
Numerical Object Oriented Quantum Field Theory Calculations

M. Williams
Carnegie Mellon University, Pittsburgh PA, 15213

Abstract

The qft++ package is a library of C++ classes that facilitate numerical (not algebraic) quantum field theory calcu-
lations. Mathematical objects such as matrices, tensors, Dirac spinors, polarization and orbital angular momentum
tensors, etc. are represented as C++ objects in qft++. The package permits construction of code which closely re-
sembles quantum field theory expressions, allowing for quick and reliable calculations.

1. Introduction

It is often desirable to describe particle physics
processes using a covariant tensor formalism. This
formalism contains Dirac spinors and matrices, po-
larization and orbital angular momentum tensors,
etc. For cases involving higher spin particles or large
values of orbital angular momentum, the presence
of high rank tensors can make explicit calculation of
the desired quantities (typically scattering or decay
amplitudes) cumbersome at best and impossible at
worst.

A common approach is to perform algebraic
manipulations to reduce the number of tensor
contractions prior to coding the expressions of in-
terest. There are several software packages avail-
able to facilitate this approach, e.g. FeynCalc [1]
and FeynArts [2]. Packages like GRACE [3] and
CompHEP [4] take this a step further by (mostly au-
tomatically) producing distributions from physical
models. While these packages are extremely use-
ful in certain areas of physics (e.g. writing event
generators), they are not ideal for performing an
event-based partial wave analysis (PWA).

In this type of analysis, numeric values for ampli-
tudes must be calculated for upwards of 100 million
events (data and/or Monte Carlo). Thus, the am-
plitude calculation software must not only be easy
to use, but also be capable of performing numerical

calculations of expressions involving matrices and
high-rank tensors using as little cpu time as possible.
The qft++ package satisfies both of these criteria.

The operations of matrix multiplication and ten-
sor contraction (the building blocks of all such calcu-
lations) can be broken down into nested loops; thus,
they are easy to perform (numerically) on a com-
puter. The qft++ package was developed to take ad-
vantage of this fact by performing numerical calcu-
lations (not algebraic manipulations), making these
types of calculations easier and more accessible to a
larger portion of the physics community. The qft++
package has been used in a number of PWA’s to date
(see, e.g., [5]) and has performed exceptionally well.

One further point before discussing specific details
about the software, this package was designed to
calculate tree-level expressions. No work has been
done to provide a simple way of performing loop
integrals.

2. Overview

The the main design goal for the application pro-
gramming interface (API) was to make the code re-
semble the mathematical expressions as closely as
possible. To facilitate this goal, each type of mathe-
matical object (e.g. tensors, spinors, etc.) has a cor-
responding C++ object in qft++. Through the use
of operator overloading, operations such as matrix

Preprint submitted to Elsevier 29 May 2018

ar
X

iv
:0

80
5.

29
56

v2
 [

he
p-

ph
]

 7
 M

ay
 2

00
9

multiplication and tensor contraction are handled
by the objects themselves; not by the user, i.e. the
user never has to keep track of any indices.

As a very simple example, consider the electro-
magnetic vertex eū(p1,m1)γµu(p2,m2)εµ(pγ ,mγ).
After variable declaration and initialization (dis-
cussed below), this expression can be written using
qft++ as follows:

e*Bar(u1(m1))*gamma*u2(m2)*eps(mg);

The object types determine how “multiplication”,
i.e. the * operator, is to be performed. The matrix
multiplications and tensor contractions are handled
internally by the objects. This feature allows for
self-documenting code, greatly reducing the proba-
bility for mistakes.

3. Basic Operations

The two main types of operations required in
quantum field theory calculations, but not con-
tained in standard C++, involve matrices and
tensors. From these constituents, it is easy to build
classes which handle Dirac matrices, covariant pro-
jection operators, etc. This section describes how
the qft++ package implements these basic types of
operations.

This package makes heavy use of template classes;
thus, a number of template utilities have been devel-
oped for performance and/or API reasons. Among
these are compile-time detection of inheritance and
parameter passing optimization [6], along with se-
lective inclusion of class methods [7].

