
ar
X

iv
:0

81
1.

41
13

v1
 [

he
p-

ph
]

 2
5

N
ov

 2
00

8

JaxoDraw: A graphical user interface for drawing

Feynman diagrams. Version 2.0 release notes.

D. Binosi

ECT*, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (Trento), Italy

J. Collins

Physics Department, Pennsylvania State University, USA

C. Kaufhold

Striekenkamp 89, 28777 Bremen, Germany

L.Theussl

Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, Copenhagen 2100,
Denmark

Abstract

A new version of the Feynman graph plotting tool JaxoDraw is presented.
Version 2.0 is a fundamental re-write of most of the JaxoDraw core and some
functionalities, in particular importing graphs, are not backward-compatible
with the 1.x branch. The most prominent new features include: drawing
of Bézier curves for all particle modes, on-the-fly update of edited objects,
multiple undo/redo functionality, the addition of a plugin infrastructure, and
a general improved memory performance. A new LaTeX style file is presented
that has been written specifically on top of the original axodraw.sty to meet
the needs of this this new version.

Key words: Feynman diagrams, LATEX, Java, GUI
PACS: 01.30.Rr, 03.70.+k, 07.05.Bx

Email addresses: d.binosi@gmail.com (D. Binosi), collins@phys.psu.edu (J.
Collins), jaxodraw@chka.de (C. Kaufhold), ltheussl@gmail.com (L.Theussl)

Preprint submitted to Comput. Phys. Commun. October 29, 2018

http://arxiv.org/abs/0811.4113v1

PROGRAM SUMMARY

Title of program: JaxoDraw
Distribution format: gzipped tar archive
Operating system:
Any Java-enabled platform, tested on Linux, Windows XP, Mac OS X
Keywords: Feynman diagrams, LATEX, Java, GUI
Programming language used: Java
License: GPL
Catalogue identifier of previous version: ADUA
Journal Reference of previous version: Comput. Phys. Commun. 161 (2004)
76–86
Does the new version supersede the previous version?: Yes
Nature of problem:
Existing methods for drawing Feynman diagrams usually require some ‘hard-
coding’ in one or the other programming- or scripting language. It is not very
convenient and often time consuming, to generate relatively simple diagrams.
Method of solution:
A program is provided that allows for the interactive drawing of Feynman
diagrams with a graphical user interface. The program is easy to learn and
use, produces high quality output in several formats and runs on any oper-
ating system where a Java Runtime Environment is available.
Reasons for the new version:
A variety of new features and bug fixes.
Summary of revisions:
Major revisions since the last published user guide were versions 1.1, 1.2
and 1.3 with several minor bug-fix releases in between.
Restrictions:
To make use of the latex export/preview functionality, a latex style file has to
be installed separately. Certain operations (like internal latex compilation,
Postscript preview) require the execution of external commands that might
not work on untested operating systems.
Typical running time: As an interactive program, the running time depends
on the complexity of the diagram to be drawn.

2

LONG WRITE-UP

1. Introduction

Since the first public release of JaxoDraw-1.0 [1] in September 2003, the
program has been continuously improved by the authors, partly motivated
by the need of correcting obvious flaws and adding relevant new features,
but above all by the overwhelming user feedback and encouragement by the
community. During the last five years, JaxoDraw has become one of the
most popular tools to draw Feynman diagrams, as witnessed by the number
of citations and acknowledgements in scientific papers, as well as positive
recommendations in public physics forums and reviews. The program is now
included and packaged by default by various Linux distributions and has
been incorporated into large-scale physics applications like the jHepWork [2]
framework.

Version 2.0 is a major upgrade which has seen a fundamental re-write
of most of the JaxoDraw core with respect to the 1.x line of development.
The latter had already produced some major upgrades (versions 1.1, 1.2
and 1.3) with several minor bug-fix releases in between.

The current document only outlines the major changes with respect to
the features described in the published User Guide [1] for JaxoDraw-1.1.
The complete User Guide for the current version is included in the program
and may be consulted on the JaxoDraw web site, see sec. 5 for some links.

Please refer to [1] and to the present paper if using version 2.0 of the
program.

