
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in Computer Physics
Communications Package.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/10469

Published paper
Lee, Y.C., Thompson, H.M. and Gaskell, P.H. (2009) FILMPAR: A parallel
algorithm designed for the efficient and accurate computation of thin film flow on
functional surfaces containing micro-structure. Computer Physics
Communications Package, 180 (12). pp.

FILMPAR: A parallel algorithm designed for

the efficient and accurate computation of thin

film flow on functional surfaces containing

micro-structure

Y C Lee a, H M Thompson a, P H Gaskell a,1

aSchool of Mechanical Engineering, The University of Leeds, Leeds, United
Kingdom. LS2 9JT

Abstract

A highly efficient and portable parallel multigrid algorithm for solving a discre-
tised form of the coupled lubrication equations for three-dimensional, gravity-driven,
continuous thin film free-surface flow over substrates containing micro-scale topog-
raphy is presented. Although applicable to problems involving heterogeneous and
distributed features, for illustrative purposes the algorithm is benchmarked for the
case of flow over a single trench topography; this enables direct comparisons with
complementary experimental data and existing serial multigrid solutions. Parallel
performance is accessed and shown to lead to super-linear behaviour provided the
finest multigrid mesh level employed is sufficiently so.

Key words: Multigrid, parallel computing, thin film flow, lubrication equations

PROGRAM SUMMARY

Manuscript Title: FILMPAR: A parallel algorithm designed for the efficient and
accurate computation of thin film flow on functional surfaces containing micro-
structure
Authors: P.H. Gaskell, Y.C. Lee, H.M. Thompson
Program Title: FILMPAR
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: C++
Computer: Desktop, server

1 Corresponding author: p.h.gaskell@leeds.ac.uk

Preprint submitted to Elsevier 31 March 2009

Operating system: Unix/Linux, Mac OS X
RAM: 512 Mbytes
Number of processors used: 128
Supplementary material:
Keywords: Multigrid, parallel computing, thin film flow, lubrication equations, adap-
tive time-stepping
PACS:
Classification: 12
External routines/libraries: GNU C/C++, OpenMPI
Subprograms used:
Catalogue identifier of previous version:*
Journal reference of previous version:*
Does the new version supersede the previous version?:*

Nature of problem:

Thin film flows over functional substrates containing well-defined single and com-

plex topographical features are of enormous significance, having a wide variety of

engineering, industrial and physical applications. However, despite recent modelling

advances, the accurate numerical solution of the equations governing such problems

is still at a relatively early stage. Indeed, recent studies employing a simplifying

long-wave approximation have shown that highly efficient numerical methods are

necessary to solve the resulting lubrication equations in order to achieve the level of

grid resolution required to accurately capture the effects of micro- and nano-scale

topographical features.

Solution method:

A portable parallel multigrid algorithm has been developed for the above purpose,

for the particular case of flow over submerged topographical features. Within the

multigrid framework adopted, a W-cycle is used to accelerate convergence in the re-

spect of the time dependent nature of the problem, with relaxation sweeps performed

using a fixed number of pre- and post- Red-Black Gauss-Seidel Newton iterations.

In addition, the algorithm incorporates automatic adaptive time-stepping to avoid

the computational expense associated with repeated time-step failure.

Reasons for the new version:*

Summary of revisions:*

Restrictions:

Unusual features:

Additional comments:

Running time:

1.31 minutes using 128 processors on BlueGene/P with a problem size of over 16.7

2

million nodes.

References:

Items marked with an asterisk are only required for new versions of programs pre-

viously published in the CPC Program Library.

3

1 Introduction

The accurate prediction of the free-surface disturbance arising from the flow of
a continuous thin liquid film over functional substrates containing regions of
micro- or nano-scale topography presents a considerable challenge given that
the same can persist over length scales several orders of magnitude greater
than the topography itself [1–3]. The problem becomes further exacerbated
when the features concerned are: (i) small, thus requiring considerable mesh
resolution to achieve the necessary level of solution accuracy and mesh inde-
pendence; (ii) heterogeneous, covering a wide extent of the substrate’s surface.

The above has motivated the development of an efficient, fully-implicit multi-
grid strategy for investigating such flows, by solving the lubrication equation(s)
that result from using the long-wave approximation to simply the governing
Navier-Stokes equations under the assumption that the ratio of the undis-
turbed asymptotic film thickness to that of the characteristic in-plane length
scale is small, coupled with the neglect of inertia. The approach has been
shown to be very robust and to return an order of magnitude, or more, im-
provement in the rate of convergence compared to ADI schemes [4], the bene-
fits of which can be further enhanced by adopting error-controlled automatic
adaptive time-stepping [5] and/or adaptive mesh refinement [6].

Described below is a new portable parallel multigrid lubrication flow solver
that has been developed to solve continuous thin film flows over submerged
topography. Benchmark results are presented, compared against complemen-
tary experimental data and results obtained from serial multigrid predictions
of the free-surface disturbance, which demonstrate the accuracy of the par-
allel implementation. The parallel performance of the solver, executed on a
distributed memory IBM BlueGene/P computing platform, is assessed and
shown to lead to super-linear behaviour provided the finest mesh level em-
ployed in the multigrid approach is sufficiently so.

