
MUPHY: A parallel MUlti PHYsics/scale code for 
high performance bio-fluidic simulations

Citation
Bernaschi, M., S. Melchionna, S. Succi, M. Fyta, E. Kaxiras, and J.K. Sircar. 2009. “MUPHY: A 
Parallel MUlti PHYsics/Scale Code for High Performance Bio-Fluidic Simulations.” Computer 
Physics Communications 180 (9): 1495–1502. https://doi.org/10.1016/j.cpc.2009.04.001.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384117

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384117
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=MUPHY:%20A%20parallel%20MUlti%20PHYsics/scale%20code%20for%20high%20performance%20bio-fluidic%20simulations&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1abc46b2a0e3ca1011ffea7854365318&department
https://dash.harvard.edu/pages/accessibility


MUPHY: A Parallel MUlti PHYsics/Scale Code for
High Performance Bio-Fluidic Simulations

M. Bernaschi†, S. Melchionna◦,∗, S. Succi†,�, M. Fyta∗, E. Kaxiras∗, J. K. Sircar∗

†Istituto Applicazioni Calcolo, CNR,
Viale del Policlinico, 137 - 00161 Rome, Italy

◦SOFT, Istituto Nazionale Fisica della Materia, CNR,
P.le A. Moro, 2 - 00185 Rome, Italy

∗ Department of Physics and School of Engineering and Applied Sciences,
Harvard University,

Cambridge MA 02138, USA
� Initiative in Innovative Computing,

Harvard University,
Cambridge MA 02138, USA

Abstract

We demonstrate the excellent parallel scalability and global performance on the IBM Blue-
Gene Supercomputer of MUPHY, a new multiscale/physics code. MUPHY provides a
unique parallel multiphysics combination of microscopic Molecular Dynamics (MD) with
a hydro-kinetic Lattice Boltzmann (LB) method, which permits to simulate a variety of
bio-fluidic problems across a wide range of scales in a fully concurrent fashion. The fea-
tures of MUPHY are hereby demonstrated for the case of translocation of biopolymers
through nanometer-sized, multi-pore configurations, taking into account explicitly the hy-
drodynamic interactions of the translocating molecules with the surrounding fluid. The par-
allel implementation exhibits excellent scalability on the BlueGene platform and includes
techniques which may improve the flexibility and efficiency of other complex multi-physics
parallel applications, such as hemodynamics, targeted-drug delivery and others.

Key words: Lattice Boltzmann, Molecular Dynamics, Multi Physics, Polymer
Translocation, Parallel Processing.

1 Introduction

A wide variety of physical systems exhibit complex behavior which involves sev-
eral spatial and temporal scales. Modeling this type of behavior requires the com-
bination of several types of physical theory, that can be implemented in multi-
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scale/multi-physics computational approaches. The need for such sophisticated com-
putational models is driven both from an interest in fundamental understanding
of complex systems behavior as well as from a practical perspective to improve
technological and industrial applications. Indeed, many advanced-technology ap-
plications, from high efficiency turbines to transistors with nano-scale functional
elements, rely heavily on multiscale/multiphysics approaches for their design [1].
Much progress has been made during the last decade in formulating multi-scale
approaches based on composite computational schemes in which cross-scale infor-
mation is exchanged in either a sequential or, less frequently, a concurrent manner
[2].

A particularly interesting class of complex phenomena that involve multiple scales
and physics are biological processes. Biological systems often exhibit a complex-
ity and diversity that straddles across many decades in space-time resolution, from
the quantum mechanical level of interactions responsible for bonding at the atomic
scale to the continuum level of fluid motion at macroscopic scales. We focus here
on a representative example of such a system, the translocation of DNA through a
nano-pore with the ultimate goal of ultrafast electronic sequencing. In this example,
as in many similar biological systems, the construction of an efficient and accurate
multiscale/multiphysics computational method is particularly challenging due to
the diverse and competing requirements of the individual scales involved. We re-
port the construction of such a computational method (MUPHY) and demonstrate
its efficient implementation on a highly parallel architecture, the IBM BlueGene
Supercomputer.

