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Abstrat

Despite the tremendous advanes made by the ab initio theory of eletroni struture

of atoms and moleules, its appliations are still not possible for very large systems.

Therefore, semi-empirial model Hamiltonians based on the zero-di�erential overlap

(ZDO) approah suh as the Pariser-Parr-Pople, CNDO, INDO, et. provide attra-

tive, and omputationally tratable, alternatives to the ab initio treatment of large

systems. In this paper we desribe a Fortran 90 omputer program developed by

us, that uses CNDO/2 and INDO methods to solve Hartree-Fok(HF) equation for

moleular systems. The INDO method an be used for the moleules ontaining the

�rst-row atoms, while the CNDO/2 method is appliable to those ontaining both

the �rst-, and the seond-row, atoms. We have paid partiular attention to ompu-

tational e�ieny while developing the ode, and, therefore, it allows us to perform

alulations on large moleules suh as C60 on small omputers within a matter of

seonds. Besides being able to ompute the moleular orbitals and total energies, our

ode is also able to ompute properties suh as the eletri dipole moment, Mulliken

population analysis, and linear optial absorption spetrum of the system. We also

demonstrate how the program an be used to ompute the total energy per unit

ell of a polymer. The appliations presented in this paper inlude small organi

and inorgani moleules, fullerene C60, and model polymeri systems, viz., hains

ontaining alternating boron and nitrogen atoms (BN hain), and arbon atoms (C

hain).
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Program Summary

Title of program: indo.x

Catalogue Identi�er:

Program summary URL:

Program obtainable from: CPC Program Library, Queen's University of Belfast,

N. Ireland

Distribution format: tar.gz

Computers : PC's/Linux

Linux Distribution: Code was developed and tested on various reent versions

of Fedora inluding Fedora 9 (kernel version 2.6.25-14)

Programming language used: Fortran 90

Compilers used: Program has been tested with Intel Fortran Compiler (non-

ommerial version 10.1) and gfortran ompiler (g version 4.3.0) with opti-

mization option -O.

Libraries needed: This program needs to link with LAPACK/BLAS libraries

ompiled with the same ompiler as the program. For the Intel Fortran Com-

piler we used the ACML library version 3.6.0, while for gfortran ompiler we

used the libraries supplied with the Fedora distribution.

Number of bytes in distributed program, inluding test data, et.: size of the

tar �le ...... bytes

Number of lines in distributed program, inluding test data, et.: lines in the

tar �le .......

Card punhing ode: ASCII

Nature of physial problem: A good starting desription of the eletroni stru-

ture of extended many-eletron systems suh as moleules, lusters, and poly-

mers, an be obtained using the Hartree-Fok (HF) method. Solution of HF

equations within a fully ab initio formalism for large systems, however, is om-

putationally quite expensive. For suh systems, semi-empirial methods suh

as CNDO and INDO proposed by Pople and ollaborators are quite attrative.

The present program an solve the HF equations for both open- and losed-

shell systems ontaining �rst- and seond-row atoms using either the INDO

model or the CNDO model.

Method of Solution: The single-partile HF orbitals are expressed as linear

ombinations of the Slater-type orbital (STO) basis set spei�ed by Pople

and oworkers. Then using the parameters presribed for the CNDO/INDO

methods, the HF integro-di�erential equations are transformed into a matrix

eigenvalue problem. Thereby, its solutions are obtained in a self-onsistent

manner, using methods of omputational linear algebra.

Unusual features of the program: None
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1 Introdution

The linear ombination of atomi orbitals (LCAO) method is one of the most

ommon approahes for solving the Shrödinger equation for many-eletron

systems suh as atoms, moleules, lusters, and solids. It onsists of express-

ing the single-partile orbitals of the eletrons of the system as a linear om-

bination of a known basis set, and then solving the mean-�eld equations suh

as the Hartree-Fok (HF) or the Kohn-Sham equations. This onverts these

integro-di�erential equations into a matrix eigenvalue problem, whih is subse-

quently solved using omputational approahes from the linear algebra. If one

intends to go beyond the mean-�eld to inlude the eletron orrelations e�ets,

approahes suh as the on�guration-interation (CI), oupled-luster, or the

Green's funtion based formalisms an be used. If N is the total number of

basis funtions used, the omputational di�ulty at the mean-�eld level sales

roughly asN4
, whih is the number of two-eletron integrals needed to perform

suh alulations. For post mean-�eld orrelated alulations, integrals need to

be transformed from the basis-set atomi orbital (AO) representation to the

moleular-orbital representation (MO), a proess whih sales as N5
, while

subsequent solution of the orresponding equations an be even more time

onsuming[1℄. Sine N inreases rapidly with the number of atoms (and hene

eletrons) in the system, therefore, for very large systems solution of even the

mean-�eld equations an beome omputationally intratable. Therefore, it is

always advisable to devise methods of eletroni struture theory whih aim

at reduing the size of the basis set.

Using the zero-di�erential overlap (ZDO) approximation developed by Parr[2℄,

Pople and oworkers developed a series of semi-empirial methods for omput-

ing the eletroni struture of moleules suh as the Pariser-Parr-Pople (PPP)

model[3℄, the omplete neglet of di�erential overlap (CNDO) method[4,5,6℄,

and the intermediate neglet of di�erential overlap (INDO) method[7℄. Of

these, the PPP model is appliable only to π-onjugated systems, however,

the CNDO and INDO models with suitable parametrization, are in priniple,

appliable to all moleular systems[8℄. CNDO and INDO methods are a lass

of valene-eletron models whih utilize a minimal Slater-type orbital (STO)

basis set for the representation of the valene orbitals[8℄. Additionally, in the

representation of the Hamiltonian, only one- and two-enter integrals are re-

tained, leading to a drasti redution in the omputational e�ort as ompared

to the ab initio alulations[8℄. Therefore, the CNDO/INDO models share at-

trative feature of semi-empirial parametrization with the PPP model, and a

spatial representation of the moleular orbital with the ab initio approahes[8℄.

And, unlike the PPP model, the CNDO/INDO methods an also be used for

the geometry optimization of moleules[8℄. Therefore, for large moleular sys-

tems and lusters, for whih the appliations of fully ab initio approahes an

be omputationally intratable, the CNDO/INDO methods provide an attra-

3



tive alternative for the theoretial desription of their eletroni struture.

