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Abstract

In this work we present a dynamical model that succesfully describes the organiza-
tion of mutualistic ecological systems. The main characteristic of these systems is
the nested structure of the bipartite adjacency matrix describing their interactions.
We introduce a nestedness coefficient, as an alternative to the Atmar and Patter-
son temperature, commonly used to measure the nestedness degree of the network.
This coefficient has the advantage of being based on the robustness of the ecological
system and it is not only describing the ordering of the bipartite matrix but it is
also able to tell the difference, if any, between the degree of organization of each
guild.
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1 Introduction

Bipartite multigraphs are useful tools to describe systems with two different
kinds of agents and such that the only allowed interactions involve agents of
different kinds.

A very interesting example is an ecological system consisting of two groups of
species, usually animals and plants, that interact to fulfill essential biological
functions such as feeding or reproduction. This is the case of systems involving
plants and animals that feed from the fruits and disperse their seeds (seed
dispersal networks). Another example is that of insects that feed from the
nectar of flowers while pollinating them in the process (pollination networks).

Bipartite networks can also be found in social systems. Examples of this type
involve the actors and movies in which they participate [I] or the boards of
directors of large companies and their members [2].

The interaction pattern of a bipartite network can be coded as an adjacency
matrix in which rows and columns are labeled respectively by the plant and
animal species involved in the network. Its elements K, € {0,1} represent
respectively the absence or the presence of an interaction between the plant
species p and the animal species a. In what follows we drop the term species
specifying that when mentioning plant or animals we are not referring to the
behavior of separate individuals but to all the members of a species.

It has been found that bipartite networks describing the interactions in natural
ecological systems have a very special structure called nestedness [3] [4]. In a
nested network the nodes of both types can be ordered by decreasing degree
in such a way that all the links of a given species are subset of the links of
the preceding one. This organization is such that the generalists of both types
of guilds (i.e. those nodes that interact with a great number of nodes of the
other guild) tend to interact among them while there are very few contacts
among specialists (i.e. nodes that interact with very few ones of the other
guild). When the rows and columns of the two interacting guilds are ordered
in decreasing degree most of the contacts lie under a curve [3], [5] called isocline
of perfect nestedness(IPN). All these features indicate that these networks are
far from being a random collection of interacting species, displaying instead a
high degree of internal organization.

This particular structure can be thought of as the outcome of a self-organization
process. In [5] [6] the Self-organizing Network Model (SNM) has been intro-
duced. In this model the nodes progressively redefine their links obeying to a
purely local rule that does not depend upon any global feature of the network.

Here we briefly describe the SNM and we refer the reader to previously cited



references for the details of the original model as well as for the comparison
of its results with the empirical observations.

2 Description of the Model and Results

The SNM is a computer model that starts from a random adjacency matrix
in which the number of plants, animals and of the contacts between them are
arbitrarily fixed provided that there are no species left without links with the
other guild. Starting from this initial configuration plants and animals itera-
tively redefine their contacts by reallocating the contacts of the adjacency ma-
trix. This reallocation obeys to some assumed contact preference rule (CPR).
In the following we consider a CPR that indicates that the agents of either
guild prefer to set contacts with a species of the opposite guild having a greater
(or lesser) number of contacts.

In each iteration of the SNM algorithm first a row and next a column are
chosen at random. Once a row (column) has been chosen, its contacts are
reallocated with probability P, (P.). Reallocation consists in choosing at ran-
dom a 1 and a 0 of the same row (column) and swapping them according to
a previously selected CPR. For instance in the version SNM-I (SNM-II) the
CPR indicates that the proposed swapping actually takes place if the degree
of the new partner is higher (lower) than the degree of the initial one.

In case that, upon swapping, a row or a column would be left with no links,
the reallocation is not produced. This rule prevents the elimination of a node
of the system as a consequence of being left without interactions.

At first sight the CPR of SNM-I looks very similar to the preferential attatch-
ment rule but two important differences must be underlined: while preferential
attatchment deals with a growing network, here we work with a fixed number
of species. Moreover, unlike preferential attatchment this CPR is local as it
doesn’t depend on the whole degree distribution of the network.