The approach we follow is genuinely multiphysics, as it combines different levels
of the statistical description of matter, continuum fluids and individual molecules.
It is also genuinely multiscale, since fluid and molecular degrees of freedom are ad-
vanced concurrently, while invoking a sub-cycle time-stepping for these degrees of
freedom to take into account the fact that atomistic dynamics is generally faster than
the dynamics of the surrounding fluid (solvent). At variance with the vast majority
of hybrid fluid/atomistic schemes, the present work is based on a mesoscopic/hydro-
kinetic representation of the solvent, via the so-called Lattice Boltzmann (LB)
method [3,4,5].

On general grounds, kinetic theory, which lies in-between the continuum and atom-
istic description of matter, provides a natural candidate for multiscale fluid appli-
cations. In the case of Lattice Boltzmann, this general observation results into a
series of specific computational assets, as briefly described in the following. LB is
a minimal form of kinetic Boltzmann equation, based on the collective dynamics
of fictitious particles, existing on the nodes of a regular lattice, and representing
a local ensemble of solvent molecules (Boltzmann distribution function). The dy-
namics of such particles is designed in such a way as to reproduce hydrodynamic
behaviour in the continuum limit, in which the molecular mean free path is much
shorter than typical macroscopic scales.
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Full details on our coupled LB/MD schemes are reported in [7]. It is worth noting
that LB and MD with Langevin dynamics have been coupled before [6]. However,
to the best of our knowledge, this is the first work in which such coupling is carried
out using a flexible high performance parallel code able to support long molecules
consisting of tens of thousands of beads of biological interest. In addition, the in-
direct addressing of the main lattice data structure allows our LB code to handle
efficiently nearly arbitrary geometries at a minimum extra-memory cost.

The paper is organized as follows: Section 2 reviews the simulation method used to
couple the Lattice Boltzmann description for the solvent to the Molecular Dynam-
ics description of the solute. Section 3 describes the issues faced in the development
of the parallel code and the solutions we adopted. Section 4 presents the numerical
demonstration for the case of biopolymer translocation across a multi-hole mem-
brane. Finally, a brief discussion of the future perspectives of this activity is offered.

2 Coupling between Lattice Boltzmann and Molecular Dynamics

In this section, we review the basic methodology, for which further details can be
found in previous works [7,8].

In the LB method the basic quantity is fi(~x, t), representing the probability of find-
ing a “fluid particle” at the spatial mesh location ~x and at time t with discrete speed
~ci. Actually, “fluid particles” do not correspond to individual solvent molecules,
but they represent instead the collective motion of a group of physical particles
(populations). Once the discrete populations fi are known, the local density, flow
speed and momentum-flux tensor are obtained by a direct summation upon all dis-
crete populations at a given lattice site. For the present study, we use the common
three-dimensional 19-speed lattice [5]. The fluid populations are advanced in time
through the following evolution equation:

fi(~x + ~ci∆t, t + ∆t) =

fi(~x, t) + ω∆t(fi − f eq
i )(~x, t) + Fi∆t + Si∆t

(1)

where the discrete velocities ~ci connect mesh points to first and second topological
neighbors, with particle displacements ∆~xi = ~ci∆t. The right hand side of Eq.
(1) represents the effect of fluid-fluid molecular collisions, through a relaxation
towards a local equilibrium, f eq

i , typically a second-order expansion in the fluid
velocity of a local Maxwellian with speed ~u:

f eq
i = wi[β~u · ~ci +

β2

2
(~u~u · (~ci~ci −

1

β

↔
I )] (2)

where β = 1/kBT is the inverse temperature, wi a set of weights normalized to
unity, and ↔I is the unit tensor in Cartesian space. The relaxation frequency ω con-
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trols the kinematic viscosity of the fluid, ν = kBT
(

1
ω
− ∆t

2

)
. The Fi term repre-

sents a stochastic force accounting for fluctuations in the fluid (fluctuating hydro-
dynamics). This term is local in space and time and acts at the level of the shear
as well as non-hydrodynamic modes carried by the LB populations (see ref. [9] for
full details).

