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Abstract

On modern architectures, the performance of 32-bit operations is often
at least twice as fast as the performance of 64-bit operations. By using
a combination of 32-bit and 64-bit floating point arithmetic, the perfor-
mance of many dense and sparse linear algebra algorithms can be signif-
icantly enhanced while maintaining the 64-bit accuracy of the resulting
solution. The approach presented here can apply not only to conventional
processors but also to other technologies such as Field Programmable Gate
Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE
processor. Results on modern processor architectures and the STI Cell
BE are presented.

On modern architectures, the performance of 32-bit operations is often
at least twice as fast as the performance of 64-bit operations. By using
a combination of 32-bit and 64-bit floating point arithmetic, the perfor-
mance of many dense and sparse linear algebra algorithms can be signif-
icantly enhanced while maintaining the 64-bit accuracy of the resulting
solution. The approach presented here can apply not only to conventional
processors but also to other technologies such as Field Programmable Gate
Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE
processor. Results on modern processor architectures and the STI Cell
BE are presented.
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1 Introduction

On modern architectures, the performance of 32-bit operations is often at least
twice as fast as the performance of 64-bit operations. There are two reasons for
this. Firstly, 32-bit floating point arithmetic is usually twice as fast as 64-bit
floating point arithmetic on most modern processors. Secondly the amount of
bytes moved through the memory system is halved. In Table 1, we provide
some hardware numbers that support these claims. On AMD Opteron 246,
IBM PowerPC 970, and Intel Xeon 5100, the single precision peak is twice the
double precision peak. On the STI Cell BE, the single precision peak is fourteen
times the double precision peak. Not only single precision is faster than double
precision on conventional processors but this is also the case on less mainstream
technologies such as Field Programmable Gate Arrays (FPGA) and Graphical
Processing Units (GPU). These speedup numbers tempt us and we would like
to be able to benefit from it.

For several physics applications, results with 32-bit accuracy are not an
option and one really needs 64-bit accuracy maintained throughout the compu-
tations. The obvious reason is for the application to give an accurate answer.
Also, 64-bit accuracy enables most of the modern computational methods to be
more stable; therefore, in critical conditions, one must use 64-bit accuracy to
obtain an answer. In this manuscript, we present a methodology of how to per-
form the bulk of the operations in 32-bit arithmetic, then postprocess the 32-bit
solution by refining it into a a solution that is 64-bit accurate. We present this
methodology in the context of solving a system of linear equations, be it sparse
or dense, symmetric positive definite or nonsymmetric, using either direct or
iterative methods. We believe that the approach outlined below is quite general
and should be considered by application developers for their practical problems.

2 The Idea Behind Mixed Precision Algorithms

Mixed precision algorithms stem from the observation that, in many cases, a
single precision solution of a problem can be refined to the point where dou-
ble precision accuracy is achieved. The refinement can be accomplished, for
instance, by means of the Newton’s algorithm [47] which computes the zero of
a function f(x) according to the iterative formula

xn+1 = xn −
f(xn)
f ′(xn)

. (1)

In general, we would compute a starting point and f ′(x) in single precision
arithmetic and the refinement process will be computed in double precision
arithmetic.

If the refinement process is cheaper than the initial computation of the solu-
tion then double precision accuracy can be achieved nearly at the same speed as
the single precision accuracy. Sections 2.1 and 2.2 describe how this concept can
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be applied to solvers of linear systems based on direct and iterative methods,
respectively.

2.1 Direct Methods

A common approach to the solution of linear systems, either dense or sparse, is
to perform the LU factorization of the coefficient matrix using Gaussian elim-
ination. First, the coefficient matrix A is factored into the product of a lower
triangular matrix L and an upper triangular matrix U . Partial row pivoting
is in general used to improve numerical stability resulting in a factorization
PA = LU , where P is a permutation matrix. The solution for the system
is achieved by first solving Ly = Pb (forward substitution) and then solving
Ux = y (backward substitution). Due to round-off errors, the computed solution
x carries a numerical error magnified by the condition number of the coefficient
matrix A.