It is with possible appliations to large moleules, lusters, and polymers in

mind that we have developed the present omputer program whih imple-

ments the CNDO-2/INDO methods as formulated originally by Pople and

oworkers[8℄. As per the original formulation by Pople and oworkers[8℄, the

INDO method an be used for the moleules ontaining the �rst-row atoms,

while the CNDO/2 method is appliable to those ontaining both the �rst-

, and the seond-row, atoms. The fat that the ode has been written in a

modern programming language, viz., Fortran 90, allows it to utilize dynami

memory alloation, thereby freeing it from various array limits, and resultant

arti�ial restritions on the size of the moleules. Thus our program an be

used on a given omputer until all its available memory is exhausted. The

present omputer program an perform restrited Hartree-Fok (RHF) al-

ulations on losed-shell systems, and unrestrited-Hartree-Fok (UHF) al-

ulations on open-shell systems. Additionally, it also allows one to ompute

properties suh as the moleular dipole moment, Mulliken population analysis,

and linear-optial absorption spetrum under the eletri-dipole approxima-

tion. Apart from desribing the omputer program, we also present several

of its appliations whih inlude various small moleules, fullerene C60, and

polymeri hains onsisting of arbon atoms (C-hain), and alternating boron

and nitrogen atoms (BN-hain).

The remainder of the paper is organized as follows. In setion 2 we brie�y

review the theory assoiated with the CNDO/INDO approahes. Next, in

setion 3 we disuss the general struture of our omputer program, and also

desribe its onstituent subroutines. In setion 4 we brie�y desribe how to

install the program on a given omputer system, and to prepare the input

�les. Results of various example alulations using our program are presented

and disussed in setion 5. Finally, in setion 6, we present our onlusions,

as well as disuss possible future diretions.

2 Theory

In this setion we brie�y review the theory assoiated with the CNDO/INDO

methods. The detailed disussion on the topi an be found in the book by

Pople and Beveridge[8℄. Our disussion will be in the ontext of the UHF

method, the orresponding RHF equations an be easily dedued from them.

As per the assumptions of the UHF method, we assume that the i-th up-

and down-spin orbitals are distint, and are represented (say) as ψ
(α)
i and

ψ
(β)
i , respetively. We assume that these orbitals an be written as a linear
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ombination of a �nite-basis set

ψ
(α)
i =

∑

µ

C
(α)
µi φµ, (1)

where φµ's represent the basis funtions in question, and the determination of

the unknown oe�ients C
(α)
µi amounts to the solution of the UHF equations.

In the equation above, we have only stated the expressions for the up-spin

orbitals, the ase of the down-spin orbitals an be easily dedued. Assuming

the Born-Oppenheimer Hamiltonian for the eletrons of the system

H = −
~
2

2m

Ne
∑

i=1

∇2
i −

Nn
∑

A=1

Ne
∑

i=1

ZAe
2

RAi

+
∑

i>j

e2

rij
, (2)

where the �rst term represents the kineti energy ofNe eletrons of the system,

the seond term represents the interation energy of those eletrons with itsNn

nulei, ZA represents the nulear harge of the A-th nuleus, RAi denotes the

distane between that nuleus and the i-th eletron, rij represents the inter-
eletroni distane, whilem and e are eletroni mass and harge, respetively.
We further assume that the total number of up-/down-spin eletrons isNα/Nβ,

suh that Nα + Nβ = Ne. Using the onjeture of Eq. 1 in onjuntion with

the Hamiltonian above, one obtains the so-alled Pople-Nesbet equations

∑

ν

(F α
µν − εαi Sµν)C

(α)
vi = 0, (3)

where Sµν is the basis funtion overlap matrix, ǫ
α
i is the UHF eigenvalue of the

i-th up-spin orbital, F α
µν is the Fok matrix for the up-spin eletrons de�ned

by

F α
µν = hµν +

∑

λσ

[Pλσ(µν|λσ)− P α
λσ(µσ|λν)], (4)

above hµν represents the matrix elements of the one-eletron part (kineti en-

ergy and the eletron-nuleus interation) of the Hamiltonian of Eq. 2, (µν|λσ)
represents two-eletron Coulomb repulsion integral in the Mulliken notation

(µν | λσ) =
∫ ∫

dτ1dτ2φµ(1)φν(1)r
−1
12 φλ(2)φσ(2), (5)

and P α
λσ and Pλσ, are the up-spin and total density matrix elements, respe-

tively, de�ned as

P α
λσ =

Nα
∑

i=1

C
(α)∗
λi C

(α)
σi , (6)
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and

Pλσ = P α
λσ + P β

λσ. (7)

Equations 4 through 7, de�ne the UHF method without any approximations.

Next we brie�y desribe the approximations involved in the CNDO/INDO

methods, leading up to orresponding UHF equations[8℄:

(1) Only valene eletrons are treated expliitly thus Ne = Nv, where Nv

represents the number of valene eletrons in the system.

(2) A STO basis set entered on the individual atoms of the system is em-

ployed, with the basis funtions of the form

φµ(r, θ, φ) = Rµ
nl(r)Ylm(θ, φ), (8)

where n, l,m represent the prinipal, orbital, and magneti quantum num-

bers assoiated with the µ-th basis funtion, Ylm(θ, φ) is the real spherial
harmoni, and the radial part of the basis funtion is given by

Rµ
nl(r) = (2ζµ)

n+1/2(2n!)−1/2rn−1 exp(−ζur), (9)

where ζµ is the orbital exponent assoiated with the µ-th basis fun-

tion, and is atom spei�. In the CNDO method a minimal basis set is

employed for the �rst row atoms, while an augmented basis set onsist-

ing also of d-type funtions is employed for the seond-row atoms. The

present implementation of the INDO method, whih is restrited only the

to the �rst-row atoms, uses a basis set idential to the CNDO method.

(3) The e�etive one-eletron matrix elements hµν are alled ore integrals,

and determined semi-empirially. Diagonal elements of the one-eletron

element hµµ are determined through various parameters suh as eletron

a�nity Aµ, and ionization potential Iµ of the atoms involved, while the

o�-diagonal elements (µ 6= ν) are determined by

hµν = β0
ABSµν , (10)

where A and B denote the atoms on whih basis funtions µ and ν are

loated, β0
AB is a semiempirial parameter dependent on A and B, and

Sµν is the overlap matrix element for basis funtions µ and ν.
(4) For orbital orthonormalization purposes it is assumed that the basis set

is orthonormal.