The source term Si accounts for the presence of atomic-scale particles embedded
in the LB solvent and represents the momentum and momentum-flux input per unit
time due to the influence of atomic-scale particles on the fluid population fi.

Whenever the LB method is used to simulate a plain fluid, with no thermal fluctu-
ations, the Fi and Si terms disappear from the evolution equation.

Before describing the MD part, we emphasize that a LB solver is particularly well
suited to the study of a number of interesting problems for several reasons: first,
free-streaming of the fluid proceeds along straight trajectories which greatly facil-
itates the imposition of geometrically complex boundary conditions, such as those
required to describe membranes and nano-pores. Second, fluid diffusivity emerges
from the first-order LB relaxation-propagation dynamics, so that the kinetic scheme
can march in time-steps which scale only linearly with the mesh resolution. Third,
since both fluid-fluid and fluid-polymer collisions are completely local, the LB
scheme is well suited to parallel computing. These features make the LB an ap-
pealing method as compared to other available alternatives, which typically scale
superlinearly with the number of particles.

We now describe the MD section of the code, bearing in mind that the embedded
solute has a molecular topology, such as DNA, where a linear collection of N0

beads (each bead or solute particle representing a collection of atoms or molecules)
compose the polymer. The solute particles are advanced in time according to the
following MD equations for the positions ~rp and velocities ~vp

d~rp

dt
=~vp

m
d~vp

dt
= ~Fp

c
+ ~Fp

f
+ ~Fp

r
+ ~Fp

b
, p = 1, N0 (3)

where the forces on the right-hand side are given by

~Fp

c
= −

∑
q

∂~rpV (|~rp − ~rq|)

and ~Fp

f
= γ(~up−~vp). For the bead-bead interaction potential V (r) we chose the re-

pulsive part of a standard 6−12 Lennard-Jones potential truncated at its minimum.
The term ~Fp

f
represents the mechanical friction between a single particle and the

surrounding fluid, ~vp being the particle velocity and ~up ≡ ~u(~rp) the fluid velocity,
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evaluated at the particle position, with γ the friction coefficient. In addition, the
particles feel the effects of stochastic fluctuations of the fluid environment through
the random term ~Fp

r
, obeying the fluctuation-dissipation relations. Finally, ~Fp

b
cor-

responds to the bonding forces acting between particles with labels p and p + 1 of
the polymeric chain; that is, consecutive beads along the chain. The stiff bonding
forces introduce fast oscillations which can make the numerical scheme unstable at
large time-steps. Typically, such modes carry frequencies up to two orders of mag-
nitude higher than those relative to non-bonding forces. To take into account such
oscillations, a small integration time step should be used, with a resulting penalty
of the computational efficiency. Actually, as will be described in the following, a
multiple time step algorithm permits to achieve stability without compromising nu-
merical efficiency. Clearly, in the LB approach all quantities have to reside on the
lattice nodes, which means that the frictional and random forces need to be extrap-
olated from the particle to the lattice location. This is obtained by extracting the
fluid velocity field ~up at the nearest lattice point from each particle position and,
similarly, by assigning these forces as feed-back on the fluid populations through
the same simple recipe.