In order to improve the computed solution, we can apply an iterative process
which produces a correction to the computed solution at each iteration, which
then yields the method that is commonly known as the iterative refinement algo-
rithm.As Demmel points out [17], the non-linearity of the round-off errors makes
the iterative refinement process equivalent to the Newton’s method applied to
the function f(x) = b−Ax. Provided that the system is not too ill-conditioned,
the algorithm produces a solution correct to the working precision. Iterative
refinement in double/double precision is a fairly well understood concept and
was analyzed by Wilkinson [46], Moler [34] and Stewart [41].

Algorithm 1 Mixed precision, Iterative Refinement for Direct Solvers
1: LU← PA (εs)
2: solve Ly = Pb (εs)
3: solve Ux0 = y (εs)

do k = 1, 2, ...
4: rk ← b−Axk−1 (εd)
5: solve Ly = Prk (εs)
6: solve Uzk = y (εs)
7: xk ← xk−1 + zk (εd)

check convergence
done

The algorithm can be modified to use a mixed precision approach. The fac-
torization PA = LU and the solution of the triangular systems Ly = Pb and
Ux = y are computed using single precision arithmetic. The residual calculation
and the update of the solution are computed using double precision arithmetic
and the original double precision coefficients (see Algorithm 1). The most com-
putationally expensive operation, the factorization of the coefficient matrix A,
is performed using single precision arithmetic and takes advantage of its higher
speed. The only operations that must be executed in double precision are the
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residual calculation and the update of the solution (they are denoted with an εd

in Algorithm 1). We observe that the only operation with computational com-
plexity of O(n3) is handled in single precision, while all operations performed in
double precision are of at most O(n2) complexity. The coefficient matrix A is
converted to single precision for the LU factorization and the resulting factors
are stored in single precision while the initial coefficient matrix A needs to be
kept in memory. Therefore, one drawback of the following approach is that the
it uses 50% more memory than the standard double precision algorithm.

The method in Algorithm 1 can offer significant improvements for the solu-
tion of a sparse linear system in many cases if:

1. single precision computation is significantly faster than double precision
computation.

2. the iterative refinement procedure converges in a small number of steps.

3. the cost of each iteration is small compared to the cost of the system
factorization. If the cost of each iteration is too high, then a low number
of iterations will result in a performance loss with respect to the full double
precision solver. In the sparse case, for a fixed matrix size, both the cost
of the system factorization and the cost of the iterative refinement step
may substantially vary depending on the number of non-zeroes and the
matrix sparsity structure. In the dense case, results are more predictable.

Note that the choice of the stopping criterion in the iterative refinement
process is critical. Formulas for the error computed at each step of Algorithm 1
can be obtained for instance in [18, 36].

2.2 Iterative Methods

Direct methods are usually a very robust tool for the solution of sparse lin-
ear systems. However, they suffer from fill-in which results in high memory
requirements, long execution time, and non-optimal scalability in parallel envi-
ronments. To overcome these limitations, various pivot reordering techniques
are commonly applied to minimize the amount of generated fill-in and to enable
better exploitation of parallelism. Still, there are cases where direct methods
pose too high of a memory requirement or deliver poor performance. A valid
alternative are iterative methods even though they are less robust and have a
less predictable behavior. Iterative methods do not require more memory than
what is needed for the original coefficient matrix. Further more, time to solution
can be better than that of direct methods if convergence is achieved in relatively
few iterations [9, 38].

In the context of iterative methods, the refinement method outlined in Al-
gorithm 1 can be represented as

xi+1 = xi +M(b−Axi), (2)

where M is (LU)−1P . Iterative methods of this form (i.e. where M does not de-
pend on the iteration number i) are also known as stationary. Matrix M can be
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as simple as a scalar value (the method then becomes a modified Richardson it-
eration) or as complex as (LU)−1P . In either case, M is called a preconditioner.
The preconditioner should approximate A−1, and the quality of the approxima-
tion determines the convergence properties of (2). In general, a preconditioner
is intended to improve the robustness and the efficiency of iterative methods.
Note that (2) can also be interpreted as a Richardson method’s iteration in
solving MAx = Mb which is called left preconditioning. An alternative is to
use right preconditioning, whereby the original problem Ax = b is transformed
into a problem of solving

AMu = b, x = Mu

iteratively. Later on, we will use the right preconditioning for mixed precision
iterative methods.

