartrees/atom|25].
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Table 7
Comparison of our CNDO/2 and INDO geometries obtained for the dimerized C-
chain, with our earlier ab initio RHF results|25]

Calculation Tsingle (A) Ttriple (A)
This work (CNDO/2) | 1.390 1.231
This work (INDO) 1.390 1.227
Abdurahman et al.[25] 1.360 1.174

5.4 Optical Absorption in Fullerene Cgg

Since the discovery of the Cgo in 1985[26], the field of the electronic structure
and optical properties of fullerenes has become one of the foremost research
topics these days|27]. Therefore, as the last application of our code in this
paper, we present the results of linear optical absorption calculations in Cgg,
at the RHF level. For these calculations we utilized the same geometry of
Shibuya and Yoshitani[I7], as was used for total energy calculations presented
in section 5.l In the CNDO/INDO models, with four basis functions per
carbon atom, Cgy has 120 occupied and 120 unoccupied orbitals, with the
ground state being a closed shell with the A, symmetry. The HOMO/LUMO
exhibit nearly m/7* character, with a five-fold degenerate HOMO (h,,) and a
three-fold degenerate LUMO (¢y,). Our HOMO-LUMO gap of 9.23 eV for the
INDO calcualtions is in perfect agreement with that reported by Shibuya and
Yoshitani[17].

25



800 T I T I T I
700— —

g o
S 8
[
[ . |

N W
3
l
I

Intensity (arb. units)
S 8 8
l l
1 1

100— —

1 1 1 1
0 1 2
E (au.)

Figure 3. Linear absorption spectrum of Cgg, obtained from RHF calculations using
the INDO model, plotted as a function of the photon energy (in atomic units). A
line width of 0.02 a.u. was assumed.

Next we present the linear optical absorption spectrum of Cgg computed by
the INDO method under the electric-dipole approximation, in Fig. 3l Because
the HOMO and LUMO orbitals have the same inversion symmetry (unger-
ade), the HOMO—LUMO transition is dipole forbidden leading to negligible
absorption intensity in the low-energy regions, in complete agreement with
the experiments[27]. We have intentionally plotted the spectrum with a rel-
atively small line width to emphasize the fact that a number of transitions
among various orbitals contribute to the linear absorption. Qualitative fea-
tures of our computed spectrum, namely the occurrence of two broad bands
with a number of subpeaks in the spectrum, are in good agreement with other
theoretical calculations|28]. As far as the quantitative comparison with the
experiments is concerned, it is a well-known fact that the HF method over-
estimates the energy gaps significantly. Therefore, in future works we intend
to carry out various levels of CI calculations to investigate the influence of
electron-correlation effects on the linear absorption in Cgg.

6 Conclusions and Future Directions

In this paper we have described our Fortran 90 program which solves the
HF equations for both the closed- and open-shell molecular systems using the
semiempirical CNDO/2 and INDO models. To demonstrate the correctness of
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our approach, we presented numerous test calculations on molecular systems
for which CNDO/INDO results are known, and obtained essentially exact
agreement. Additionally, we presented results on systems such as clusters,
fullerene, and polymers to demonstrate the wide utility of our present program.
The reason behind developing the present program is twofold: (a) to develop
a code in a modern language such as Fortran 90 which can carry out dynamic
array allocation and thus free the user from specifying and changing array
sizes, and (b) to provide an open software which will be widely available to
users which they can use and modify as per their needs. One could write
programs to perform a change of basis on the Hamiltonian matrix elements
from the basis set AO representation to the MO representation, and use the
transformed Hamiltonian to perform correlated CI calculations. Additionally,
one could also introduce an electric-field in the Hamiltonian to perform finite-
field calculations to compute quantities such as static polarizabilities of various
orders.

The present version of our code is restricted to first-row atoms using the INDO
method and up to the second-row elements using the CNDO/2 approach. It
will be extremely desirable to extend these methods to elements further in
the periodic table, preferably up to the transition metals. However, there are
several versions of these models available for heavier elements such as the s-p-d
INDO, ZINDO, and other methods|29]. Therefore, one could implement these
methods in the present code which will allow the user to perform both INDO
and CNDO/2 calculations on elments of second-row and beyond.

Work along those directions is continuing in our group, and results will be
published as and when they become available.
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