The numerical solution of the stochastic equations is achieved through the Stochas-
tic Position Verlet (SPV) scheme, as introduced in [10], a propagator which is sec-
ond order accurate in time. For the translocating polymer, the MD solver is marched
in time with a fraction of the LB time-step, dt = ∆t/M (a typical value of the time-
step ratio M is 2). A multiple time step integrator is employed [10] by introducing
a nested sub-cycle over a time-step dtb = dt/M b. The multiple time step solver
is marched in time with time-step ratios M = 2 and M b = 5, providing accurate
results in terms of stability and unbiased statistical averages, as verified by moni-
toring the system average temperature, which remains equal to the preset value. To
be noted that the LB/MD coupling in our approach is much tighter than for cur-
rent Navier-Stokes/MD hybrid schemes, typically featuring an order-of magnitude
larger separation, M ∼ 100.

3 Code Parallelization

MUPHY (MUlti PHYsics/multiscale computer code) is written in Fortran 90. We
chose MPI as the communication interface for the parallelization since it offers
high portability among different platforms and allows good performances due to the
availability of highly tuned implementations. The code has been tested on differ-
ent platforms (including clusters of PC) and in particular on the IBM BlueGene/L
system [11], whose main features can be summarized as follows:

• dual processors per node with two working modes: co-processor (1 user pro-
cess/node: computation and communication work is shared by two processors)
and virtual node (2 user processes/node);
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• system-on-a-chip design with superscalar 700 MHz PowerPC 440 cores;
• a large number of nodes (scalable up to at least 65,536);
• three-dimensional torus interconnect with auxiliary networks for global commu-

nications, I/O, and management;
• lightweight, Unix-like, OS per node for minimum system overhead.

The parallelization of the Lattice Boltzmann method and Molecular Dynamics al-
gorithms, as two distinct and separate problems, has been extensively studied for a
number of years [12,13,14,15,16,17,18]. However, the coupling of these techniques
raises new issues that need to be solved in order to achieve scalability and efficiency
for large scale simulations. We addressed these issues starting from a serial version
of the combined code, instead of trying to combine two existing parallel versions.
The original LB code was primarily updated to take advantage of optimizations like
i) removal of redundant operations; ii) buffering of multiply-used operations and iii)
“fusion” of the collision and streaming steps in a single loop. This latter technique,
already in use in other high-performance LB codes, significantly reduces data traf-
fic between main memory and cache/registers of the processor, since there is only
one read and one store of all LB populations at each time step.

With these optimizations in place, we are able to achieve ∼ 30% of the peak per-
formance of a single BlueGene core for the plain LB method (equation (1) with
no Fi and Si terms). This result is in line with other highly tuned LB kernels [19].
Indeed we wish to remind that: i) the algorithm for the update of the LB popu-
lations has an unfavorable ratio between number of floating point operations and
number of memory accesses; ii) no optimized libraries are available like for other
computational kernels (e.g., matrix operations or FFTs); iii) it is not possible to
exploit the SIMD-like operations of the PowerPC 440 processor since they require
stride one access whereas the LB method has a “scattered” data access pattern. For
the generation of the random numbers required by the simulation of the stochas-
tic fluctuations (the Fi term in equation 1) we resorted to the very efficient library
functions available in the IBM ESSL.