(5) For the two-eletron integrals (µν | λσ), following approximation is adopted

(µν | λσ) = δµνδλσ(µµ | λλ), (11)

and this set of integrals is further redued by assuming

(µµ | λλ) = γAB, (12)
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where it is assumed that basis funtions µ and λ belong to atoms A
and B, respetively. The value γAB is omputed using the s-type orbitals
loated on A and B . Thus, all the two-eletron integrals, apart from

one- and two-enter integrals, are ignored. As ompared to the CNDO

method, the following one-enter integrals of the type (µν|µν) are as-

sumed nonzero in the INDO method. The values of these integrals are

determined semiempirially through the Slater-Condon parameters.

One all the approximations listed above are implemented, the diagonal ele-

ments of the Fok matrix for the CNDO/2 model are given by

F α
µµ = −

1

2
(Iµ + Aµ) +

∑

B

(PBB − ZB)γAB − (P α
µµ − 1/2)γAA, (13)

while the o�-diagonal elements for both the CNDO-2 and the INDO are

F α
µν = β0

ABSµν − P α
µνγAB. (14)

In the equations above, ZB represents the e�etive nulear harge of atom B,
and PBB =

∑

µ∈B Pµµ is the sum of those diagonal elements of the total density

matrix whih are entered on atom B. In the INDO method, however, one uses

di�erent expressions for the one-enter diagonal and o�-diagonal elements,

given by

F α
µµ =Uµµ +

∑

λ∈A

[Pλλ(µµ|λλ)− P α
λλ(µλ|µλ)]

+
∑

B 6=A

(PBB − ZB)γAB, (15)

and

F α
µν = (2Pµν − P α

µν)(µν|µν)− P α
µν(µµ|νν), (16)

where µ, ν ∈ A. Above Uµµ, and the one-enter two eletron integrals are

obtained through Iµ, Aµ, and various Slater-Condon parameters[7℄. The two-

enter o�-diagonal elements of the Fok matrix for the INDO model are ob-

tained through 14. One the Fok matrix is onstruted, both for the CNDO/2

and INDO models, one solves the eigenvalue problem for the up-spin Fok ma-

trix

∑

ν

F α
µνC

(α)
νi = εαi C

(α)
µi , (17)

as well as the down-spin Fok matrix, using the iterative diagonalization teh-

nique, to ahieve selfonsisteny. From the equations given above, it is easy
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to dedue the expressions for F β
µν , as well as the Fok matrix elements for the

RHF ase.

3 Desription of the Program

Our omputer ode onsists of the main program, and various subroutines and

modules, all of whih have been written in Fortran 90 language. Additionally,

the program must link to the LAPACK/BLAS library, whose diagonalization

routines are used by our program. In the following we brie�y desribe the main

program, and eah subroutine.

3.1 Main program CINDO

This is the main program of our pakage whih reads input data suh as atomi

numbers of the atoms onstituting the system, and their positions, from the

input �le. The program also alulates the number of valene eletrons of the

system under onsideration, and the total number of basis funtions needed.

It dynamially alloates various arrays, and then alls other subroutines to

aomplish the remainder of the alulations. Beause of the dynamial array

alloation, the user need not worry about various array sizes, as the program

will automatially terminate when it exhausts all the available memory on the

omputer.

3.2 Subroutine BASEGEN

This subroutine generates various arrays ontaining information to the basis

funtions used in the alulations. This inludes quantities suh as prinipal

quantum number (n), orbital angular momentum (l), magneti quantum num-

ber (m), orbital exponent (ζµ) assoiated with eah STO type basis funtion

de�ned in Eqs. 8 and 9. Additionally, it also stores some semi-empirial data

assoiated with the Hamiltonian suh the β0
µν , and various Slater-Condon pa-

rameters. This routine is alled from the main program CINDO.

3.3 Subroutine FACTCAL

The primary task of this subroutine is to generate the fatorials of various

integers. The fatorials thus generated are stored in global arrays aessible
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via the MODULE fatorials. This subroutine is also alled from the main

program CINDO.

3.4 Subroutine ASSOC_LEGNDRE

This subroutine initializes the expansion oe�ients whih de�ne assoiated

Legendre polynomials of various degrees, needed to represent the angular part

of the basis funtions. The data is stored in global arrays through MODULE

legendre. This subroutine is also alled from the main program.

3.5 funtion SS

A very important quantity used in omputing Hamiltonian matrix elements

is the so-alled redued overlap integral between two basis funtions (labeled

a, and b)[8℄

s(na, la, m, nb, lb, α, β)=

∞
∫

1

1
∫

−1

(µ+ ν)na(µ− ν)nb exp[−
1

2
(α + β)µ]

× exp[−
1

2
(α− β)ν]T (µ, ν)dµdν, (18)

where

T (µ, ν)=D(la, lb, m)
la−m
∑

u

lb−m
∑

v

ClamuClbmu(µ
2 − 1)m(1− ν2)m

×(1 + µν)u(1− µν)v(µ+ ν)−m−u(µ− ν)−m−v. (19)

Above (na, la, m) and (nb, lb,m) are the quantum numbers of two basis fun-

tions, Clamu, D(la, lb, m) et. are oe�ients assoiated with the angular part

of the basis funtions, and α = ζaR, and β = ζbR, where ζa, ζb are the ba-
sis funtion exponents, and R is the distane between the atoms on whih

basis funtions are loated. If we de�ne the so-alled Yijλ oe�ients de�ned

through the relation

la−m
∑

u

lb−m
∑

v

ClamuClbmu(µ
2 − 1)m(1− ν2)m

×(1 + µν)u(1− µν)v(µ+ ν)na−m−u(µ− ν)nb−m−v =
∑

i,j=0

Yijλµ
iνj , (20)
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we obtain the expression

s(na, la, m, nb, lb, α, β) = D(la, lb, m)
∑

i,j

YijλAi[
1

2
(α + β)]Bj[

1

2
(α− β)], (21)

where

Ak(ρ) =

∞
∫

1

xk exp(−ρx)dx, (22)

and

Bk(ρ) =

1
∫

−1

xk exp(−ρx)dx. (23)

For the s funtions ( la = lb = m = 0), the redued overlap integrals (f. Eq.