Unlike many standard C++ template classes, all
of the template classes defined in the qft++ pack-
age are designed such that instantiations of differ-
ent types are fully compatible, provided the types
themselves have the necessary operators defined,
e.g. the following code is legal:

SomeClass<T1> sc1;
SomeClass<T2> sc2;
sc1*sc2;

if the operator * is defined between types T1 and T2.

3.1. Matrix Operations

Matrix operations are handled by the template
class Matrix, which can store any data type which
can be stored in a C++ STL container class, i.e.
it can store any object which can be stored by
std::vector. A complete set of methods are pro-
vided including those useful in Quantum Field the-
ory calculations, such as Trace and Adjoint, along
with all the necessary operators.

3.2. Tensor Operations

Tensor operations are handled by the template
class Tensor, which can also store any data type
which can be stored in a C++ STL container class;
however, the most useful types are typically double
and complex<double>. Methods are provided to
perform Lorentz transformations, symmetrization
and a number of other functions.

A number of operators are provided to perform
tensor contractions. The Tensor class assumes that
all indices are either raised or lowered. The field
theory objects discussed in Section 4 use the for-
mer, i.e. they are contravariant. The * operator per-
forms standard multiplication if either object is not
a Tensor and contraction of a single index other-
wise. For example, if x is a rank-2 Tensor, then the
code snippet 3*x simply multiplies each of the ele-
ments of x by three; however, the snippet x*y will
evaluate the expression xµνyν

ρ if y is also a rank-
2 Tensor. Full contraction of all possible indices is
performed using the | operator; thus, x|y evaluates
the expression xµνyµν .

Symbolic Expression qft++ Code

xµyµ x*y

xµyν x%y

xµ1µ2...µnyµ1µ2...µn (x|y)

Table 1

Example tensor operations using the Tensor template class.

Additional classes are provided for the Minkowski
metric, gµν (MetricTensor), and the Levi-Civita
tensor, εµναβ (LeviCivitaTensor). The Vector4
template class, which is derived from Tensor, pro-
vides a number of additional methods specific to 4-
vectors, e.g. CosTheta and Beta.

2

4. Object-Oriented Field Theory

From the Tensor and Matrix classes discussed
above, all of the necessary objects for quantum field
theory calculations can be constructed. In this sec-
tion, a brief overview of the formalism will be pre-
sented followed by a discussion of the corresponding
qft++ class. More detailed descriptions of the for-
malism are given in [8,9]. Recent examples of apply-
ing this formalism to PWA - for which this code was
developed - can be found in [5,10,11].

4.1. Integral Spin Wave Functions

The wave function of a particle with integral spin-
J , 4-momentum p and spin projection to some quan-
tization axis m, is described by a rank-J tensor,
εµ1...µJ

(p,m). The Rarita-Schwinger conditions for
integral spin-J are

pµiεµ1µ2...µi...µJ
(p,m) = 0 (1a)

εµ1...µi...µj ...µJ
(p,m) = εµ1...µj ...µi...µJ

(p,m) (1b)

gµiµj εµ1µ2...µi...µj ...µJ
(p,m) = 0, (1c)

for any µi, µj , and reduce the number of independent
elements from 4J to (2J + 1).

The spin-J projection operator, defined as

P (J)
µ1µ2...µJν1ν2...νJ

(p)

=
∑
m

εµ1µ2...µJ
(p,m)ε∗ν1ν2...νJ

(p,m), (2)

is used to construct the particle’s propagator.
As a simple example, consider a massive spin-1

particle. The Rarita-Schwinger conditions for spin-1
simply require pµεµ(p,m) = 0. Thus, in the parti-
cle’s rest frame the energy component of the wave
function is zero. The spatial components are then
chosen to be

~ε(±1) = ∓ 1√
2

(1,±i, 0), ~ε(0) = (0, 0, 1). (3)

The wave function can be obtained in any other
frame through the use of Lorentz transformations.
The spin-1 projection operator is given by

P (1)
µν (p) =

∑
m

εµ(p,m)ε∗ν(p,m) = −gµν +
pµpν
w2

, (4)

where w is the mass of the particle.
Wave functions for particles with integral spin

are handled in qft++ by the PolVector class. The

spin is set using the constructor, e.g PolVector
eps(3) would be used for a spin-3 particle. The
PolVector object must then be initialized for a
given 4-momentum. At this point, the user can de-
cide whether or not the particle is to be on-shell. For
example, if a spin-1 particle is initialized on-shell
then the projection operator is given by

P (1)
µν (p) = −gµν +

pµpν
p2

, (5)

otherwise, it is calculated using (4). This option is
also available in qft++ for half-integral spin parti-
cles.