1.1. Overview of main new features

The following list gives a quick overview of the most prominent new fea-
tures:

• Added a plugin infrastructure. Users can write plugins for custom
import/export formats that can be installed independently and will be
recognized by new versions of JaxoDraw.

• Added Bézier curves as drawing style. Béziers can be drawn for all
particle modes, including gluons and photons.

• The dimensions and positions of arrows can be adjusted.

3

• Added scroll bars to the drawing area. Now if an object is resized or
moved beyond the current canvas size, scroll bars will appear.

• Added multiple undo/redo functionality. The user is not bound to a
single undo operation, but can undo (and redo) a number of steps.

• Editing objects from the edit panel now has an immediate effect on the
object so that editing operations can be previewed on the fly.

Figure 1: JaxoDraw in action.

Due to extensive refactoring, JaxoDraw-2.0 is not compatible with any earlier
version of the program. In particular, xml files that were generated with
earlier versions will generally not be imported correctly.

4

2. Changes between v. 1.3-2 and v. 2.0

In this section we list the main changes that happened between the last
released version of JaxoDraw and the new version 2.0.

General.

• JaxoDraw now uses its own version of the axodraw style file, called
axodraw4j.sty. This style file has to be installed separately. See
App. A for a description of axodraw4j.sty.

• Version 2.0 has seen a number of fundamental changes in the underly-
ing class structure of JaxoDraw. These changes were motivate mainly
by performance and maintainability arguments, but it implies a cer-
tain backward incompatibility as graphs that where saved/exported
with older versions of JaxoDraw will not be opened/imported correctly
anymore.

• Improved memory performance which facilitates working with several
graphs at the same time.

• Several key strokes have been set to more “standard” combinations.
These include: Copy (Ctrl+C), Paste (Ctrl+V), Cut (Ctrl+X), Save
(Ctrl+S), Save As (Ctrl+Shift+S), Import (Ctrl+R), Export (Ctrl+
Shift+R).

• The “Copy” mode has been renamed to “Duplicate” to avoid confusion
with the usual clipboard “Copy” action.

• SVG support has been removed from the core program, it is now avail-
able as a separate plugin.

• The preferences are not stored in a file .Jaxorc anymore, the standard
Java Preferences API is used instead. See Sec. (4.1) for details.

• The User Guide is not bundled in the jar archive anymore, but created
at run-time and installed into a local directory. See Sec. (4.2) for details.

• Log records are now written to a rotating sequence of files in a default
log directory. See Sec. (4.3) for details.

5

• The drawing of photons and gluons has been adjusted to use the same
algorithms as the postscript code in the axodraw4j style file. Differ-
ent output formats are entirely consistent now, however some strange
effects happen for special configurations, e.g. gluon loops with very
small radii.

New features.

• Added a plugin infrastructure. Users can write plugins for custom
import/export formats that can be installed independently and will be
recognized by new versions of JaxoDraw. See Secs. (4.4,4.5) for details.

• Added Bézier curves as drawing style. Béziers can be drawn for all
particle modes, including gluons and photons.

• Photon and gluon arcs are now painted during resizing.

• Make the symmetry of a photon arc configurable.

• Editing objects from the edit panel now has an immediate effect on the
object so that editing operations can be previewed on the fly.

• Added the new feature that a double click with the right mouse button
on the canvas brings up the edit panel for the nearest object.

• The faint box method for selecting objects via a right click and drag
action on the Canvas has been improved. On button release, a menu
will be presented with a choice of operations applicable to the current
selection of enclosed objects. In particular the selected objects can be
previewed, exported and/or saved.

• Added scroll bars to the canvas. Now if an object is resized or moved
beyond the current canvas size, scroll bars will appear.

• Added multiple undo/redo functionality. The user is not bound to a
single undo operation, but can undo (and redo) a number of steps
determined by the Undo depth preference (currently limited to 104

moves).

• Groups can be rescaled by dragging, like all other objects.

6

• Objects with fill color can now be optionally unfilled (only drawing
their boundary).

• A grid bar has been added to the main panel which shows at a glance
all the grid settings of the current tab.

• The grid can now be customized. In particular several grid styles are
now available: dot, cross, line and honeycomb (the latter being avail-
able only when the grid type is set to hexagonal).