M needs to be easy to compute, apply, and store to guarantee the overall
efficiency. Note that these requirements were addressed in the mixed preci-
sion direct methods above by replacing M (coming from LU factorization of A
followed by matrix inversion), with its single precision representation so that
arithmetic operations can be performed more efficiently on it. Here however,
we go two steps further. We replace not only M by an inner loop which is an
incomplete iterative solver working in single precision arithmetic [42]. Also, the
outer loop is replaced by a more sophisticated iterative method e.g., based on
Krylov subspace.

Note that replacing M by an iterative method leads to nesting of two iter-
ative methods. Variations of this type of nesting, also known in the literature
as an inner-outer iteration, have been studied, both theoretically and computa-
tionally [8, 28, 35, 37, 39, 43, 45]. The general appeal of these methods is that
the computational speedup hinges inner solver’s ability to use an approximation
of the original matrix A that is fast to apply. In our case, we use single precision
arithmetic matrix-vector product as a fast approximation of the double precision
operator in the inner iterative solver. Moreover, even if no faster matrix-vector
product is available, speedup can often be observed due to improved conver-
gence (e.g., see [39], where Simoncini and Szyld explain the possible benefits of
FGMRES-GMRES over restarted GMRES).

To illustrate the above concepts, we demonstrate an inner-outer nonsym-
metric iterative solver in mixed precision. The solver is based on the restarted
Generalized Minimal RESidual (GMRES) method. In particular, consider Al-
gorithm 2, where the outer loop uses the flexible GMRES (FGMRES [37, 38])
and the inner loop uses the GMRES in single precision arithmetic (denoted
by GMRESSP ). FGMRES, being a minor modification of the standard GM-
RES, is meant to accommodate non-constant preconditioners. Note that in our
case, this non-constant preconditioner is GMRESSP . The resulting method is
denoted by FGMRES(mout)-GMRESSP (min) where min is the restart for the
inner loop and mout for the outer FGMRES. Algorithm 2 checks for convergence
every mout outer iterations. Our actual implementation checks for convergence
at every inner iteration, this can be done with simple tricks at almost no com-
putational cost.
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Algorithm 2 Mixed precision, inner-outer FGMRES(mout)-GMRESSP (min)
1: for i = 0, 1, ... do
2: r = b−Axi (εd)
3: β = h1,0 = ||r||2 (εd)
4: check convergence and exit if done
5: for k = 1, . . . ,mout do
6: vk = r / hk,k−1 (εd)
7: Perform one cycle of GMRESSP (min) in order to (approximately) solve

Azk = vk, (initial guess zk = 0) (εs)
8: r = A zk (εd)
9: for j=1,. . . ,k do

10: hj,k = rT vj (εd)
11: r = r − hj,k vj (εd)
12: end for
13: hk+1,k = ||r||2 (εd)
14: end for
15: Define Zk = [z1, . . . , zk], Hk = {hi,j}1≤i≤k+1,1≤j≤k (εd)
16: Find yk, the vector of size k, that minimizes ||βe1 −Hk yk||2 (εd)
17: xi+1 = xi + Zk yk (εd)
18: end for

The potential benefits of FGMRES compared to GMRES are becoming bet-
ter understood [39]. Numerical experiments confirm improvements in speed,
robustness, and sometimes memory requirements for these methods. For exam-
ple, we show a maximum speedup of close to 15 on the selected test problems.
The memory requirements for the method are the matrix A in CRS format,
the nonzero matrix coefficients in single precision, 2 mout number of vectors in
double precision, and min number of vectors in single precision.

The Generalized Conjugate Residuals (GCR) method [44, 45] is a possible
replacement for FGMRES as the outer iterative solver. Whether to choose GCR
or FGMRES is not yet well understood.

As in the dense case, the choice of the stopping criterion in the iterative
refinement process is critical. In the sparse case, formulas for the errors can be
computed following the work of Arioli et al. [5].

3 Performance Results

The experimental results reported in this section were measured on the systems
described in Table 1. At this moment no software libraries are available to
perform sparse computations on the STI Cell BE architecture. For this reason,
only mixed precision iterative refinement solvers for dense linear systems are
presented for this architecture.