After initialization, the sub-states can be ac-
cessed via calls like eps(m), which returns the
Tensor<complex<double> > object for sub-state
m. The spin-J projection operator can be ac-
cessed easily in the code using the method
eps.Projector(), which returns an object of type
Tensor<complex<double> > with a rank of 2J .

4.2. Half-Integral Spin Wave Functions

The wave function for a spin-1/2 particle is de-
scribed by a 4-component Dirac spinor, denoted
as u(p,m), where p and m again represent the 4-
momentum and spin projection of the particle. The
representation chosen here leads to the following
form of the spinors:

u(p,m) =
√
E + w

 χ(m)
~σ·~p
E+wχ(m)

 , (6)

where E(w) is the energy(mass) of the particle and
χ(m) are the standard non-relativistic 2-component
spinors.

Wave functions for particles with higher half-
integral spin, denoted as uµ1...µJ−1/2(p,m), are con-
structed using tensor products of integral spin wave
functions and the spin-1/2 spinors described above.
The Rarita-Schwinger conditions for half-integral
spin-J are [8]

(γµpµ − w)uµ1......µJ−1/2(p,m) = 0 (7a)

uµ1...µi...µj ...µJ−1/2(p,m)

= uµ1...µj ...µi...µJ−1/2(p,m) (7b)

pµiuµ1...µi...µJ−1/2(p,m) = 0 (7c)

γµiuµ1...µi...µJ−1/2(p,m) = 0 (7d)

3

qft++ Class Symbol Concept

Matrix<T> aij matrices of any dimension

Tensor<T> xµ1...µn tensors of any rank

MetricTensor gµν Minkowski metric

LeviCivitaTensor εµναβ totally anti-symmetric Levi-Civita tensor

DiracSpinor uµ1...µJ−1/2 (p,m) half-integral spin wave functions

DiracAntiSpinor v(p,m) spin-1/2 anti-particle wave functions

DiracGamma γµ

DiracGamma5 γ5 Dirac matrices

DiracSigma σµν

PolVector εµ1...µJ (p,m) integral spin wave functions

OrbitalTensor L
(`)
µ1...µ`

orbital angular momentum tensors

Table 2

A partial list of qft++ classes, a complete list can be found at [12].

gµiµjuµ1...µi...µj ...µJ−1/2(p,m) = 0, (7e)

for any µi, µj , and reduce the number of independent
elements from 4J+1/2 to (2J + 1).

The spin-J projection operator is then defined as

P (J)
µ1...µJ−1/2ν1...νJ−1/2

(p) =
1

2w
×
∑
m

uµ1......µJ−1/2(p,m)ūν1......νJ−1/2(p,m). (8)

For example, the spin-1/2 projection operator is
simply P (1/2)(p) = 1

2w (pµγµ+w), while for spin-3/2
the projection operator is given by

P
(3
2)

µν (p) = −P (1
2)(p)

×
(
P (1)
µν (p) +

1
3
P (1)
µα (p)γαP (1)

νβ (p)γβ
)
. (9)

Wave functions for particles with half-integral
spin are handled in qft++ by the DiracSpinor
class. The spin is set using the constructor,
e.g. DiracSpinor u(3/2.) would be used for
a spin-3/2 particle. As with the PolVector
class, the DiracSpinor class must be initialized
for a given 4-momentum. The sub-states can
then be accessed via u(m), which returns the
Matrix<Tensor<complex<double> > > object for
sub-statem. The spin-J projection operators can be
easily accessed using the method u.Projector()
which returns a 4 × 4 Matrix of rank-(2J − 1)
Tensor<complex<double> > objects. We also note
here that the quantity ū(p,m) is obtained using the
function Bar(u(m)).