• Holding down the mouse button after a center click on the canvas re-
move all handles that might be cluttering a graph in Edit mode.

• Arrows can be customized and arbitrarily positioned. The parameters
that can be controlled are the arrow length, width and inset. This
works also with LATEX/LATEX->EPS export, thanks to the new sty file
axodraw4j.

• Different exporting formats have now different options.

• Warning system when exporting with unsupported options.

• Color space can be set by the user. The available options are Axodraw
(coinciding with the usual colordvi color space) and complete (rep-
resenting the complete RGB space). When working with the complete
color space and exporting to LATEX/LATEX->EPS, color conversion will
be applied.

• Edited objects are automatically brought in the forefront, for better
visualization of the editing operations. After the finalization of the
editing operations, they will go back to the original ordering.

• Edit panels are brought up in positions that avoid covering the edited
object as much as possible.

• A lot of new preferences can be now set via the Preferences panel.

• The Copy action from different Tabs has been streamlined, through the
use of the faint box method.

• Multiple files can be specified on the command line and will be opened
in multiple tabs.

7

• The command line option -nosplash can now be used in order not to
show the splash window on startup.

• The command line option --convert can now be used to convert a
number of JaxoDraw xml files to axodraw4j tex files (and vice versa)
without the need of bringing up the user interface.

Bug fixes.

• Fixed the bug where file operations (Open, Save, Import, ...) did not
work on Windows if the path to the file contained whitespaces.

• Fixed the bug that gluon loops did not close in latex output. This was
a bug in axodraw.sty that is fixed in the new axodraw4j.sty.

• Fixed the bug that double line separation and line width was defined
inconsistently which led to different results in latex and postscript out-
put.

• Prevent various user input dialogs from going into the background and
blocking the main window.

• Fixed the bug that made JaxoDraw hang if axodraw.sty was not in-
stalled or not found.

• The hexagonal grid strategy has been changed to make the grid uni-
form, not subject to rounding, which could make points drop from the
grid if objects were moved.

• A large number of minor bug fixes that are detailed in the CHANGES

document of the source distribution.

3. New features since v. 1.1

This section only lists the new features that were added at every major
release since version 1.1, which is the version that was described in our first
published description of the program [1]. Each of the releases below also
incorporated a number of bug fixes that can be tracked from the correspond-
ing release notes. In addition, a few point releases were also made (1.0-1,
1.3-1, 1.3-2) with only minor bug fixes.

8

3.1. New features in v. 1.3

• Make the Mac OS X README file available from the Help menu (Mac
only).

• New vertex type diamond.

• Implemented LaTeX text rotation (using the pstricks package) and ro-
tation of Postscript texts.

• Added default return mode.

• New export/preview formats SVG, JPG and PNG.

• Added a dynamic zoom.

• Rewrote the export dialog for key-friendlyness: tab key toggles between
items, space selects, escape cancels. In the export formats combobox
you can choose an entry by pressing its first character or go up and
down with the arrow keys.

3.2. New features in v. 1.2

• Added a hexagonal grid. Each tab can have its own grid type and size.

• Introduced a ‘WatchFile’ mode to avoid opening new windows for each
preview.

• Introduced radio buttons in the vertex menus to indicate the currently
active Vertex mode.

• PSText now can display curly brackets like in LaTeX: \{ and \}.

• Several Mac OS X specific enhancements, eg. menu key short cuts, key
short cuts for middle and right mouse button, a preference for the latex
and dvips path, which allows internal latex compilation, etc.

• Arcs and triangular vertices are now three-point objects: they are
drawn with a click for each point.

• The Preferences panel has been restructured for a clearer layout.

• Many more fonts are now available in PSText mode because we do not
filter out fonts anymore that cannot display greek characters.

9

4. Guide to new features

This section describes in more detail some of the most prominent new
features of JaxoDraw-2.0 with respect to the last released version.

4.1. Local configuration directory and preferences
The preferences are not stored in a file .Jaxorc (in the user’s home di-

rectory $USER HOME/) anymore, the standard Java Preferences API is used
instead. A folder $USER HOME/.jaxodraw/$VERSION/ (in the following called
$JAXO DIR) is used to store all program-specific information, currently there
are sub-directories for log files, plugins and the User Guide.