To measure the performance of sparse mixed precision solvers based on both
direct and iterative methods, the matrices described in Table 2 were used.
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Table 1: Hardware and software details of the systems used for performance
experiments.
Architecture Clock Peak SP Memory BLAS Compiler

[GHz] / Peak DP [MB]
AMD Opteron 246 2.0 2 2048 Goto-1.13 Intel-9.1
IBM PowerPC 970 2.5 2 2048 Goto-1.13 IBM-8.1
Intel Xeon 5100 3.0 2 4096 Goto-1.13 Intel-9.1
STI Cell BE 3.2 14 512 – Cell SDK-1.1

Table 2: Test matrices for sparse mixed precision, iterative refinement solution
methods.
n. Matrix Size Nonzeroes symm. pos. def. C. Num.
1 SiO 33401 1317655 yes no O(103)
2 Lin 25600 1766400 yes no O(105)
3 c-71 76638 859554 yes no O(10)
4 cage-11 39082 559722 no no O(1)
5 raefsky3 21200 1488768 no no O(10)
6 poisson3Db 85623 2374949 no no O(103)

Based on backward stability analysis, the solution x can be considered as
accurate as the double precision one when

‖b−Ax‖2 ≤ ‖x‖2 · ‖A‖2 · ε ·
√
n

where ‖ · ‖2 is the spectral norm. However, for the following experiments, a
full double precision solution is computed first and then the mixed precision
iterative refinement is stopped when the computed solution is as accurate as
the full double precision one.

3.1 Direct Methods

3.1.1 Dense Matrices

Mixed precision iterative refinement solvers were developed for both symmetric
and nonsymmetric dense linear systems by means of the methods and subrou-
tines provided by the BLAS [21, 22, 23, 24, 33] and LAPACK [4] software
packages. For the nonsymmetric case, step 1 in Algorithm 1 is implemented by
means of the SGETRF subroutine, steps 2,3 and 5,6 with the SGETRS subroutine,
step 4 with the DGEMM subroutine and step 7 with the DAXPY subroutine. For
the symmetric case the SGETRF, SGETRS and DGEMM subroutines were replaced
by the SPOTRF, SPOTRS and DSYMM subroutines, respectively. Further details on
these implementations can be found in [12, 32].

As already mentioned, iterative refinement solvers require 1.5 times as much
memory as a regular double precision solver. It is because the mixed precision
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Figure 1: Mixed precision, iterative refinement method for the solution of dense
linear systems on the STI Cell BE processor.

iterative refinement solvers need to store at the same time both the single pre-
cision and the double precision versions of the coefficient matrix. It is true for
dense as well as sparse matrices.

Nonsymmetric Symmetric
AMD Opteron 246 1.82 1.54
IBM PowerPC 970 1.56 1.35

Intel Xeon 5100 1.56 1.43
STI Cell BE 8.62 10.64

Table 3: Performance improvements for direct dense methods when going from
a full double precision solve (reference time) to a mixed precision solve.

Table 3 shows the speedup of the mixed precision, iterative refinement solvers
for dense matrices with respect to full, double precision solvers. These results
show that the mixed precision iterative refinement method can run very close to
the speed of the full single precision solver while delivering the same accuracy
as the full double precision one. On the AMD Opteron, Intel Woodcrest and
IBM PowerPC architectures, the mixed precision, iterative solver can provide a
speedup of up to 1.8 for the nonsymmetric solver and 1.5 for the symmetric one
for large enough problem sizes. For small problem sizes the cost of even a few
iterative refinement iterations is high compared to the cost of the factorization
and thus the mixed precision iterative solver is less efficient than the double
precision one.

Parallel implementations of Algorithm 1 for the symmetric and nonsymmet-
ric cases have been produced in order to exploit the full computational power of
the Cell processor (see also Figure 1). Due to the large difference between the
speed of single precision and double precision floating point units1, the mixed
precision solver performs up to 7 times faster than the double precision peak in

1As indicated in Table 1, the peak for single precision operations is 14 times more than
the peak for double precision operations on the STI Cell BE.
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the nonsymmetric case and 11 times faster for the symmetric positive definite
case. Implementation details for this case can be found in [30, 31].