18) an be written as

s(na, 0, 0, nb, 0, α, β)=
1

2

∞
∫

1

1
∫

−1

(µ+ ν)na(µ− ν)nb exp[−
1

2
(α + β)µ]

× exp[−
1

2
(α− β)ν]dµdν. (24)

If we de�ne the so-alled Zkλ oe�ients through

(µ+ ν)na(µ− ν)nb =
na+nb
∑

k=0

Zkλµ
kν(na+nb−k), (25)

we obtain

s(na, 0, 0, nb, 0, α, β) =
1

2

na+nb
∑

k=0

ZkλAk[
1

2
(α + β)]Bna+nb−k[

1

2
(α− β)]. (26)

The task of this REAL(kind=8) funtion is to ompute the redued overlap

integral as de�ned in Eqs. 21 and 26, for a given pair of basis funtions a and
b. The input to this routine is all the basis funtion related information suh as
their quantum numbers, orbital exponents, and the distane between them. It

performs these alulations by alling subroutines GETYCOEF, GETZCOEF,

AINT, and BINT whih desribed below.
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3.6 Subroutine GETYCOEF

The task of this subroutine is to ompute these Yijλ oe�ients, for a given

set of na, nb, la, lb, and m as de�ned in Eq. 20. It ahieves this goal by alling

subroutines BINOMIAL and POL2MUL desribed below.

3.7 Subroutine GETZCOEF

The task of this subroutine is to ompute the Zkλ oe�ients, de�ned in Eq.

25, for a given pair of s-type basis funtions. As in ase of subroutine GETY-

COEF, this routine also omputes for these oe�ients by alling routines

BINOMIAL and POL2MUL.

3.8 Subroutine BINOMIAL

Using the binomial expansion, expression (axmyn + bxpyq)l an be expanded

as

(axmyn + bxpyq)l =
∑

i,j

cijx
iyj, (27)

where i, j, m, n, p, q, and l, are integers, x, and y are variables, and a, b, and
cij 's are onstants. This subroutine omputes these expansion oe�ients cij's
for a given set of input values of a, b, m, n, p, q, and l. It is alled both from

routines GETZCOEF and GETYCOEF.

3.9 Subroutine POL2MUL

This subroutine omputes the oe�ients of the produt polynomial when two

polynomial of the type

∑

i,j aijx
iyjare multiplied, i.e.,

∑

i,j

cijx
iyj = (

∑

k,l

aklx
kyl)(

∑

l,m

blmx
lym). (28)

The input to this routine are oe�ients akl and bkl, while the output onsists
of cij. The arrays meant for storing these oe�ients are alloated dynamially.
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3.10 Subroutine AINT

The value of the integral Ak(ρ), de�ned in Eq. 22, an be shown to be

Ak(ρ) = exp(−ρ)
k+1
∑

µ=1

k!

ρµ(k − µ+ 1)!
. (29)

Subroutine AINT uses this series to ompute the value of Ak(ρ), for a given

value of k and ρ.

3.11 Subroutine BINT

The purpose of this subroutine is to ompute integral Bk(ρ), de�ned in Eq.

23, for a given value of k and ρ. We use the following reursion relation to

perform the task

Bk+1(ρ) =−Ak+1(ρ) +
(−1)

k+1

exp(ρ)

ρ

+(k + 1)

(

(Ak(ρ) +Bk(ρ))

ρ

)

. (30)

Thus �rst a all is made to the routine AINT to ompute all the Ak(ρ) 's

needed. Subsequently, the Bk(ρ)'s are generated using the reursion relation

of Eq. 30.

3.12 Subroutine REDOVINT

This is a very important subroutine whih evaluates overlap matrix elements

Sµν among the basis funtions. It evaluates the redued overlap integrals de-

sribed above for eah pair of basis funtions, by alling the funtion SS, using

a oordinate system in whih the atoms orresponding to the basis funtion

pair are loated along the z-axis. Then by a all to the subroutine TRANS

desribed below, it obtains the atual overlap integrals by transforming the

redued integrals from the speial oordinate system, to the atual moleular

oordinate system. The upper-triangle of the overlap matrix is stored in a

one-dimensional array.
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3.13 Subroutine TRANS xmgrae

The formulas for redued overlap integrals (Eqs. 18 and 24) assume that the

atoms on whih the basis funtions are entered are a distane R apart from

eah other along the z-axis. But in pratie, the moleules may have any kind

of orientation. Therefore, we need to transform the redued overlap integrals

omputed using these formulas, to the real orientation of the moleule. This is

ahieved through a transformation matrix whih depends upon angular mo-

menta of the basis funtions, as well as on the angles by whih the z-axis
should be rotated to align it with the real orientation of the atoms involv-

ing the two basis funtions. The task of this subroutine is to onstrut this

transformation matrix, and then apply it to obtain the overlap integrals with

respet to the moleular frame.

3.14 Subroutine COUL_INT

This subroutine alulates the Coulomb integrals γAB (f. Eq. 12) needed for

the onstrution of the Fok matrix. It an be shown that these integrals are

proportional to the redued overlap integrals disussed above. Therefore, this

routine omputes these integrals by alling the funtion SS, and stores the

values (one per atom pair) in a two-dimensional array.

3.15 Subroutine CORE_INT

The aim of this subroutine is to ompute the one-eletron part of Fok ma-

trix, referred to as ore integrals, and disussed in setion 2. The alulation

of o�-diagonal elements involves the use of the overlap matrix elements Sµν

omputed in the routine REDOVINT, disussed earlier. The semiempirial

data needed for omputing these matrix elements is also passed to this rou-

tine through arguments. The upper-triangle of the one-eletron part of the

Fok matrix, along with the extended Hükel Hamiltonian, are �nally stored

in separate one-dimension arrays, and onstitute the output of this routine.

3.16 Subroutine DIPINT

The aim of this subroutine is to ompute matrix elements of dipole operator

over the basis set. This subroutine is alled only if the linear-optial absorption,

or permanent eletri dipole alulations are desired. Standard formulas are
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utilized to ompute these matrix elements, and it is alled from the main

program CINDO.

3.17 Subroutine SCF_RHF

This subroutine solves the RHF equations for the system under onsidera-

tion in a self-onsistent manner, using the iterative diagonalization proedure.