4.2. User guide
The User Guide is not bundled in the distributed program (jar archive)

anymore, but created at run-time and installed into $JAXO DIR/usrGuide/.
It can therefore be opened by any custom browser and be viewed locally and
independently of JaxoDraw.

4.3. Logging
Log records are now written to a rotating sequence of files in the default

log directory $JAXO DIR/log/. The logging level for the written log records
is always kept at DEBUG, only the logging level for the console output can be
configured (e.g. with the --debug or --quiet command-line options).

4.4. Plugins
In version 2.0 a plugin architecture was added to JaxoDraw. Plugins

are software components that may optionally be added to the program at
runtime, ie without the need of changing or re-compiling the main program.
This makes it easy to use optional features, in particuar export to uncommon
formats or import of other custom file formats, while keeping the size of the
main program at a minimum. In fact, the original main purpose of the plugin
architecture was to draw some functionality out of the JaxoDraw core.

Plugins are installed (and un-installed) using the Plugin Manager panel
which is accessible from the Options menu. Once a plugin is installed,
JaxoDraw will automatically recognize it at start-up and the corresponding
functionality will be available for the current session and subsequent sessions
until the plugin is uninstalled. Plugins are installed in $JAXO DIR/plugins/.

A list of available plugins is maintained on the JaxoDraw web site, cur-
rently there are plugins available for export to PDF (Portable Document
Format) and SVG (Scalable Vector Graphics) format.

10

4.5. Writing custom import/export plugins

The most interesting consequence of the plugin architecture is that it
allows anybody to write custom plugins that may be loaded by JaxoDraw

and used by anybody without re-compiling the main program.
As an illustration, imagine we have a Feynman diagram coded in some

custom input file (eg created by another program), and we would like to
import this diagram into JaxoDraw so that it can be edited interactively.
All we have to do is write a Java class that extends JaxoImportPlugin and
implement all the required abstract methods, the most important in this case
being importGraph:

public class MyImportJaxoPlugin extends JaxoImportPlugin

{

protected JaxoGraph importGraph(InputStream inputStream)

throws JaxoPluginExecutionException

{

// return a graph read from an InputStream

}

}

A ready-compiled plugin can then be installed by the JaxoDraw Plugin
Manager without changing anything in the main program. In particular, we
can publish the plugin so other people can install and use it as well, without
having to download and install a new version of JaxoDraw!

For more detailed instructions and further information on writing plugins
please refer to the JaxoDraw web site.

5. Additional information

The JaxoDraw home page is at http://jaxodraw.sourceforge.net/. It
contains up-to-date information about the program, in particular links to our
mailing lists1 and bug-tracking system2.

Acknowledgements

We would like to thank all the people on the JaxoDraw mailing list for their
help and feedback during the testing phase.

1http://jaxodraw.sourceforge.net/mail-lists.html
2http://jaxodraw.sourceforge.net/issue-tracking.html

11

http://jaxodraw.sourceforge.net/
http://jaxodraw.sourceforge.net/mail-lists.html
http://jaxodraw.sourceforge.net/issue-tracking.html

A. New features of axodraw4j

JaxoDraw-2.0 uses a new LATEX style file called axodraw4j.sty (i.e.
’axodraw for JaxoDraw’) for its LaTeX exports which is based on J. Ver-
maseren’s original axodraw.sty [3]. The name has been changed to avoid
any backward compatibility issues with old documents that use the original
axodraw.

We describe here, from a user’s perspective, how axodraw4j.sty differs
from the original version. The reader unfamiliar with axodraw should there-
fore first refer to the documentation for the original version3.

A.1. Main changes from axodraw to axodraw4j

• Lines (solid, dashed, photon, and gluon) can now be made double, with
an adjustable separation.

• The dimensions and positions of arrows can be adjusted.

• Lines and dashed lines can be made from Bézier curves.

• Since there are now many more possibilities to specify a line, optional
arguments to the main line drawing commands can be used to specify
them in a keyword style.

• A new macro named \Arc is introduced for arcs and dashed arcs.