3.1.2 Sparse Matrices

Most sparse direct methods for solving linear systems of equations are variants
of either multifrontal [26] or supernodal [7] factorization approaches. Here, we
focus only on multifrontal methods. For results on supernodal solvers see [11].
There are a number of freely available packages that implement multifrontal
methods. We have chosen for our tests a software package called MUMPS [1,
2, 3]. The main reason for selecting this software is that it is implemented in
both single and double precision, which is not the case for other freely available
multifrontal solvers such as UMFPACK [14, 15, 16].

Using the MUMPS package for solving systems of linear equations comprises
of three separate steps:

1. System Analysis: in this phase the system sparsity structure is analyzed
in order to estimate the element fill-in, which provides an estimate of the
memory that will be allocated in the following steps. Also, pivoting is
performed based on the structure of A + AT , ignoring numerical values.
Only integer operations are performed at this step.

2. Matrix Factorization: in this phase the PA = LU factorization is per-
formed. This is the computationally most expensive step of the system
solution.

3. System Solution: the system is solved in two steps: Ly = Pb and Ux = y.

The Analysis and Factorization phases correspond to step 1 in Algorithm 1
while the solution phase correspond to steps 2,3 and 5,6.

Matrix number
1 2 3 4 5 6

AMD Opteron 246 1.827 1.783 1.580 1.858 1.846 1.611
IBM PowerPC 970 1.393 1.321 1.217 1.859 1.801 1.463

Intel Xeon 5100 1.799 1.630 1.554 1.768 1.728 1.524

Table 4: Performance improvements for direct sparse methods when going from
a full double precision solve (reference time) to a mixed precision solve.

The speedup of the mixed precision, iterative refinement approach over the
double precision one for sparse direct methods is shown in Table 4, and Figure 2.
The figure reports the performance ratio between the full single precision and
full double precision solvers (light colored bars) and the mixed precision and
full-double precision solvers (dark colored bars) for six matrices from real world
applications. The number on top of each bar shows how many iterations are
performed by the mixed precision, iterative method to achieve double precision
accuracy.

9



1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

matrix number

sp
ee

du
p

Intel Woodcrest 3.0 GHz

3
3

3
2

2

2

Single/double
Mixed prec./double

Figure 2: Mixed precision, iterative refinement with the MUMPS direct solver
on an Intel Woodcrest 3.0 GHz system.

3.2 Iterative Methods

Similar to the case of sparse direct solvers, we demonstrate the numerical per-
formance of Algorithm 2 on the architectures from Table 1 and on the matrices
from Table 2.

Figure 3 (left) shows the performance ratio of the mixed precision inner-
outer FGMRES-GMRESSP vs. the full double precision inner-outer FGMRES-
GMRESDP . In other words, we compare two inner-outer algorithms that are
virtually the same. The only difference is that their inner loop’s incomplete
solvers are performed in correspondingly single and double precision arithmetic.

Figure 3 (right) shows the performance ratio of the mixed precision inner-
outer FGMRES-GMRESSP vs. double precision GMRES. This is an experiment
that shows that inner-outer type iterative methods may be very competitive
compared to their original counterparts. For example, we observe a speedup
for matrix #2 of up to 6 which is mostly due to an improved convergence of
the inner-outer GMRES vs. standard GMRES. In particular, about 3.5 of the
5.5-fold speedup for matrix # 2 on the IBM PowerPC architecture is due to
improved convergence, and the rest 1.57 speedup is due to single vs double
precision arithmetic. The restart values used for this computation are given
in Table 5. The restart values min and mout were manually tuned, m was
taken as 2mout +min in order to use the same amount of memory space for the
two different methods, or additionally increased when needed to improve the
reference GMRES solution times.
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Figure 3: Mixed precision iterative refinement with FGMRES-GMRESSP from
Algorithm 2 vs FGMRES-GMRESDP (left) and vs full double precision GMRES
(right).

matrix n. min mout m
1 30 20 150
2 20 10 40
3 100 9 300
4 10 4 18
5 20 20 300
6 20 10 50

Table 5: Restart values for the GMRES-based iterative solvers.