As to the parallelization, we followed an approach that entails a sort of “run-time”
pre-processing. For the LB part of the code, this initial stage can be summarized
as follows. Each node of the LB lattice is labeled with a tag that identifies it as be-
longing to a specific subregion of the computational domain (i.e., fluid, wall, inlet,
outlet, solid), as read from an input file. It is possible to define a default value for the
tag so that nodes that are not explicitly tagged are assumed to have that value for the
tag (this assumption reduces significantly the size of the input file). The tag file is
read by a single task that distributes the input data to all the other tasks using collec-
tive communication primitives. Nodes are stored according to a linearized indirect
addressing scheme [20][21]. Obviously this indirection requires, for each node, an
additional data structure that contains the list of its neighboring (fluid, wall, inlet,
outlet) nodes. At first glance a mechanism like this may appear a waste of time
and memory, but, actually, for most (non-trivial) geometries it provides huge sav-
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ings in memory requirements and simulation times [22]. In the beginning of the
simulation, a subset of nodes is assigned to each computational task, attempting to
balance the number of nodes per task as much as possible (obviously, in some cases,
this operation cannot be done exactly). The assignment takes into account the do-
main decomposition strategy, that can be one-, two- or three-dimensional. All pos-
sible combinations (that is, Cartesian decompositions along X, Y, Z, XY,XZ, etc.)
are supported. Moreover custom decompositions, e.g., those produced by tools like
METIS[23], which are necessary for irregular domains, are also supported. After
the assignment of the nodes to the tasks, the pre-processing phase begins. Basically,
each task checks which tasks own the nodes to be accessed during the subsequent
phases of simulation, in particular for the streaming part of the LB algorithm. Such
information is exchanged by using MPI collective communication primitives, so
that each task knows the neighboring peers for send/receive operations. Informa-
tion about the size of data to be sent/received is exchanged as well. In principle,
each node could determine by itself all the information required for the communi-
cation phase, but the availability of highly tuned collective communication prim-
itives makes more efficient to exchange part of these data among the tasks than
computing everything locally.

In a parallel LB scheme there are several sections requiring data exchange: i)
streaming; ii) handling of periodic boundary conditions; iii) presence of reflect-
ing or absorbing walls within the computational domain. In our code, both bound-
ary conditions and walls are managed implicitly during the streaming phase us-
ing indirect addressing. The communication scheme is based on the following ap-
proach: the receive operations are always posted in advance by using correspond-
ing non-blocking MPI primitives, then the send operations are carried out using
either blocking or non-blocking primitives, depending on the parallel platform in
use (unfortunately, as it is well know, few platforms allow real overlapping between
communication and computation). Then, each task waits for the completion of its
receive operations, using the MPI wait primitives. The latter operation, in case of
non-blocking send operations, is to wait for their completion. Also the choice be-
tween blocking and non-blocking send can be done at run time. The evaluation of
global quantities (e.g., the momentum along the X, Y, Z directions) is carried out
by using MPI collective reduction primitives.

For the Molecular Dynamics section, a parallelization strategy suitable for the
multi-scale method described in Section 2 had to be developed. In typical MD
applications the spatial distribution of particles may be highly inhomogeneous. A
straightforward approach to achieve a good load balancing is to resort to a domain
decomposition such that each task has (approximately) the same number of par-
ticles. In this way, the size of the spatial sub-domains assigned to each task may
vary significantly. In a stand-alone Molecular Dynamics simulation, this is accept-
able but in our case the LB component would be hindered, since the computational
load is proportional to the size of the spatial domain assigned to each task. One
might opt for two separate domain decompositions for the LB and the MD part
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of the simulation. However, the exchange of momentum among particles and the
surrounding fluid would become a non-local operation, with a very high cost due
to the long-range point-to-point communications imposed on the underlying hard-
ware/software platform. For the IBM BlueGene such communications are explicitly
discouraged.

In the end, we decided to resort to a domain decomposition strategy where the
parallel sub-domains coincide with those of the LB scheme. In this way, each com-
putational task performs both the LB and MD calculations and the interactions of
the particles with the fluid are completely localized (there is no need to exchange
data among tasks during this stage). Moreover, the task mapping becomes trivial
since the computational domain of the LB is a regular box. To compensate the re-
sulting unbalance of the MD computational load, we resort to a local dynamic load
balancing algorithm, as outlined in the following.

At first, during the pre-processing step a subset of particles is assigned to each com-
putational task according to the position in space of the particles. As the simulation
proceeds, particles migrate from one domain to another and particle coordinates,
momenta and identities are re-allocated among tasks. Non-bonding forces between
intra- and inter-domain pairs of particles, involving the communication of parti-
cle positions between neighboring tasks, are computed. The molecular topology
is also taken into account by exchanging details on the molecular connectivity, in
order to compute bonding forces locally. In this respect, the way parallel MD is
implemented is rather standard [18] and will not be described in detail. The main
difference with respect to the standard procedure is that each task carries out an
additional step, that is the exchange of momentum with the fluid. By design, this
operation is carried out by each task without exchanging data with other tasks.