• For consistency the \GlueArc macro is renamed to \GluonArc, with
the old macro retained as a synonym.

• Some bugs are corrected. The most notable one is that axodraw4j now
works correctly with revtex and revtex4.

• The behavior of arcs is changed when the specified opening angle is
outside the natural range.

• The macros originally specified as \B2Text, \G2Text, and \C2Text are
now named \BTwoText, \GTwoText, and \CTwoText.

3http://www.ctan.org/get/graphics/axodraw/axodraw.pdf

12

http://www.ctan.org/get/graphics/axodraw/axodraw.pdf

A.2. Commands

The axodraw4j.sty file has been kept largely backward compatible with
the original axodraw, i.e. almost all commands that were available in axodraw
are also implemented in axodraw4j (the exception being the renaming of
commands like \BTwoText, etc.). The few additional commands and the
enhanced old commands are documented below. For a description of the re-
maining commands, please refer to the original documentation of axodraw [3].

A typical use of the macros in a document is as follows:

\documentclass{article}

\usepackage{axodraw4j}

\begin{document}

\begin{picture}(162,39) (0,0)

\Line[arrow,arrowlength=5,arrowwidth=2](0,19)(48,19)

\Arc[arrow,arrowlength=5,arrowwidth=2](80,43)(40,143,36)

\Line(112,19)(160,19)

\GluonArc(80,-5)(40,37,143){3.5}{6}

\end{picture}%

\end{document}

The main macros for line drawing are \Arc, \Bezier, \Gluon, \GluonArc,
\Line, \Photon, and \PhotonArc. In each of the following descriptions of
the macros, the part enclosed in square brackets, “[options]”, is an optional
argument, with the options being specified by keywords, as explained later.

• \Arc[options](x,y)(r,φ1,φ2)

Draws a circular arc. The center of the arc is (x,y), the radius is r, and
the starting and ending angles are φ1 and φ2 (in degrees). By default,
the arc is an anticlockwise single solid line without an arrow.

Supported option groups are: arrow, clock, dash, double.

• \Bezier[options](x1,y1)(x2,y2)(x3,y3)(x4,y4)

Draws a Bézier line with control points (x1,y1), (x2,y2), (x3,y3), and
(x4,y4).

Supported option groups are: arrow, dash, double.

13

• \Gluon[options](x1,y1)(x2,y2){amplitude}{windings}

Draws a gluon from (x1,y1) to (x2,y2). The width of the gluon is twice
the ‘amplitude’ parameter, and the number of windings is the ‘wind-
ings’ parameter, which is rounded down to an integer. The side at
which the windings lie is determined by the order of the two coordi-
nates. Also a negative amplitude changes this side.

Supported option groups are: double.

• \GluonArc[options](x,y)(r,φ1,φ2){amplitude}{windings}

Draws a gluon on a circular arc. The center of the arc is (x,y), the radius
is r, and the starting and ending angles are φ1 and φ2 (in degrees). By
default, the arc is anticlockwise.

The width of the gluon is twice the ‘amplitude’ parameter, and the
number of windings is the ‘windings’ parameter, which is rounded down
to an integer. Whether the curls are inside or outside depends on the
sign of the amplitude. When it is positive the curls are on the inside.

Supported option groups are: clock, double.

• \Line[options](x1,y1)(x2,y2)

Draws a line from (x1,y1) to (x2,y2). By default the line is a solid single
line without an arrow.

Supported option groups are: arrow, dash, double.

• \Photon[options](x1,y1)(x2,y2){amplitude}{wiggles}

Draws a photon from (x1,y1) to (x2,y2). The width of the gluon is
twice the ‘amplitude’ parameter, and the number of windings is the
‘windings’ parameter. The number of windings is rounded down to
an integer or half integer. Whether the first wiggle starts up or down
depends on the sign of the amplitude. If the amplitude (rounded) is a
half integer, the photon is symmetric.

Supported option groups are: double.

• \PhotonArc[options](x,y)(r,φ1,φ2){amplitude}{wiggles}

Draws a photon on a circular arc. The center of the arc is (x,y), the
radius is r, and the starting and ending angles are φ1 and φ2 (in de-
grees). The width of the gluon is twice the ‘amplitude’ parameter, and

14

the number of windings is the ‘windings’ parameter, which is rounded
down to an integer. By default, the arc is anticlockwise.

