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Abstract

A new Runge-Kutta-Nystrom method, with phase-lag of order infinity, for
the integration of second-order periodic initial-value problems is developed
in this paper. The new method is based on the Dormand and Prince Runge-
Kutta-Nystrom method of algebraic order four|[l]. Numerical illustrations
indicate that the new method is much more efficient than the classical one.
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1. Introduction

In this paper we study a special Runge-Kutta-Nystrom method of Dor-
mand et al.[1] for integrating systems of ODEs of the form

d*u(t)
dt?

for which it is known in advantage that their solution is periodic or oscillating.

= f(t,u(t)) (1)
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Several authors in their papers (for example see [3,7-10]) have developed
Runge-Kutta-Nystrom methods with the purpose of making the phase-lag of
the method smaller.

The phase-lag of a method, first defined by Brusa and Nigro [2] at 1980.
Van der Houwen and Sommeijer [3] proposed second-order m-stage methods
(with m = 4,5,6) and phase-lag order ¢ = 6, 8, 10 respectively. They also de-
rived some third-order methods with phase-lag order 6,8, 10. In |3, 5] Chawla
and Rao have constructed Numerov-type methods with minimal phase-lag
for the numerical integration of second-order initial-value problems. Simos et
al. |8] obtain fourth-order Runge-Kutta-Nystrom with minimal phase-lag of
order eigth. He also derived in |9] a Runge-Kutta-Fehlberg method of order
infinity.

In the present paper and based on the requirements of infinite order of
phase-lag, we will construct a phase-fitted four-stage Runge-Kutta-Nystrom
which is based on the coefficients of the well-known Runge-Kutta-Nystrom
Dormand et al. [1] method of algebraic order 4.

2. Phase lag analysis for Runge-Kutta-Nystrom methods

The general m-stage method for the equation

d*u(t)
dt?

= f(t,u(t)) (2)

is of the form

Up, (0) = Up—1, US) = Up—1 + hﬁn_l _l_ h2 Z b‘]fj’

=1

Unp, :Ugm% '&n:'&n—l_‘_hzi)jfﬁ (3)
j=1
where
i—1
fi = [ltno1 + iy tuny + heilin_y + B2 Z a; jul)) (4)
j=1
and ¢y =0 and ¢, = 1
The above expressions are presented using the well-known Butcher table,
given below:



C2 Qo1
C3 Q31 Q32

Cm Qm.1 am,2 o Om m—1
by by ... b1 bm
by b ... bp1 by

Table 1: m-stage Runge-Kutta-Nystom method

In order to develop the new method, we use the test equation,

d*u(t)
dt?

= (iv)*u(t) = u"(t) = —vu(t), veER (5)

By applying the general method (B]) to the test equation (Bl we obtain
the numerical solution

Un | _ pn| Uo _ A(Zz) B(Z2) ] _
[hﬁn]_D[hﬁo}’ D‘[ Ay [ 2=vh (0)
where A, B, A’, B’ are polynomials in z?
rameters of method ()
The exact solution of (3]) is given by

, completely determined by the pa-

u(t,) = o1lexp(iv)|" + ozlexp(—iv)]", (7)
where
o192 = %[uo + (iﬂo)] or o019 = |olexp(xix).

Substituting in (7)), we have
u(t,) = 2|o|cos(x + nz). (8)
Furthermore we assume that the eigenvalues of D are pq, 0o, and the conse-
quent eigenvectors are [1,v1]7, [1, v9]7,
where v; = A'/(p; — B'),7 = 1,2. The numerical solution of ([ is
Un = C1PY + C2p, (9)
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where

Va2Ug — h?l(] ViUg — h?l(]
Q=—-—— @G=-————.
U1 — U2 U1 — U2
If p1,p2 are complex conjugate, then c¢;o = |clexp(Liw) and p1o =

|plexp(Lip). By substituting in (@), we have
u, = 2|c||p|"cos(w + np). (10)
From equations (&) and (I0) we take the following definition.

Definition 1. (Phase-lag). Apply the RKN method (3) to the general
method ({3). Then we define the phase-lag ®(z) = z — p. If ®(z) = O(2911),
then the RKN method is said to have phase-lag order q.

In addition, the quantity a(z) =1 — |p| is called amplification error.
Let us denote

R(z*) = tr(D)=A(z") + B'(+")
Q(z*) = det(D) = A(z")B'(") — A'(z") B(+") (11)

where z = vh. From Definition [I] it follows that

B(z) = = — arcoss(%), 1| = O, (12)

We can also put forward an alternative definition for the case of infinite
order of phase lag.

Definition 2. (Phase-lag of order infinity). To obtain phase-lag of order

infinity the relation ®(z) = z — arccos(%): 0 must hold.