SNM-I always leads to a perfectly nested pattern, no matter the relative up-
dating probability of rows and columns [7]. Figure [l shows different stages of
the evolution of the SNM. The initial random matrix has been chosen so as
to have the same number of rows, columns and density of contacts as the real
system studied by Clements and Long [8]. Panel D corresponds to that real
system and though it is clear that the ordering process has already started (see
panel A), the emergent state is very far from the perfectly nested state shown
in E. Hence, in order to reproduce the real observed networks, a stopping cri-
terium for the iteration process of the SNM algorithm is needed. Therefore one
needs a measure of the the degree of nestedness. A widespread parameter do-
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Fig. 1. Adjacency matrices of a bipartite network corresponding to the size and
density of contacts of the real system studied in [8] . Each contact is shown as
a black pixel. Panels display the adjacency matrix obtained with the SNM using
Strategy (I) for both rows and columns at different times t, measured in number of
iteration steps, (A):initial random matrix, (B): after t=1000 SNM iterations, (C):
at this iteration time, t=2175, the simulated system has the same T4p value that
in the real system (D), Typ =~ 2.41, (E): perfectly nested system, corresponds to
100000 iterations of the SNM .

ing so is the so-called " Temperature” introduced by Atmar and Patterson [3],
Tsp. In panel C one can see for comparison the result of the SNM iterated till
its T'4p approaches the value obtained for the real system.

The T4p has been largely used in the biogeography and ecology communi-
ties [9], as a global measurement of nestedness. In principle, a "high tempera-



Random adjacency matrix ¢ Tap | m n
simil Clements 3.4% | 15 | 96 | 275
simil Robertson 2.3% | 12.7 | 456 | 1428
simil Kato 1.9% | 87 | 93 | 679

Table 1

T4 p of random matrices. Dependence on size, shape and density of contacts. Average
over 200 random matrices having the same size, shape and density of contacts as in
references [§] [11] [12]

ture” indicates a disordered lattice while a low one indicates that the system is
nested. Nevertheless one can easily verify that this parameter is highly depen-
dent on the density of contacts and also on the size of the adjacency matrix.
Table [ illustrates this dependence. The T4p values correspond to averages
over 200 random matrices having the same sizes, shapes and density of con-
tacts, ¢, found in known real systems.

The theoretical basis of T4p have been given in [5] where it is shown how it
accounts for the average departure of the matrix from the IPN curve.

An alternative parameter to measure the degree of nestedness can be obtained
by studying the robustness of the system face to different types of perturba-
tions or attacks. In [6] robustness coefficient was introduced and the theoretical
values were obtained in limiting cases. If a given fraction of species of one guild
dissapears (is attacked) some species of the other guild may remain without
interaction and hence become extinct. Memmott et al [I0] defined the Attack
Tolerance Curve (ATC) as the curve giving the fraction of surviving species of
one guild as a function of the fraction of eliminated (attacked) species of the
other guild. To fix ideas let’s consider the case where we have the pollinators
in the n columns and the plants in the m rows of the bipartite matrix. Then
the ATC gives the fraction of surviving plants as a function of the fraction of
extinct animals, S,(f,).

The derivation of the ATC from the adjacency matrix requires some additional
assumptions. First, it has been assumed that the extinction of a plant (animal)
species occurs after all its contacts have been removed. It is also necessary to
specify the order in which the animal (plants) species are eliminated. The
least biased choice is to assume that all species have the same probability of
becoming extinct. This is the null model. There are two alternative, highly
schematic ways in which the species can be eliminated: starting from the
highest degree animal (plant), noted (+ — —) or the opposite scheme, starting
from the lowest degree animal (plant), noted (— — +). These two schemes
are equivalent to assume that species have a different probability of becoming
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Fig. 2. Attack tolerance curves for a matrix of the same size and density of contacts
as the real system in [§]. Open symbols correspond to the attack strategy (— — +)
and solid symbols to the attack strategy (+ — —). Squares: average ATC over 200
random initial configurations, circles: SNM evolved nested state (average over 200
initial configurations), triangles: real system.

extinct depending upon their number of contacts. Finally, to build the ATC
for the null model, it is necessary to produce a statistically significant result
by averaging the calculations over several realizations. In each realization all
the contacts of the same fraction of randomly selected column-species are set
to 0, and then the fraction of row-species that become extinct is evaluated.
The resistence of the network to the different kinds of attacks depends on the
organization of the network.

In [6] the robustness coefficient is defined as the area under the ATC curve.
Hence it depends on the applied attack strategy. In Figure [2] one can see that
in the case of perfect nestedness, where all the contacts are under the IPN, the
attack strategy (— — +) leads to an ATC which is a discontinuous function,
and R~ = 1. On the other hand, when applying the attack strategy (+ —
—) it is easy to see that the ATC is equivalent to the IPN curve normalised
to 1, leading to R~ = ¢.