The dynamic load balancing strategy impacts the computation of the non-bonding
forces, representing the most CPU demanding part of MD. At first, the strategy re-
quires a communication operation between neighboring tasks that tracks the num-
ber of particles assigned to the neighbors. On the IBM BlueGene, it is more effi-
cient to resort to a global collective communication primitive (i.e., the AllGather)
which involves all processors than to a sequence of 6 point-to-point communica-
tions with the nearest neighbor tasks. Our strategy, depicted in Fig. 1, works as
follows. Whenever the number of interacting pairs owned by a given task exceeds
the number of pairs assigned to a neighbor by a threshold, a fraction of the excess
pairs is sent to that neighbor. This way, a local load balancing for the computation
of non-bonding forces is achieved. A set of precedence rules prevents situations in
which a task sends pairs to a neighbor and receives pairs from another. The receiv-
ing task computes the corresponding non-bonding forces and sends them back to
the task that actually owns the particles. For the system under study, the commu-
nication/computation ratio is such that this strategy results in a sizeable advantage
for the global efficiency.
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Figure 1. Local load balancing in a simplified 2D case. Prior to the MD phase (left panel)
node 2 has 11 beads whereas node 0 has only three beads. Node 1 and node 3 have the same
number of beads. To balance the load during the MD phase, node 2 “virtually” transfers the
coordinates of four atoms to node 0 (central panel). After the calculation of the non-bonding
forces, the results are returned to node 2 (right panel). The color of the beads is used to
identify those belonging to the same subdomain.

4 Numerical Set-up

Motivated by recent experimental studies[24], we applied our multiscale approach
to the simulation of the translocation of biopolymers through a series of narrow
pores. This type of biophysical process is important in phenomena like viral infec-
tion by phages, inter-bacterial DNA transduction or gene therapy [25]. In addition,
it is argued that this type of process may open a way to ultrafast DNA-sequencing
by sensing the base-sensitive electronic signal as the biopolymer passes through a
nanopore with attached electrodes.

The translocation is a complex phenomenon involving the competition between
many-body interactions at the atomic or molecular scale, fluid-atom hydrodynamic
coupling, as well as the interaction of the biopolymer with wall molecules in the
region of the pores.

In our simulations, we use a three-dimensional box of size Nx ×Ny ×Nz in units
of the lattice spacing ∆x. Periodicity is imposed for both the fluid and the polymer
in all directions. A separating wall is located in the mid-section of the x direction,
at x/∆x = Nx/2, with a set of 64 holes of side h = 3∆x (distributed in a regular
way along 8 rows and 8 columns) through which 64 polymers (each composed by
4000 beads) translocate from one chamber to the other. The total particle and mesh
size is 256000 beads and Nx = Ny = Nz = 512. At t = 0 the polymer resides
entirely in the right chamber at x/∆x > Nx/2. Two snapshots of the polymers
configuration in the beginning and in the mid of the simulation are reported in
Figure 2. From this picture, the load unbalancing of the MD part is apparent.
Translocation is induced by a constant electric force (Fdrive) which acts along the
x direction and is confined in a rectangular channel of size 3∆x×∆x×∆x along
the streamwise (x direction) and cross-flow (y, z directions). The solvent density
and kinematic viscosity are 1 and 0.1, respectively, and the temperature is kBT =
10−4. All parameters are in units of the LB time-step ∆t, lattice spacing ∆x and
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Figure 2. The top panel shows the configuration right after the beginning of the transloca-
tion. The bottom panel shows the configuration near the end of the translocation. The beads
are colored according to the value of the hydrodynamic work per unit time they absorb
from the fluid.