4 Numerical Remarks

Following the work of Skeel [40], Higham [29] gives error bounds for the single
and double precision, iterative refinement algorithm when the entire algorithm
is implemented with the same precision (single or double, respectively). Higham
also gives error bounds in single precision arithmetic, with refinement performed
in double precision arithmetic [29]. The error analysis in double precision, for
our mixed precision algorithm (Algorithm 1), is given by Langou et al. [32].
Arioli and Duff [6] gives the error analysis for a mixed precision algorithm
based on a double precision FGMRES preconditionned by a single precision
LU factorization. These errors bounds explain that mixed precision iterative
refinement will work as long as the condition number of the coefficient matrix
is smaller than the inverse of the lower precision used. For practical reasons,
we need to resort to the standard double precision solver in the cases when the
condition number of the coefficient matrix is larger than the inverse of the lower
precision used.

In Figure 4, we show the number of iterations needed for our mixed precision
method to converge to better accuracy than the one of the associated double
precision solve. The number of iterations is shown as a function of the condition
number of the coefficient matrix (κ) in the context of direct dense nonsymmetric
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Figure 4: Number of iterations needed for our mixed precision method to
converge to an accuracy better than the one of the associated double precision
solve as a function of the condition number of the coefficient matrix in the
context of direct dense nonsymmetric solves.

solve. For each condition number, we have taken 200 random matrices of size
200-by-200 with a prescribed condition number and we report the mean number
of iterations until convergence. The maximum number of iterations allowed was
set to 30 so that 30 means failure to converge (as opposed to convergence in 30
iterations). Datta [13] has conjectured that the number of iterations necessary
for convergence was given by ⌈

ln(εd)
ln(εd) + ln(κ)

⌉
.

We can generalize this formula in the context of our mixed precision approach⌈
ln(εd)

ln(εs) + ln(κ)

⌉
.

When κεs is above 1, then the formula is not valid anymore. This is charac-
terized in practice by an infinite number of iterations, i.e. lack of convergence
of the method.
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5 Extension to Quadruple Precision

As an extension to this study, we present in this section results for iterative
refinement in quadruple precision on an Intel Xeon 3.2GHz. The iterative re-
finement code computes a condition number estimate for input matrices having
random entries drawn from a uniform distribution. For quadruple precision
arithmetic, we use the reference BLAS compiled with the Intel Fortran com-
piler ifort (with -O3 optimization flag on) since we do not have an optimized
BLAS in quadruple precision. The version of the compiler is 8.1. Results are
presented in Table 6. The obtained accuracy is between 10 and 32 for QGETRF
and QDGETRF as expected. No more than 3 steps of iterative refinement are
needed. The speedup is between 10 for a matrix of size 100 to close to 100 for
a matrix of size 1000. In Table 7, we give the time for the different kernels
used in QGESV and QDGESV. Interestingly enough the time for QDGESV is
dominated by QGEMV and not DGETRF! Recent research using related idea
can be found in [27].

QGESV QDGESV
n time (s) time (s) speedup

100 0.29 0.03 9.5
200 2.27 0.10 20.9
300 7.61 0.24 30.5
400 17.81 0.44 40.4
500 34.71 0.69 49.7
600 60.11 1.01 59.0
700 94.95 1.38 68.7
800 141.75 1.83 77.3
900 201.81 2.33 86.3
1000 276.94 2.92 94.8

Table 6: Iterative Refinement in Quadruple Precision on a Intel Xeon 3.2GHz.

driver name time (s) kernel name time (s)
QGESV 201.81 QGETRF 201.1293

QGETRS 0.6845
QDGESV 2.33 DGETRF 0.3200

DGETRS 0.0127
DLANGE 0.0042
DGECON 0.0363
QGEMV 1.5526

ITERREF 1.9258

Table 7: Time for the various Kernels in the Quadruple Accuracy Versions for
n=900.
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6 Extension to Other Algorithms

Mixed precision algorithms can easily provide substantial speedup for very little
code effort by mainly taking into account existing hardware properties.

We have shown how to derive mixed precision version of variety of algorithms
for solving general linear systems of equations. Mixed precision iterative refine-
ment technique has also be used in the context of symmetric positive definite
systems [30] using a Cholesky factorization. In the context of overdetermined
least squares problems, the iterative refinement technique can be applied to the
augmented system (where both the solution and the residual are refined, as de-
scribed in [19]), to the QR factorization, to the semi-normal equations or to the
normal equations [10]. Iterative refinement can also be applied for eigenvalue
computation [25] and for singular value computation [20].

We hope this manuscript will encourage scientists to extend this approach
to their own applications that do not necessarily originate from linear algebra.
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