4.3. Dirac Matrices

Classes are also provided to handle the Dirac
matrices, γµ (DiracGamma) and γ5 (DiracGamma5),
along with σµν ≡ i

2 [γµ, γν] (DiracSigma). Each
of these classes is derived from the common base
class Matrix<Tensor<complex<double> > >. Thus,
they inherit all of the necessary Matrix and Tensor
operators.

4.4. Orbital Angular Momentum Tensors

Two particles, with 4-momenta pa and pb, can be
coupled to a state of pure orbital angular momen-
tum, `, using the operators L(`)

µ1µ2...µ` . The total and
relative momenta are defined as P = pa + pb and
pab = 1

2 (pa − pb) respectively. The orbital-angular-
momentum operators are then built using the rela-
tive momentum and the spin-` projection operator
as follows:

L(`)
µ1µ2...µ`

∝ P (`)
µ1µ2...µ`ν1ν2...ν`

(P)pν1abp
ν2
ab . . . p

ν`

ab. (10)

These operators satisfy the Rarita-Schwinger condi-
tions

PµiL(`)
µ1µ2...µi...µ`

= 0 (11a)

L(`)
µ1µ2...µi...µj ...µ`

= L(`)
µ1µ2...µj ...µi...µ`

(11b)

gµiµjL(`)
µ1µ2...µi...µj ...µ`

= 0, (11c)

for any µi, µj , which insure that they have (2`+ 1)
independent elements.

4

In the qft++ package, orbital-angular-momentum
operators are handled by the OrbitalTensor class.
This class inherits from Tensor<double>; thus,
after construction it can be used just like any
other tensor. Setting the tensor elements of L(`)

µ1...µ`

(OrbitalTensor object orbL) for 4-momenta pa
and pb (Vector4<double> objects pa and pb) is
done by simply calling orbL.SetP4(pa,pb).

4.5. Additional Utilities

Functions are also provided to calculate use-
ful quantities such as Clebsch-Gordon coefficients,
Wigner D-functions, Breit-Wigner and Regge prop-
agators, etc.

5. Example Applications

In this section, a few simple examples will be ex-
amined. The qft++ package computes the values of
expressions numerically; thus, the 4-momenta of the
particles involved must be known. In an event-based
partial wave analysis, these would be obtained from
the experimental data and/or Monte Carlo events.
In the case that one wants to calculate theoreti-
cal angular distributions, cross sections, polarization
observables, etc., events with the desired kinemat-
ics must be generated as input for the qft++ code.
In the examples below, the assumption is made that
one of these methods is employed. For the example
plots shown in this section, the latter method was
used.

5.1. X(2−)→ ωK → π+π−π0K

Consider the decay of a particle, X, with spin-
parity JP = 2− into an ω and K via F -wave. The
invariant decay amplitude for this process is propor-
tional to

A ∝ ε∗µ(pω,mω)L(3)µνα(pωK)ενα(P,M), (12)

where pω,mω(P,M) are the momentum and spin
projection of the ω(X) and pωK is the relative mo-
mentum of the ωK system.

For this example, assume that the X is produced
via e+e− annihilation resulting in population of only
the M = ±1 sub-states. The decay distribution is
then obtained by calculating the intensity

I ∝
∑
M=±1

∑
mω=±1,0

|A|2. (13)

To calculate this distribution using qft++, the
necessary variables must first be declared:

PolVector epso; // omega
PolVector epsx(2); // X
OrbitalTensor orb3(3); // L^3
Tensor<complex<double> > amp;
Vector4<double> p4o,p4k,p4x;

For each point at which I is to be calculated, the
4-momenta must be set and the polarization states
initialized using calls to SetP4; however, if the kine-
matics are such that the X mass is constant, then
p4x and epsx will only need to be initialized once.

In the code, a loop would then be performed over
all values of cos θ (the decay angle of the ω in the
X rest frame) for which the decay intensity is to
be calculated (or over events). At each point, the
calculation would be performed as:

double intensity = 0.;
for(Spin m = -1; m <= 1; m+=2){

for(Spin mo = -1; mo <= 1; mo++){
amp = conj(epso(mo))*orb3|epsx(m);
intensity += norm(amp());

}
}

In this way, the value of I can be calculated at any
number of points in cos θ (or, for any number of
events).