Figure 3. A detail of the wall with one of the nanopores and a polymer entering the pore
driven by the electric field (indicated by the red arrow).
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solvent mass ∆m, which we set equal to 1. The friction coefficient γ governs both
the structural relation of the polymer towards equilibrium and the strength of the
coupling with the surrounding fluid. With this parameterization, the process falls
within the fast translocation regime, where the total translocation time is much
smaller than the Zimm relaxation time. Additional details have been presented in
Ref. [26].

In a typical run the Lattice Boltzmann part of the code takes approximately 65%
of the computing time. The exchange of momentum between MD and LB takes
3% of the time. The Molecular Dynamics takes approximately 30% of the time.
Diagnostics and periodic output take the rest.

We ran our tests for the simulation of 64 polymers traversing 64 holes (for a total
of 256000 particles) in a 512×512×512 box on an IBM BlueGene system with up
to 16384 nodes, corresponding to 32768 Virtual Processors. Visual inspection (see
Figure 2) reveals that in the initial stage of translocation, the polymers are crowd-
ing one chamber in a rather dense and uniform way, and their distribution decays to
zero at the far away edge of the initial translocation chamber. The second translo-
cation chamber is initially empty and gradually fills up as translocation proceeds.
As shown in Table 1, the time per step of a simulation of this size is < 0.04 sec on
32768 processors in Virtual Node (VN) mode, with a reasonable scaling for such
large number of processors taking into account the special features of the problem
under study. By analyzing the different sections of the code, the LB part appears to
scale linearly (at times even superlinearly, probably due to a positive side effect of
the reduction of lattice nodes per task on cache usage). To be noted that also the
MD part exhibits a significant speed-up, showing that the saturation regime is still
far from being hit. Without the dynamic local load balancing, the time required by
the MD part of the simulation increases, on average, by∼ 30%. It is also interesting
to note that with a 512×512×512 box and 32768 tasks, each task owns 4096 lattice
nodes. The fact that the scalability remains good, especially for the LB part of the
simulation, confirms the efficiency of the IBM BlueGene communication network.
All floating point computations are performed in double precision.

For a correct interpretation of the timings reported in Table 1 it is worth noting that
in the beginning of the simulation (approximately) half of the processors sit com-
pletely idle during the molecular dynamics part of the run. As the simulation pro-
ceeds, processors in charge of the region of the lattice where the polymers translo-
cate, receive particles so those processors are no longer idle during that phase. At
no stage of the simulation, uniform load balancing is achieved because the translo-
cating molecules never fill up completely the computational domain.

Most results were produced using the nodes in “CoProcessor” (CO) mode. It is
worth noticing that switching from CO to VN, at the same number of computational
nodes (i.e. hardware resources) impacts both the LB and the MD section. As a
matter of fact, in “Virtual Node” (VN) mode, the performance does not double
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since all resources (cache, memory bandwidth, etc.) are shared between the two
virtual CPUs of the node.

Number Total Total LB MD

of tasks Time Efficiency Time Time

1024 (CO) 883.0 N/A 581.4 260.0

2048 (CO) 452.3 98% 290.0 135.2

4096 (CO) 233.3 95% 144.3 70.5

8192 (CO) 118.6 93% 72.1 38.1

16384 (CO) 59.2 93% 36.1 21.1

16384 (VN) 66.2 83% 40.1 23.0

32768 (VN) 36.1 76% 20.1 13.0
Table 1
Times (in seconds) for 1000 iterations of a 256000 particles multi-biopolymer translocation
in a 512 × 512 × 512 lattice. The simulation requires at least 1024 tasks due to its large
memory requirements.