The sign of the amplitude determines whether the photon starts going
outside (positive) or starts going inside (negative). If the photon is to
reach both endpoints from the outside the number of wiggles should be
an integer plus 0.5.

Supported option groups are: clock, double.

A.3. Options

Options are organized in logical groups for different kinds of property,
and are specified by keyword-value pairs, as in

\Line[arrow=true,arrowlength=5,arrowwidth=2](0,19)(48,19)

For a boolean keyword, the keyword alone is equivalent to the true value.
Before options are processed, from left to right, the values are set to initial
default values. For the boolean options, the initial values are all false.

Each command only implements a subset of the keywords. The possible
keywords, organized by groups, are

dash Boolean option specifying that the line is dashed.

dashsize The size of the dashes. Defaults to 3.

double Boolean option specifying that the line is doubled.

linesep The separation of a double line. It is the distance between the
center of the two component single-lines. Defaults to 2.

clock Boolean option specifying that an arc is drawn clockwise from the
starting angle instead of anticlockwise.

arrow Boolean option specifying that an arrow is drawn on the line.

If neither of the arrow dimensions (length or width) is specified, the
(half-)width defaults to 1.2 ∗ (2 + linewidth) for a single line, and to
1.2 ∗ (2 + 0.7 ∗ linesep+ linewidth) for a double line, and the length
defaults to 2.5∗arrow-half-width. If only one of the width and length
is specified, the other is determined by the same aspect ratio as for a
default arrow.

15

arrowpos The position of the arrow on an object (line / arc / loop / bezier).
It is given as a fraction between 0 and 1. Defaults to 0.5 (i.e., the arrow
is at the middle of the object).

arrowscale If neither an explicit arrow length nor an explicit arrow width
is given for a line, then the value given with this keyword specifies the
linear scale of the arrow relative to the default size of the arrow.

arrowlength The length of the arrow.

arrowidth The half-width of the arrow.

arrowinset The inset of the tail of an arrow. It is specified as a fraction of
the arrowlength, a number between 0 and 1. Defaults to 0.2.

flip Boolean option specifying that the arrow is reversed (flipped) relative
to the direction of the line, i.e., that it points from the end towards the
start of the line.

Macros are available for setting certain parameters without the need to
specify them in individual line commands. In each of the descriptions below,
num represents a number

\SetArrowScale{num} Sets the scale of an arrow relative to the default.
This is used on a line with an arrow when the dimensions are not
otherwise specified. Its value is initialized to 1.

\SetArrowInset{num} Sets the inset of the tail of an arrow relative to its
length. This is used on a line with an arrow when the arrowinset is not
explicitly specified. Its value is initialized to 0.2.

\SetArrowAspect{num} Sets the default aspect ratio of arrows; this is the
ratio of the length of an arrow to its full width. This is used in arrows
when no dimensions are specified or when only one of the length and
width are specified. Its value is initialized to 1.25.

\SetArrowPosition{num} Sets the default position of arrows along a line:
0 is at the start, 1 is at the end, 0.5 is at the center. This is used on a
line with an arrow when the arrowpos option is not used. Its value is
initialized to 0.5.

16

References

[1] D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for
drawing Feynman diagrams, Comput. Phys. Commun. 161, 76 (2004)
[arXiv:hep-ph/0309015].

[2] S. Chekanov, HEP data analysis using jHepWork and Java, arXiv:0809.
0840 [cs.CE].

[3] J. A. M. Vermaseren, Axodraw, Comput. Phys. Commun. 83, 45 (1994).

17

http://arxiv.org/abs/hep-ph/0309015

	Introduction
	Overview of main new features

	Changes between v. 1.3-2 and v. 2.0
	New features since v. 1.1
	New features in v. 1.3
	New features in v. 1.2

	Guide to new features
	Local configuration directory and preferences
	User guide
	Logging
	Plugins
	Writing custom import/export plugins

	Additional information
	New features of axodraw4j
	Main changes from axodraw to axodraw4j
	Commands
	Options