The arrays whih are needed during the alulations are alloated before the

alulations begins, and are dealloated upon ompletion. Before the �rst iter-

ation, extended Hükel Hamiltonian is diagonalized to obtain a set of starting

orbitals. Subsequently, the Fok matrix orresponding to those orbitals is on-

struted and diagonalized. The proess is repeated until the self-onsisteny

is ahieved. During the self-onsisteny iterations, subroutine DSPEVX from

the LAPACK/BLAS library is used to obtain the oupied eigenvalues and

eigenvetors. Obtaining only the oupied eigenpairs, as against the entire

spetrum, leads to onsiderable savings of CPU time for large systems. How-

ever, if the entire spetrum of eigenvalues and eigenvetors is needed, say, to

perform optial absorption alulations, the Fok matrix is diagonalized using

the routine DSPEV from the LAPACK/BLAS library, upon ompletion of

the self-onsisteny iterations. Beause the entire spetrum is obtained only

after self-onsisteny has been ahieved, it does not strain the omputational

resoures too muh. Apart from omputing the RHF total energy, this sub-

routine also alulates the total binding energy of the system, and, if needed,

performs Mulliken population analysis as well.

3.18 Subroutine SCF_UHF

This subroutine is exatly the same in its logi and struture as the previously

desribed SCF_RHF, exept that the task of this routine is to solve the UHF

equation for the system under onsideration. Di�erent Fok matries for the

up- and the down-spin are onstruted and diagonalized in eah iteration, un-

til the self-onsisteny is ahieved. Similar to the ase of routine SCF_RHF,

during the iterations only the oupied eigenvalues and eigenvetors are om-

puted using the routine DSPEVX. The iterations are stopped one the total

UHF energy of the system onverges to within a user de�ned threshold.

3.19 Subroutine PROPERTY

This is a driver subroutine whose task is to read the onverged SCF orbitals

written onto the disk by the SCF routines, and then all other subroutines
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meant for omputing various properties of the system under investigation. It

is alled from the main program CINDO after the SCF alulations, provided

the user has opted for one of the property alulations suh as the permanent

eletri dipole moment of the moleule, or its optial absorption spetrum.

3.20 Subroutine DIPIND

This subroutine transforms the dipole matrix elements from the basis-set AO

representation to the SCF MO representation, by means of a two-index trans-

formation. Therefore, it uses the dipole matrix elements omputed in DIPINT,

and the SCF MOs as inputs. The transformed dipole matrix elements, whih

onstitute the output of this routine, are used in the alulation of linear op-

tial absorption spetrum of the moleule. This subroutine is alled from the

routine PROPERTY desribed above, if the user has opted for the optial

absorption alulations.

3.21 Subroutine DIPMOM_RHF

This subroutine alulates the total net eletri dipole moment omponent of

the moleule under investigation for restrited Hartree-Fok ase. It is alled

from the routine PROPERTY if the user has opted for the dipole moment al-

ulation. It uses dipole matrix elements alulated in the subroutine DIPINT

and the SCF MOs as input, and omputes the permanent dipole moment of

the system using a straightforward formula.

3.22 Subroutine DIPMOM_UHF

The purpose and logi of this routine is the same as DIPMOM_RHF, exept

that it is used for the ase when UHF alulations have been performed. This

routine is also alled from the subroutine PROPERTY.

3.23 Subroutine SPECTRUM

This is an important subroutine whih alulates the linear optial absorption

of the system, under eletri-dipole approximation, assuming a Lorentzian

line shape and a onstant line width for all the levels. Thus, if this alulation

is opted, in the input �le the user needs to provide the line width, along

with the range of frequenies over whih the spetrum needs to be omputed.
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Additionally, the routine uses the dipole matrix elements over the MOs as

omputed in routine DIPIND, along with the RHF single-partile energies.

The omputed spetrum is written in an ASCII �le 'spetrum.dat', whih an

be readily used for plotting using programs suh as gnuplot[9℄ or xmgrae[10℄.

This subroutine is also alled from the routine PROPERTY, if the user has

opted for linear absorption spetrum alulations.

3.24 Orbital and Charge Density Plotting Subroutines

For the purpose of orbital visualization, our ode o�ers several options to

the user for plotting the MOs, and the orresponding harge density. It is

aomplished through four subroutines, PLOT_1D_RHF, PLOT_2D_RHF,

PLOT_1D_UHF, and PLOT_2D_UHF.

The task of subroutine PLOT_1D_RHF is to ompute and print out the

numerial values of RHF MOs, or their harge densities, on a one-dimensional

grid of points, whose diretion and range is provided by the user. Output

of this program is written in an ASCII �le alled 'orbplot.dat', and an be

readily used for plotting by gnuplot[9℄ and xmgrae[10℄. This routine is alled

from the routine PROPERTY, if the user has opted for it. To ompute the

numerial values of RHF MOs (or their harge densities) at di�erent points

in spae, it uses the numerial values of basis funtions omputed at those

points, by alling funtion BASFUNC.

When a user is interested in obtaining a two-dimensional plot of the RHF or-

bitals/harge densities in the Cartesian planes, subroutine PLOT_2D_RHF

is alled from the routine PROPERTY. The struture of this routine is also

similar to that of PLOT_1D_RHF, exept that for this ase the orbital/density

values are printed out with respet to the two artesian oordinates of the

plane. This routine also uses funtion BASFUNC to ompute the numerial

values of the orbitals/densities, and the output is also written in the �le 'orb-

plot.dat'. In order to failitate ontour plots of harge densities, the option of

making logarithmi plots is also available.

In ase of open-shell UHF alulations, the orresponding plots of the up- and

down-spin MOs are obtained through alls to subroutines PLOT_1D_UHF

and PLOT_2D_UHF, and the output is again written in the �le 'orbplot.dat'.

3.25 Funtion BASFUNC

It is a REAL(kind=8) funtion whose aim is to alulate the numerial value

of a given basis funtion, at a partiular point in spae. Therefore, the input
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to this funtion onsists of the oordinates of the point in spae with respet

to the loation of the basis funtion, (n, l,m) quantum numbers of the basis

funtion, and its exponent ζ . This funtion is alled from all the orbital/density

plotting subroutines desribed above.

4 Installation, input �les, output �les

We believe that the installation and exeution of the program, as well as prepa-

ration of suitable input �les is fairly straightforward. Therefore, we will not

disuss these topis in detail here. Instead, we refer the reader to the README

�le for details related to the installation and exeution of the program. Ad-

ditionally, the �le 'input_prep.pdf' explains how to prepare a sample input

�le. Several sample input and output �les orresponding to various example

runs are also provided with the pakage.

5 Results and Disussions

In this setion, we present and disuss the numerial appliations of our re-

sults. First we present the results on a number of moleules. Next, we apply

our method to obtain the ground states of model polymeri systems C hain

and BN hain. Finally, we present the results of our alulations of optial

absorption in Bukminster fullerene C60. Wherever possible, we ompare our

results to those published by other authors.