For random matrices, the two attack strategies lead to ATCs having the same
curvature. This is also shown in Figure [2 where the results are obtained after
averaging over 200 realizations of random bipartite matrices.

Since the adjacency matrices corresponding to real systems are neither random
nor perfectly nested, the corresponding ATCs lie between the perfectly nested
and the random one, for the two attack strategies respectively.
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Fig. 3. Attack tolerance curves for a matrix of the same size and density of contacts
as the real system of Clements and Long [§],under the attack strategy (+ — —),
for three different stages of the evolution of the SNM algorithm. Circles: average
ATC over 200 SNM evolved perfectly nested networks , squares: average ATC over
200 random networks, stars: average ATC over 200 SNM evolved networks at an
intermediate iteration time of the SNM algorithm, here t* =~ 800 steps.

It is interesting to notice that the ATC curves corresponding to the attack
strategy RT~~ change their curvature as the system evolves according to the
SNM algorithm. Figure [3] shows three ATCs corresponding to averages over
200 random initial matrices having the same caracteristics as the real system of
Clements and Long [8] for three different stages of its evolution, from random
to perfect nestedness. Hence, the zero curvature of the ATC may be taken as
the indication that the network has lost its random character. In the SNM,
the iteration step where the ATC has zero curvature, can be interpreted as an
ordering time t*. In this exemple this is found at t* ~ 800.

We can then define a nestedness coefficient N as the normalised difference
between the robustness coefficients corresponding to the two extreme attack
strategies:

R+ — Rt
N= s (1)

Notice that as 1 — ¢ is the area between the two ATC in the case of perfect
nestedness, this coefficient is correctly bounded, N = 1 for perfect nestedness
and N decreases for random matrices [13].

In Figure [l we show the two robustness coefficients and the nesting parameter
as a function of the iteration time of the SNM algorithm, starting from random



Adjacency Matrix Tip | N. | N,

real system Clements | 0.16 | 0.61 | 0.49

real system Robertson | 0.06 | 0.65 | 0.58

real system Kato 0.11 | 0.75 | 0.57

Table 2
Tsp and nestedness coefficient for real matrices [§] [11] [12].

configurations and averaging over 200 samples. The inflexion point of the N(t)
is also located at t* ~ 800, the time of the SNM evolution which leads to an
ATC with zero curvature, indicating again that the ordered phase is setting
on.

The analysis we just described assumed that plants (rows) were attacked,
leading to a coefficient measuring the robustness of the animals (columns),
N.. Obviously the same analysis can be done assuming that the animals are
attacked, which will lead to a coefficient measuring the robustness of plants,
N.,.. In this way, the nestedness of the network is characterised by two param-
eters N, and N,. For real systems [0] it is generally found that the number
of animal species is higher that the number of plants species and in that case
the SNM model always gives N. > N,. This is easy to understand in terms of
the SNM algorithm. In fact at a given stage of the SNM iteration, if the up-
date probability is the same for rows and columns, rows are chosen, in average,
more often than columns, due to their relative smaller number. Choosing a row
means that the update is done over the columns, so at a given iteration time
columns are more ordered than rows. This has been checked by simulating a
square adjacency matrix having the same total number of sites and the same
density as the real system studied in [§], in this case N, = N, for all the SNM
evolution. Surprisingly, the same result, N. > N,., is found for adjacency matri-
ces corresponding to real networks[8] [11] [12]. This is shown in table [ where
we give the normalized Atmar-Patterson temperature, TAP = Tap/Tapran,
with T4pran, the temperature of the random matrix of the same dimensions
and the same density of the considered one. In this way, complete disorder
gives TA p=1

3 Conclusions

We introduce here the nestedness coefficient for plants and animals, as an
alternative way to measure the nestedness of the system. Unlike the Atmar and
Patterson ”"temperature”, which measures an average distance to a supposed
perfectly nested state, the nestedness coefficient is operationally defined, based
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Fig. 4. Robustness and Nesting coefficient of the animals (columns) as a function
of iteration time of the SNM algorithm, average over 200 initial random networks.
Circles correspond to robustness under strategy R~ 7, squares correspond to ro-
bustness under strategy RT~~ and triangles correspond to the nestedness coeffi-
cient.

on the robustness of the network. In addition it has the advantage to easily
account, for the different degrees of order of each guild at any given step of
their ordering process.
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