3. Derivation of the new Runge-Kutta-Nystrom method

In this section we construct a 4-stage explicit Runge-Kutta-Nystrom
method (presented in Table 1), based on R(2?) and Q(2%). Now let us rewrite
R and Q in the following form

R(ZH) =2—r2 42t =32+ +r2® =0
Q(Z2) =1—q22+ @t -+, +¢2=0 (13)
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By computing the polynomials A, B, A’, B’ and therefore R and @ in
terms of RKN parameters we obtain the following expressions

A(ZQ) = 1+b4a4,3a3,2a2,128+(—b4a4,2a2,1—b3a3,2a2,1—b4a4,3a3,1—b4a4,3a3,2)26+
(boag + byass + byays o + bsasy + byass + b3a3,2)24 + (=by — by —bs — 52)22

B(Zz) =1- b4a4,3a3720226 + (b4&47303 + b4a47202 + b3&37202)24 + (—bgCg — b4C4 —
bQCQ)Z

A,( 2) = b4a4 ,303, 2a2 12 + ( b3a3 2CL2 1 b4a4 3031 — b4a4 3CL3 2 b4a4 202 1)Z +
(b2a2 1+ b3@3 1+ 53a32 + b4a4 1+ b4a42 + b4a4 3)2 + (= b4 - bz - b1 - b3)

B/(Z2) = 1—b4a4,3a3720226 + (b4&4,363 + b4a47202 + 63&3,262)24 + (—b303 — b4C4 —
b202)22

R(2%) = 2+byay 3a32a21 2%+ (—bsas 2as, 1 byayzas, 27 byay, 2021 — b4a4 303,2Co —
b4a4 3a3 1)2’ + (bg&g 1 + bgag 2 + b4a4 3 + b3a3 202 + b4a4 3C3 + b4a4 2C9 + bgCLg 1 +
b4CL4,1 + b4CL4’2)Z -+ ( bg — bg — bgCg — b4C4 — bgCg — b4 — bl)

Q(Zz) = ( 54&4 343, 1bacy — 54&4 2a2, 1bscs — 5202 1b4a4 3C3- 53&3 202, 1bscy +
b3a3 1b4a4 2C2 — b3a3 1b4a4 2C2 — b4a4 3032021 + 54&4 202, 15303 blb4a4 303,2C2 +
byay, 1b3a3 2C2 — b4a4 1b3a3 2C2 + by 3az a1 + bibsay 303,2C2+b3az 20, 1hycy +
b4a4 ,303, 1b2C2+b2a2 1b4a4 303)2 +( byay 3031 —b3a3 2CL2 1 —b4a4 2a2 1-bsay 3a3 27—
blb4a4 202—b1b3a3 202—53b4a4 202+b2b4a4 ,3C3— b2a2 1b303 b2a2 1b4C4 b4a4 15303—
54&4 e —b4a4 2bscs +53a3 2b4c4+b4a4 1b303+b4a4 15202 +b4a4 25303 b2b4a4 3C3+
bza2 1b4c4+b3a3 1b4c4+b3a3 15202—53613 1b4C4 b3a3 15202—54% 35202 5303 25404—
545303 202—blb4a4 3C3+b4b3a3 2C2+blb4a4 303+b4a4 35202+blb4a4 2C2+blb3a3 2C2+
b3b4a4 2C2 +52a2 1b303+b3a3 202, 1+b4a4 303, 1+b4a4 202, 1+b4a4 303,2 —byay 303 2C2)

+(— M%%+M%@—@MQ—%MQ+@MQ+%%@+%MQ—h%%+m%%+
b1b3C3 - b4b202 - b1b2C2 - blb4c4 + blb202 + begC3 + blb4c4 — b3b2C2 bgbgCg -
bza21 - b3a31 - b3a32 - b4a41 - b4a42 - b4a43 + baag1 + byay + b4a42 +
bsas, 1+b4@43 + bzaza + b3a3 2C2 + byay 363 + byay 202)2t + (—by — bacy + by —
by + by+bs — byce — by — by — bycs + b4)

where z = vh



As it has already been defined, in order to have phase-lag of order infinity,
the following relation must hold:

2
O(2) =2 — arccos(M>: 0 (14)
2¢/Q(z)?
By applying R(2?) and Q(2?) to the formula of the direct calculation of
the phase lag (I2) and substituting the following coefficients that have been
used by Dormand et al. in [1] :

B 1 B 7 B 119 B 1 B 8
Qo1 = 39’ Q31 = 1000 Q32 = 500 Qg1 = 14’ Qo = o7’
1 7
Co = Za C3 = Eu cy =1,
1 8 25
bl _ﬁa 62_2_7a 3_@a b4_07
A 1 A _32 i _250 s 5
! 14’ 2781 2 567 YN