5.1 Moleular Systems

In this setion we present the results of our alulations on a variety of

moleules, inluding fullerene C60. The aim of these alulations is to om-

pare our results with those published by other authors[8℄, and also with the

CNDO/INDO alulations performed using Gaussian 03[11℄, in order to hek

the orretness of our program.

In table 1 we ompare the total HF energies of several moleules omputed

by our program, to those omputed using Gaussian 03[11℄. We used the bond

length of 0.74 Å for the H2 moleule as used also by Surjan[12℄. For water

moleule we used the geometry from Shae�er et al. [13℄, for formi aid from

Shwartz et al.[14℄, for borazane from Palke[15℄, and for �uoropropene from the

work of Sarzafava et al.[16℄. For C60, we onsidered a dimerized on�guration

with the Ih symmetry group and bond lengths 1.449 Å and 1.397 Å optimized
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Table 1

Comparison of the total Hartree-Fok energies (EHF ) of several moleules obtained

using both the CNDO/2 and the INDO methods using our program, to those om-

puted using Gaussian 03[11℄. All results are in atomi units. S/E inside the parenthe-

ses imply staggered/elipsed on�gurations. For the moleular geometries utilized in

these alulations, refer to the text.

Moleule EHF (This work) EHF (Gaussian03)

CNDO/2 INDO CNDO/2 INDO

H2 -1.474625 -1.474625 -1.474625 -1.474625

H2O -19.868052 -19.013606 -19.868052 -19.013606

is-HCOOH -45.305164 -43.364618 -45.305163 -43.364618

trans-HCOOH -45.301984 -43.360996 -45.301984 -43.360996

Borazane (E) -20.169898 -19.567825 -20.169897 -19.567824

Borazane (S) -20.172764 -19.570726 -20.172763 -19.570730

is-�uoropropene (E) -52.763845 -50.693901 -52.763845 -50.693901

is-�uoropropene (S) -52.762138 -50.692238 -52.762138 -50.692238

trans-�uoropropene (E) -52.761824 -50.692176 -52.761823 -50.692175

trans-�uoropropene (S) -52.759748 -50.690019 -52.759748 -50.690019

C60 -427.624631 -412.293447 -427.624631 -412.293447

by Shibuya and Yoshitani [17℄. The Cartesian oordinates for the arbon atoms

of C60 were generated using the omputer program developed by Dharamvir

and Jindal[18℄. Thus, for all the ases illustrated in the table, the agreement

on the total HF energies between our alulations and those obtained using

Gaussian 03[11℄ is exellent both for the CNDO/2 and the INDO methods.

Next we turn our attention to the omparison of results for geometry opti-

mization of a few losed- and open-shell moleules. In table 2 we ompare the

bond lengths optimized by our program to those reported by Pople et al.[8℄

for several losed- and open-shell diatomi moleules. Again the agreement ob-

tained between the two sets of alulations is exellent both for the CNDO/2

and the INDO alulations.

Finally, in table 3 we ompare the moleular dipole moments and Mulliken

populations of several heteronulear diatomi moleules obtained by our ode

with those reported by Pople et al. [8℄. Both for the CNDO/2 and the INDO

alulations the agreement between our results and those of Pople et al. [8℄

is virtually exat. Thus, exellent agreement between our results with those

of other authors, not just for HF total energy, but also for other properties,

testi�es to the essential orretness of our omputer program.
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Table 2

Comparison of geometries optimized by our ode to those reported by Pople et al.[8℄,

for several small moleules. Calulations for all the moleules with doublet or triplet

ground states were performed using the UHF method.

Moleule State Equilibrium Length (Å)

This work Pople et al.[8℄

CNDO/2 INDO CNDO/2 INDO

Li2
1
Σ
+
g 2.179 2.134 2.179 2.134

B2
3
Πg 1.278 1.278 1.278 1.278

C2
1
Σ
+
g 1.146 1.148 1.146 1.148

N

+
2

2
Σ
+
g 1.127 1.129 1.127 1.129

N2
1
Σ
+
g 1.140 1.147 1.140 1.147

O

+
2

2
Πg 1.095 1.100 1.095 1.100

O2
3
Σ
−
g 1.132 1.140 1.132 1.140

NH

3
Σ
−

1.061 1.069 1.061 1.070

OH

2
Πi 1.026 1.033 1.026 1.033

BeH

2
Σ
+

1.324 1.324 1.324 1.323

LiH

1
Σ
+

1.573 1.572 1.573 1.572

BN

3
Σ
+

1.269 1.269 1.268 1.269

LiF

1
Σ
+

2.161 2.162 2.161 2.162

HF

1
Σ
+

1.000 1.005 1.000 1.006

BF

1
Σ
+

1.404 1.408 1.404 1.408

5.2 Calulations on Lithium Clusters

In this setion we disuss the optimized geometries of small lithium lusters

omputed using our program. The number of omputational studies of the

eletroni struture of small lithium lusters by other authors is too numerous

to list here. We will mainly refer to the ab initio works of Ray et al.[20℄,

Boustani et al.[21℄, Jones et al.[22℄ , and Wheeler et al.[23℄ who studied lusters

similar to the ones studied by us. Detailed omputational studies of several

large atomi lusters ontaining various atoms are in progress in our group,

and will be published later.
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Table 3

Comparison of omputed eletri dipole moments and Mulliken populations of het-

eronulear diatomis moleules with the work of Pople et al.[8℄ The �rst number in

eah ategory is the CNDO/2 result, while the seond number represents the INDO

result.

Moleule Eletri Dipole Moment (Debye) Mulliken Population

This work Pople et al.[8℄ This work Pople et al.[8℄

NH 1.76/1.69 1.76/1.68 0.08/0.09 0.08/0.09

OH 1.78/1.80 1.78/1.79 0.16/0.18 0.17/0.18

BeH 0.67/0.65 0.67/0.64 0.14/0.14 0.14/0.14

LiH 6.16/6.20 6.16/6.20 0.27/0.29 0.27/0.29

BN 0.36/0.50 0.36/0.50 0.05/0.03 0.05/0.03

LiF 7.91/7.87 7.90/7.86 0.56/0.58 0.56/0.58

HF 1.86/1.99 1.86/1.98 0.23/0.27 0.23/0.27

BF 1.31/0.87 1.31/0.86 0.15/0.15 0.15/0.15

5.2.1 Li2

Results of our alulations on the optimized geometry of lithium dimer for the

losed-shell ground state were presented in Table 2. As is obvious from the

table that our optimized bond lengths of 2.179 Å(CNDO) and 2.134 Å(INDO)

for Li2 are in perfet agreement with similar alulations performed by Pople

et al.[8℄. As far as the omparison with the experiments is onerned, both

these results are signi�antly smaller than the measured value of 2.672 Å[19℄.