It is worth examining this more carefully. The
tensor contractions in the code above are performed
by first evaluating the * operator which contracts
ε∗µ(pω,mω) into the first index of L(3)µνα(pωK).
The result is a rank-2 Tensor whose two in-
dices are contracted via the | operator into
both indices of ενα(P,M). The result is a rank-0
Tensor<complex<double> > whose value is ac-
cessed via the () operator.

To check that the code is working for this simple
example, the intensity in (13) can be calculated in
the X rest frame by making a slight modification
to the non-relativistic helicity formalism solution as
follows:

I ∝
∑
M,λ

|f(Eω/wω, λ)(301λ|2λ)d2
Mλ(θ)|2, (14)

5

)θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

in
te

ns
it

y

0

5

10

15

20

25

30

35

40

45

50
qft++
analytic

Fig. 1. (Color Online) Intensity vs cos θ: Angular distri-

bution calculated for the decay X(2−)→ ωK using qft++

(black filled squares) compared with an analytic solution

(red line). See text for details.

where Eω, wω, λ are the energy, mass and helicity of
the ω and f(x,±1) = 1, f(x, 0) = x accounts for
the effects of the boosts on the covariant ω helicity
states. Notice that as Eω → wω, the non-relativistic
solution is recovered.

The expression in (14) can then be rewritten
purely in terms of the decay angle as follows:

I ∝ (2 cos2 θ − 1)2 + cos2 θ

+9
(
Eω
wω

)2

sin2 θ cos2 θ. (15)

Figure 1 shows the angular distributions obtained
by calculating (12) using qft++ compared to the
modified helicity formalism expression given in (15),
normalized to have the same integral as the qft++
solution. The two calculations give the same angular
distributions, i.e. the code is working properly.

This example can be extended by considering the
secondary decay ω → π+π−π0. The amplitude for
this process can be written as

Aω→π+π−π0 ∝ iεµναβpνπ+pαπ−p
β
π0ε

µ(pω,mω), (16)

which, in the ω rest frame, simplifies to

Amω

ω→π+π−π0 ∝ i (~pπ+ × ~pπ−) · ~ε(mω). (17)

This is the standard non-relativistic result [13].
To incorporate this decay, (12) must be rewritten

as

A ∝ ωµ(pω)L(3)µνα(pωK)ενα(P,M), (18)

where,

ωµ(pω) ∝ iP (1)µν(pω)
p2
ω − w2

ω + iwωΓω
ενραβp

ρ
π+p

α
π−p

β
π0 , (19)

and wω,Γω are the mass and width of the ω.
To add this decay to the qft++ calculation, the

following variables need to be defined:

complex<double> i(0,1);
Tensor<complex<double> > omega;
LeviCivitaTensor levi;
Vector4<double> p4pip,p4pim,p4pi0;

Then, for each point the intensity is calculated as:

omega = epso.Projector()*levi
*p4pip*p4pim*p4pi0
*BreitWigner(p4o,0.78256,0.00844);

double intensity = 0.;
for(Spin m = -1; m <= 1; m+=2){

amp = omega*orb3|epsx(m);
intensity += norm(amp());

}

Since all of the objects are covariant, no extra
boosts or rotations to the ω rest frame are required.

5.2. πp→ ∆→ πp

As an example involving half-integral spin par-
ticles, consider the reaction πp→ ∆(1232)→ πp.
The invariant scattering amplitude for this process
is proportional to

M∝ ū(pf ,mf)pµfP
(3
2)

µν (P)pνi u(pi,mi), (20)

where pi(pf) and mi(mf) are the 4-momentum and
canonical spin projection of the initial(final) proton
respectively. For this example, the mass-dependence
of the propagator will be ignored. In the code, adding
this would simply involve multiplying the amplitude
by a complex<double>.