After satisfying relation (I4]), we have:

O(z) = 22— arcoss(%): 0=

5 1
= - 54621 28 — 4793320 2% + 99172960 ~*
ay3 5292 28924 — 680022 + 4000024( & Z+ z

5179680 z* (sin (2))? — 768268800 22 + 4043520 22 (sin (z))”
1866240000 — 559872000 (sin (z))* + 24 (—654383577600 2°
212348252160000 2* — 1366377865200 2* — 1710031785 2*2
89285428680 2'° — 202307339750400 z* (sin (2))
2023399802880000 22 (sin (z))* — 2015539200000000 2>
581660870400 2° (sin (2))* + 1319799592800 z* (sin (2))?
1710031785 2'2 (sin (2))* — 89285428680 2'° (sin (2))?
46578272400 2° (sin (2))* 4 72722707200 2% (sin (2))*
10040912409600 z* (sin (2))* + 544195584000000 (sin (z))*
7860602880000 22 (sin (2))* + 6046617600000000
6590813184000000 (sin (2))*)"/?) (15)

o+t o+t
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The Taylor expansion series for ay 3, which is given from the above formula
is :

25 43 , 1531 , 3273029

aq3 = z° = 27— z
’ 189 2400 30240000 36283000000
09772887431 8

0699782400000000 ~

(16)

4. Numerical examples

In this section we will apply our method to three problems. We are go-
ing to compare our results with those derived by using the high order method
of embedded Runge-Kutta-Nystrém 4(3)4 method of Dormand and Prince

(see [1]).

One way to measure the efficiency of the method is to compute the ac-
curacy in the decimal digits, that is —logio(mazimum error through the in-
tegration intervals)

acc(T) = —logig(maz|u(t,)—u,|), where t,=1+nh, n=1,2,..., 1
and u(t) is the vector of the solution.

Table 2 shows the accuracy for the two methods. In our computations we
have two step values, for Problems 1 and 2, h = 0.025 and h = 0.050, and
for Problems 3 and 4, h = 0.25 and h = 0.50.

Problem 1.(Inhomogeneous equation)

d*ut) ) _ - .
az Y u(t) + (v — 1)sin(t), w0) =1, u(0)=v+1,

where ¢ > 0 and v = 10.
The analytical solution is u(t) = cos(vt) + sin(vt) + sin(t)

Problem 2.(Two-Body problem)

UN - —# Z” = —#
(u2 + 22)3/2’ (u2 + 22)3/2

where u(0)=1, 4 (0)=0, 2(0)=0, Z0)=1and v=1
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Our method Dormand and Prince method
T=100 T=1000 T=5000 T=100 T=1000 T=5000

Problem 1
h=0.025 4.2 3.2 2.5 2.3 1.3 0.6
h=0.050 2.7 1.7 1.0 1.1 0.2 -0.3
Problem 2
h=0.025 7.3 5.9 4.6 6.5 5.1 3.8
h=0.050 6.0 4.4 3.1 5.2 3.6 2.3
Problem 3
h=0.25 5.7 5.4 5.4 4.2 4.1 4.1
h=0.50 4.2 3.9 3.9 2.9 2.8 2.8
Problem 4
h=0.25 5.2 4.3 3.4 3.5 2.5 1.6
h=0.50 3.8 2.8 1.9 2.3 1.8 0.4

Table 2: Accuracy for the maximum absolute error for problems 1-4

The analytical solution is u(t) = cos(t) and z(t) = sin(t)

Problem 3.(Duffing equation)

d*u(t) B 5
a2 —u(t) — (u(t))” + Bceos(vt)

where B = 0.002 and v = 1.01.

The analytical solution is u(t) = Ajcos(vt) + Ascos(3vt) + Ascos(b5vt) +
Azcos(Tvt) + Agcos(9vt)

where A; = 0.200179477536, A; = 0.000246946143, A5 = 0.000000304014,
A7 = 0.000000000374 and Ag = 0.000000000000

Problem 4.(Franco and Palacios problem)

d;gt) = —u(t) +eexp(it), ut)eC wu0)=1, «'(0)=(1- %e)z’,

where € = 0.001 and v =1
The analytical solution is u(t) = cos(t) + setsin(t) + i[sin(t) — etcos(t)]




5. Conclusion

A new fourth order Runge-Kutta-Nystrom method with phase-lag of

order infinity is developed in the present paper. The new method is based
on the very well known classical Dormand and Prince fourth algebraic or-
der Runge-Kutta-Nystom method. The numerical results show that the new
method is much more efficient for integrating second-order equations with
periodic oscillating behavior than the classical one.
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