Therefore, it will be of onsiderable interest whether, or not, the inlusion of

eletron orrelation e�ets will improve the results.

5.2.2 Li3

Geometrial on�gurations for a triatomi luster an be broadly lassi�ed

as: (a) linear, and (b) triangular. For homonulear systems suh as Li3, the

possible triangular geometries an be further sublassi�ed into: (i) equilat-

eral triangle, (ii) isoseles triangle, and (iii) a triangle with unequal arms. Of

ourse, the equilateral triangle geometry (D3h) is expeted to undergo Jahn-

Teller distortion to a lower symmetry on�guration. Indeed, several density-

funtional theory (DFT) and ab initio orrelated alulations have indiated

that the isoseles triangle geometry (C2v) is the most stable on�guration

for Li3[20,21,22,23℄. Our alulations were performed on the doublet ground

state using the UHF method, and the results are summarized in table 4. We

found that equilateral triangular on�guration is energetially more favorable

as ompared to the Jahn-Teller distorted isoseles triangles, as well as equidis-
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Struture CNDO Results INDO Results

Bond Length (Å) EHF (a.u.) Bond Length (Å) EHF (a.u.)

Linear 1.461 -1.8870412 1.457 -1.8819986

D3h 1.932 -2.0133753 1.919 -2.0066737

Table 4

Optimized CNDO and INDO geometries of Li3, and orresponding HF energies

(EHF ). Calulations were performed on the doublet ground states using the UHF

method.

Struture CNDO Results INDO Results

Bond Length (Å) EHF (a.u.) Bond Length (Å) EHF (a.u.)

Linear 1.186 -2.9683366 1.185 -2.9590571

Square 1.617 -3.3083610 1.612 -3.2976927

Table 5

Optimized geometries of Li4 lusters of various shapes obtained by CNDO and INDO

methods, and orresponding HF energies (EHF ). Calulations were performed on the

losed-shell ground state.

tant linear on�guration, both for CNDO and INDO models. Optimized INDO

and CNDO geometries are in very good agreement with eah other. The po-

tential energy surfae of the triangular on�guration shows interesting features

for both the models. We �nd that if the equal arms of the triangle are longer

or shorter than the optimized bond lengths of the D3h geometry presented

in table 4, the system does exhibit Jahn-Teller instability. For bond lengths

longer than those of the D3h geometry, the distorted triangle has an angle

less than 60o between the equal arms, while for bond lengths smaller than

the optimized values, the orresponding angle is more than 60o. However, the
global minimum was found for the D3h geometry desribed in table 4. As far

as the ab initio orrelated and the DFT alulations are onerned, most of

them report the length of equal arms of the C2v geometry lose to 2.8 Å, and

the angle between them in exess of 70o[20,21,22,23℄. Therefore, it will be in-
teresting whether the inlusion of eletron orrelation e�ets will improve the

agreement between CNDO/INDO models and the ab initio results.

5.2.3 Li4

For Li4 lusters various geometries, ranging from linear to tetrahedral are pos-

sible as investigated, e.g., by Ray et al.[20℄. However, as reported by various

authors, a rhombus struture is energetially most favorable. As a demonstra-

tion of our ode we ompute the relative stability of three possible strutures

of this system namely, linear, square, and rhombus.
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Results of our alulations are summarized in table 5. We found that, of

the three possible strutures onsidered, the square struture had the min-

imum energy. The rhombus shaped strutures have lower energy than the

square struture for bond lengths in exess of 2.1 Å. However, the energies

of those strutures was found to be higher than those of square strutures

reported in table 5. This result is similar to what we obtained for Li3 for

whih the equilateral triangular struture was found to be more stable than

the isoseles triangular struture, both within the CNDO and INDO mod-

els. Our result for Li4 disagrees with those obtained by orrelated ab initio,

and DFT alulations[20,21,22,23℄ whih predit the lowest energy for the

rhombus struture with its aute angle lose to 50

o
. Additionally, all ab ini-

tio alulations predit bond lengths signi�antly larger than obtained here.

Therefore, it is of onsiderable interest to explore whether the inlusion of

eletron-orrelation e�ets will bring our results in better agreement with the

ab initio ones.

5.3 Ground state of polymers

Our ode an be used to study both the ground and exited state properties of

oligomers of various polymers beause they are nothing but �nite moleules,

ranging in size from small to large. However, in this setion we demonstrate

that our ode an also be used to obtain the ground state energy/ell, in the

bulk limit, for one-dimensional periodi systems suh as polymers. Thus, it

an be used, e.g., for the purpose of ground-state geometry optimization of

polymers, whih is what we demonstrate next.

The energy per unit ell of a one-dimensional periodi system an be obtained

using the formula

Ecell = lim
n→∞

∆E(n) = lim
n→∞

(E(n+ 1)− E(n)), (31)

where E(n + 1)/E(n) represent the total energies of oligomers ontaining

n+1/n unit ells. Thus, using this formula, for su�iently large value of n, one
an obtain the energy/ell of a polymer in the bulk limit, from oligomer based

alulations. In what follows we show that value of Ecell onverges quite rapidly

with respet to n, even for polymers whih have metalli ground states. For

the purpose of illustration we onsider two model polymers namely hains on-

sisting of: (a) arbon atoms (heneforth C-hain), and (b) alternating boron

and nitrogen atoms (heneforth BN-hain). A C-hain onsisting of uniformly

spaed atoms will be metalli, whih, as per Peierls theorem[24℄, is not al-

lowed. Therefore, suh a system is expeted to dimerize leading to an insulat-

ing ground state[24℄. On the other hand Peierls theorem is not appliable to

the BN-hain, whih is a band insulator and isoleletroni with the C-hain for
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Figure 1. Energy per two-atom unit ell, of an undimerized C-hain, plotted as a

funtion of the number of unit ells. The C-C bond length was taken to be 1.297Å.

a two-atom unit ell. In an earlier from our group, we had studied the ground

state geometry of C- and BN-hains using a fully ab initio methodology both

at the RHF and the orrelated levels, and onluded that C-hain does indeed

exhibit dimerization, while the BN hain prefers the uniform geometry[25℄. We

explore the ground state geometries of these two systems using our ode. In

order to take are of the dangling bonds, we terminate the ends of oligomers

of uniform C-hain and the BN hain with two hydrogen atoms on the eah

end. The dimerized C-hain onsisting of alternating single and triple bonds,

on the other hand, is terminated by one hydrogen atom on the eah end.