The distribution in the scattering angle, i.e.
the angle between the initial and final protons
(cos θ = p̂i · p̂f), is obtained by calculating the scat-
tering intensity

I ∝
∑
mi,mf

|M|2. (21)

6

To calculate this distribution using qft++, the
following variables must be declared:

DiracSpinor ui,uf; // proton spinors
DiracSpinor delta(3/2.);
Matrix<complex<double> > amp(1,1);
Vector4<double> p4_i,p4_f,p4_delta;

For each point at which I is to be calculated, the
4-momenta must be set and the spinors initialized
using calls to SetP4; however, if the 4-momentum of
any given particle does change from point to point,
then its corresponding object would only need to
be initialized once.

In the code, a loop would then be performed over
all values of cos θ for which the scattering intensity
is to be calculated (or, again, over all events). At
each point, the calculation would be performed as:

double intensity = 0.;
for(Spin m_i = -1/2.; m_i <= 1/2.; m_i++){
for(Spin m_f = -1/2.; m_f <= 1/2.; m_f++){

amp = Bar(uf(m_f))*p4_f
*delta.Projector()*p4_i*ui(m_i);

intensity += norm(amp(0,0));
}

}

In this way, the value of I can be calculated at any
number of points in cos θ.

If the ∆(1232) projector is on-shell (see discussion
in Section 4.1), then the numerical calculations can
be checked in the overall center-of-mass frame using
the non-relativistic helicity formalism. In this frame,
the scattering intensity is proportional to

I ∝
∑
λi,λf

|d
3
2
λiλf

(θ)|2 ∝ 1 + 3 cos2 θ, (22)

where λi(λf) are the initial(final) proton helicities.
Figure 2 shows the angular distributions obtained

by calculating (20) in the overall center-of-mass
frame using qft++ compared to the non-relativistic
helicity formalism calculation used to obtain (22).
The result obtained using (22) was normalized to
have the same integral as the covariant calculation.
Clearly the two calculations give the same angular
distributions.

)θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

in
te

ns
it

y

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
qft++
analytic

Fig. 2. (Color Online) Intensity vs cos θ: Angular distribu-

tion calculated for the reaction πp→ ∆(1232)→ πp using
qft++ (black filled squares) compared with an analytic solu-

tion (red line). See text for details.

5.3. Compton Scattering

As a final example, the unpolarized Compton
scattering cross section will be calculated to leading
order in α. The two well-known tree-level ampli-
tudes, corresponding to s- and u-channel electron
exchange diagrams, are

As = −e2ū(p′,m′p)γ
µε∗µ(k′,m′γ)

× /p+ /k + w

(p+ k)2 − w2
γνεν(k,mγ)u(p,mp) (23a)

Au = −e2ū(p′,m′p)γ
νεν(k,mγ)

× /p− /k′ + w

(p− k′)2 − w2
γµε∗µ(k′,m′γ)u(p,mp), (23b)

where p(p′) and k(k′) denote the initial(final) elec-
tron and photon momenta respectively and w is the
mass of the electron. The full scattering amplitude,
from which the cross section can be calculated, is
obtained by combining these two processes.

The calculation of this scattering amplitude is
similar to that of the previous example. First, the
following variables must be declared:

7

DiracSpinor ui,uf; // e spinors
DiracSpinor u_ex; // exchanged e spinor
PolVector epsi,epsf; // photon pol.vecs
DiracGamma gamma; // gamma^mu
// s- and u-channel propagators
Matrix<complex<double> > prop_s;
Matrix<complex<double> > prop_u;
Vector4<double> pi,pf,ki,kf; // 4-momenta

A loop would then be performed over all values of
cos θ (scattering angle in the lab frame) for which
the cross section is to be calculated. At each point,
the propagators are obtained using the following
code:

u_ex.SetP4(pi+ki,0.511);
prop_s = u_ex.Propagator();
u_ex.SetP4(pi-kf,0.511);
prop_u = u_ex.Propagator();

The scattering intensity is then obtained by looping
over spin projections, Spin m ef,m ei,m gf,m gi,
and calculating the amplitudes given in (23) as

amp_s = Bar(uf(m_ef))*gamma
*conj(epsf(m_gf))*prop_s*gamma
*epsi(m_gi)*ui(m_ei);

amp_u = Bar(uf(m_ef))*gamma*epsi(m_gi)
*prop_u*gamma*conj(epsf(m_gf))
*ui(m_ei);

To get the cross sections the appropriate scale fac-
tors (α2, phase space factors, etc.) must then be
applied.