To measure the number of floating points operations per second, we resorted to the
IBM HPCT library, which supports multiple instrumentation sections and nested
instrumentation. The LB part of the simulation carries out slightly more than 210
Mflops/sec per task. Let us remind that this part includes the simulation of the hy-
drodynamic fluctuations (as a consequence its performance can not be measured
in the standard Lattice-Updates-per-second unit) and the load balancing is almost
perfect across all tasks (the tasks whose computational domain includes the sepa-
rating wall show a limited deviation). As for the MD part, on average, each task
performs slightly below 160 Mflops/sec, with about 50% of the tasks having zero
load. Taken together, on average, each task performs at ' 190 Mflops/sec. On the
largest configuration at our disposal (32768 computational tasks) these figures lead
to an estimate of a total of 6.2 Teraflops/sec aggregate performance.
In addition, we ran some tests on 16 nodes of an IBM/SP system. The nodes are
connected by a proprietary IBM switch and each node features 8 Power5 proces-
sors at 1.9 Ghz with 32 GB of RAM per node for a total of 128 processors and 512
GB of RAM. The execution time for 1000 iterations has been, with this system,
2005 seconds, which leads to estimate that almost 10000 Power5 processors are re-
quired to obtain the same performance of the BlueGene system (assuming a similar
efficiency).

Table 2 shows the distribution of communication overheads for a bio-polymer
translocation using 1024 tasks. For one thousand iterations, the total execution time
is about 880 seconds with a communication overhead of slightly more than 110
seconds, in line with other molecular dynamics codes. The resulting sustained per-
formance of point-to-point communications is ≥ 32 Mbytes/sec. A similar profile
when the MPI_Isend primitive is used confirms that, at least on the BlueGene
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MPI Routine n. calls avg. bytes time(sec)

MPI Send 609080 2260 41.0

MPI Irecv 605185 393100 0.4

MPI Waitall 26005 0.0 32.1

MPI Allgather 2004 8 34.5

MPI Reduce 712 28 4.8

MPI Allreduce 14112 128 1.4
Table 2
Communication overhead on one out of 1024 processors for 1000 time-steps of the translo-
cation of 64× 4000 particles in a 512× 512× 512 lattice.

platform, there is no real advantage in asynchronous send operations since time
apparently saved in the send operation is actually spent in the corresponding wait
operation.

5 Flexibility and Future Perspectives

To the best of our knowledge, MUPHY is one of the first examples of integrated
high performance parallel code for the simulation of multi-physics/scale bio-fluidic
phenomena. To place our result in perspective, let us consider that one bead cor-
responds to about 150 base pairs, that is one persistence length of double-stranded
DNA (50 nm), whereas a single timestep covers about 170 ps [7]. With our sus-
tained performances, a one-day simulation on the largest BG/L configuration (212992
processors) would cover a physical time span of about 3 ms for a domain of 20 µm
in linear size. These space-time scales are clearly beyond reach of fully atomistic
simulations and can only be attained by multi-scale/multi-physics approach.

For a number of years, sharp-shooted, highly-tuned, application codes have been
used to run large scale simulations in many different fields of computational physics.
However the attempts of coupling such application codes to simulate more com-
plex, interdisciplinary, phenomena, have been often based on a simple “serial-pipe”
paradigm (i.e., the output of the microscopic code provides the input of the macro-
scopic code) with very limited (if any) run-time concurrency and system integra-
tion.

Although in the present paper we focused on just one specific application of MU-
PHY (the translocation of biopolymers), the code can be used to study a variety
of other systems. For instance, thanks to indirect addressing, MUPHY seamlessly
handles real-life geometrical set-ups, such as blood flows in human arteries in pres-
ence of white cells (see Figure 4 for an example), lipids, drug-delivery carriers and
other suspended bodies of biological interest.
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Figure 4. Blood flow pattern in a human coronary artery. Spheres represent transported
white cells, whose size has been magnified as compared to realistic values, to highlight
their distribution inside the arterial region. The color of the spheres represent the Shear
Stress (SS) experienced locally during blood motion (blue: low SS, green: intermediate SS,
red: high SS).
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