First we examine the onvergene of Ecell obtained using Eq. 31 with respet

to the number of unit ells n. In Figs. 1 and 2 we plot ∆E(n) as a funtion of

n, for uniform C- and BN-hains, respetively. In both the ases onvergene

with respet to n, for the two-atom unit ells, is quite rapid, and for n = 10
the bulk limit has been ahieved to reasonable auray. This is quite remark-

able beause the C-hain onsidered for this alulation is metalli beause

of uniformly plaed atoms. The onvergene is even more rapid for C-hains

with dimerized geometry.
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Table 6

Comparison of our CNDO/2 and INDO geometries for uniform C-hain, and the BN

hain, with our earlier ab initio RHF results[25℄.

Calulation Bond Length (Å)

C-Chain BN-Chain

This Work (CNDO/2) 1.297 1.360

This Work (INDO) 1.300 1.362

Abdurahman et al.[25℄ 1.251 1.287
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Figure 2. Energy per unit ell of boron-nitrogen hain, plotted as a funtion of the

number of unit ells. The B-N bond length was taken to be 1.360Å.

Results of our alulations are summarized in tables 6and 7. From these tables,

the following trends are obvious: (a) CNDO/2 and INDO optimized geometries

in all the ases are in good agreement with eah other, and (b) optimized bond

lengths obtained here are slightly larger than those obtained using the ab initio

RHF method[25℄.

Additionally, the ondensation energy per atom of the C-hain, de�ned as the

di�erene in Ecell per atom of the optimized geometries in the uniform and

dimerized on�gurations, are obtained to be 11.1 mHartrees/atom (CNDO/2),

and 11.3 mHartrees/atom (INDO). These numbers are in reasonable agree-

ment with the orresponding ab initio RHF value of 7.8 mHartrees/atom[25℄.
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Table 7

Comparison of our CNDO/2 and INDO geometries obtained for the dimerized C-

hain, with our earlier ab initio RHF results[25℄

Calulation rsingle(Å) rtriple(Å)

This work (CNDO/2) 1.390 1.231

This work (INDO) 1.390 1.227

Abdurahman et al.[25℄ 1.360 1.174

5.4 Optial Absorption in Fullerene C60

Sine the disovery of the C60 in 1985[26℄, the �eld of the eletroni struture

and optial properties of fullerenes has beome one of the foremost researh

topis these days[27℄. Therefore, as the last appliation of our ode in this

paper, we present the results of linear optial absorption alulations in C60,

at the RHF level. For these alulations we utilized the same geometry of

Shibuya and Yoshitani[17℄, as was used for total energy alulations presented

in setion 5.1. In the CNDO/INDO models, with four basis funtions per

arbon atom, C60 has 120 oupied and 120 unoupied orbitals, with the

ground state being a losed shell with the Ag symmetry. The HOMO/LUMO

exhibit nearly π/π∗
harater, with a �ve-fold degenerate HOMO (hu) and a

three-fold degenerate LUMO (t1u). Our HOMO-LUMO gap of 9.23 eV for the

INDO alualtions is in perfet agreement with that reported by Shibuya and

Yoshitani[17℄.
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Figure 3. Linear absorption spetrum of C60, obtained from RHF alulations using

the INDO model, plotted as a funtion of the photon energy (in atomi units). A

line width of 0.02 a.u. was assumed.

Next we present the linear optial absorption spetrum of C60 omputed by

the INDO method under the eletri-dipole approximation, in Fig. 3. Beause

the HOMO and LUMO orbitals have the same inversion symmetry (unger-

ade), the HOMO→LUMO transition is dipole forbidden leading to negligible

absorption intensity in the low-energy regions, in omplete agreement with

the experiments[27℄. We have intentionally plotted the spetrum with a rel-

atively small line width to emphasize the fat that a number of transitions

among various orbitals ontribute to the linear absorption. Qualitative fea-

tures of our omputed spetrum, namely the ourrene of two broad bands

with a number of subpeaks in the spetrum, are in good agreement with other

theoretial alulations[28℄. As far as the quantitative omparison with the

experiments is onerned, it is a well-known fat that the HF method over-

estimates the energy gaps signi�antly. Therefore, in future works we intend

to arry out various levels of CI alulations to investigate the in�uene of

eletron-orrelation e�ets on the linear absorption in C60.

6 Conlusions and Future Diretions

In this paper we have desribed our Fortran 90 program whih solves the

HF equations for both the losed- and open-shell moleular systems using the

semiempirial CNDO/2 and INDO models. To demonstrate the orretness of
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our approah, we presented numerous test alulations on moleular systems

for whih CNDO/INDO results are known, and obtained essentially exat

agreement. Additionally, we presented results on systems suh as lusters,

fullerene, and polymers to demonstrate the wide utility of our present program.

The reason behind developing the present program is twofold: (a) to develop

a ode in a modern language suh as Fortran 90 whih an arry out dynami

array alloation and thus free the user from speifying and hanging array

sizes, and (b) to provide an open software whih will be widely available to

users whih they an use and modify as per their needs. One ould write

programs to perform a hange of basis on the Hamiltonian matrix elements

from the basis set AO representation to the MO representation, and use the

transformed Hamiltonian to perform orrelated CI alulations. Additionally,

one ould also introdue an eletri-�eld in the Hamiltonian to perform �nite-

�eld alulations to ompute quantities suh as stati polarizabilities of various

orders.

The present version of our ode is restrited to �rst-row atoms using the INDO

method and up to the seond-row elements using the CNDO/2 approah. It

will be extremely desirable to extend these methods to elements further in

the periodi table, preferably up to the transition metals. However, there are

several versions of these models available for heavier elements suh as the s-p-d

INDO, ZINDO, and other methods[29℄. Therefore, one ould implement these

methods in the present ode whih will allow the user to perform both INDO

and CNDO/2 alulations on elments of seond-row and beyond.

Work along those diretions is ontinuing in our group, and results will be

published as and when they beome available.
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