Figure 3 shows the differential cross section for
a 10 MeV incident photon calculated using qft++
compared to the well-known spin-averaged Klein-
Nishina formula [14]. Both methods give the same
results.

6. Discussion

The examples in this paper were chosen because
they can also easily be solved analytically, allow-
ing for comparisons of the two calculations. In gen-

)θcos(
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

)
(b

ar
ns

)
θ

/d
co

s(
σd

-210

-110

qft++

Klein-Nishina

Fig. 3. (Color Online) dσ
d cos θ

(barns) vs cos θ: Compton scat-

tering differential cross section for a 10 MeV incident photon
calculated using qft++ (black filled squares) compared with

the Klein-Nishina equation (red line). See text for details.

eral, this is not the case; however, even for very
complicated expressions involving high rank tensors
or symmetrization, the qft++ calculations are still
very manageable (more complicated examples can
be found online [12]). The code is also optimized for
performance. The examples given in this paper run
at ∼ 3 kHz, i.e. on a 2.5 GHz processor, one can
compute results at about 3000 kinematic points per
second. This package makes it possible for any physi-
cist to compare and/or fit a theoretical model to his
or her data by coding up the expressions themselves.

It is clear from these examples how this package
could be useful for a partial wave analysis, but it
can also be used for other types of analyses. For ex-
ample, it can be used to perform numeric checks of
analytic calculations. The qft++ package can also
be used for cases where analytic solutions are desir-
able but not feasible. For example, consider the case
where an expansion of an expression in powers of
some variable, x, is needed but an analytic solution
is not available. The qft++ package could be used to
evaluate the expression at a large number of values
of x. The coefficients in the expansion could then be
extracted by fitting the qft++ results.

The qft++ package is available to all users from
http://www-meg.phys.cmu.edu/qft++.

Acknowledgments

I would like to thank Matt Shepherd for provid-
ing a more efficient version of the TensorIndex

8

http://www-meg.phys.cmu.edu/qft

class. This work was supported by grants from the
United States Department of Energy No. DE-FG02-
87ER40315 and the National Science Foundation
No. 0653316 through the “Physics at the Informa-
tion Frontier” program.

References

[1] R. Mertig, M. Bhm and A. Denner. Comput. Phys.

Commun. 64 345 (1991).

[2] T. Hahn. Comput. Phys. Commun. 140 418 (2001).

[3] J. Fujimoto et al. Comput. Phys. Commun. 153 106

(2003).

[4] E. Boos et al. Nucl.Instrum. Meth. A534 250 (2004).

[5] M. Williams, Carnegie Mellon University Ph.D. Thesis,

(2007).

[6] A. Alexandrescu. Modern C++ Design. Addison-

Wesley, 2001. Using concepts discussed in Chapter 2.

[7] J. Järvi, J. Willcock and A. Lumsdaine. Following the

enable if family of templates contained in the BOOST

libraries. http://www.boost.org.

[8] W. Rarita and J. Schwinger. Phys. Rev. 60, 61 (1941).

[9] C. Zemach. Phys. Rev. 140, B97 (1965).

[10] S.U. Chung. BNL preprint BNL-QGS-02-0900 (2004).

[11] A.V. Anisovich et al. J. Phys. G 28, 15-32 (2002).

[12] http://www-meg.phys.cmu.edu/qft++

[13] C. Zemach. Phys. Rev. B 133, 1201-1220 (1964).

[14] O. Klein and Y. Nishina. Z. Physik 52, 853 (1929).

9

http://www.boost.org
http://www-meg.phys.cmu.edu/qft

	Introduction
	Overview
	Basic Operations
	Matrix Operations
	Tensor Operations

	Object-Oriented Field Theory
	Integral Spin Wave Functions
	Half-Integral Spin Wave Functions
	Dirac Matrices
	Orbital Angular Momentum Tensors
	Additional Utilities

	Example Applications
	 X(2-) K +-0K
	 p p
	Compton Scattering

	Discussion
	References