2 Theoretical background

2.1 Mathematical formulation and problem specification

Figure 1 is a sketch of the motion of a thin liquid film of undisturbed asymp-
totic film thickness, H0, whose general thickness, defined using a three-dimensional

4

Cartesian coordinate system (X, Y, Z) at time, T , over a substrate of width,
Wp, length, Lp, is H(X, Y, T); the constant volumetric flow per unit width be-
ing Q0. The substrate is inclined at an angle θ to the horizontal and contains,
for illustration purposes, a single rectangular trench topography, S(X, Y), of
depth, S0. The liquid is assumed Newtonian and incompressible with constant
viscosity, µ, density, ρ, and surface tension, σ.

A generic set of governing equations, based on the long-wave lubrication ap-
proximation, for thin-film flow is derived. By proceeding as in [6], the governing
Navier-Stokes equations simply considerably by neglecting inertia and assum-
ing that ǫ = H0/L0 is small, where L0 is the characteristic in-plane length
scale, proportional to the capillary length, Lc, given by:

L0 = β

(

σH0

3ρg sin θ

)1/3

and β = L0/Lc , (1)

with H0 = (3µQ0/ρg sin θ)1/3, the undisturbed Nusselt film thickness; where
g is the acceleration due to gravity.

Neglecting terms of O(ǫ2) and smaller and imposing no-slip conditions and
zero tangential shear stress at the substrate and free-surface, respectively, and
using the following scalings [7], (x, y) = (X, Y)/L0, h = H/H0, t = U0T/L0,
U0 = 3Q0/2H0, s = S/H0 and p = 2P/ρgL0 sin θ, results in the following
equation for h:

∂h

∂t
=

∂

∂x

{

h3

3

∂

∂x

[

− 6

β3

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

+
2

β
61/3Nψ

]

− 2

3
h3

}

+
∂

∂y

{

h3

3

∂

∂y

[

− 6

β3

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

+
2

β
61/3Nψ

]}

, (2)

where ψ = h + s. Alternatively, the above can be written as a coupled set
of equations for h and p, the pressure throughout the film, which from the
standpoint of computational efficiency has been shown to be preferable [8]:

∂h

∂t
=

∂

∂x

[

h3

3

(

∂p

∂x
− 2

)]

+
∂

∂y

[

h3

3

(

∂p

∂y

)]

, (3)

p=− 6

β3
∇2(ψ) +

2

β
61/3N(ψ) , (4)

with the pressure datum is set to zero; N = Ca1/3 cot θ measures the in-
fluence of the normal component of gravity on the flow profile and Ca =

5

(9µ2Q2
0/8ρgσ

3 sin θ)1/3 is the Capillary number.

2.2 Topography specification

Following [9], the topography depth, s, is defined via an arctangent function
which enables the side steepness to be controlled easily, thus providing the flex-
ibility needed to create simple primitive shapes [6]. For example, the rectan-
gular topography shown in Figure 1, of length lt = LT/L0, width wt = WT/L0

and height, s0 = S0/H0, centred at point (xt, yt), is specified by defining:

s(x, y)=
s0

b0

[

tan−1

(

−ax − lt/2

γlt

)

+ tan−1

(

ax − lt/2

γlt

)]

×
[

tan−1

(

−ay − wt/2

γwt

)

+ tan−1

(

ay − wt/2

γwt

)]

, (5)

where γ is an adjustable steepness parameter, b0 = 4 tan−1 (1/2γ) tan−1 (A/2γ),
A = wt/lt is the aspect ratio and ax = xt − x and ay = yt − y are the local
topography co-ordinates in the x- and y-directions, respectively.

Equation (5) can be used to specify other simple primitive topography shapes
such as elliptic or lozenge shapes by modifying ax and ay appropriately. It is
then relatively straightforward to add and subtract these primitives to create
complex topographical patterns to represent realistic engineering functional
substrates [10].

2.3 Boundary conditions

The problem is closed by specifying appropriate boundary conditions and
assuming developed flow conditions to exist far upstream, namely:

h(x = 0, y) = 1 , (6)

while imposing zero normal flux conditions at the other streamwise and span-
wise boundaries yield:

∂h

∂n
=

∂p

∂n
= 0. (7)

6

2.4 Spatial discretisation

The lubrication equations (3) and (4) are discretised using a central finite-
difference scheme with uniform grid spacing, ∆, in both the x- and y-directions;
leading to the following second order accurate spatial analogues for h and p:

∂hi,j

∂t
=

1

∆2

[

h3

3

∣

∣

∣

∣

i+ 1

2
,j

(pi+1,j − pi,j) −
h3

3

∣

∣

∣

∣

i− 1

2
,j

(pi,j − pi−1,j) +

h3

3

∣

∣

∣

∣

i,j+ 1

2

(pi,j+1 − pi,j) −
h3

3

∣

∣

∣

∣

i,j− 1

2

(pi,j − pi,j−1)
]

−

2

∆

(

h3

3

∣

∣

∣

∣

i+ 1

2
,j
− h3

3

∣

∣

∣

∣

i− 1

2
,j

)

, (8)

pi,j =− 6

β3∆2

[

(hi+1,j + si+1,j) + (hi−1,j + si−1,j) + (hi,j+1 + si,j+1) +

(hi,j−1 + si,j−1) − 4(hi,j + si,j)
]

+
2 3
√

6N

β
(hi,j + si,j) , (9)

at each node, (i, j), in the computational domain. The pre-factor terms, h3

3
|i± 1

2
,j

and h3

3
|i,j± 1

2

, are obtained from linear interpolation between neighbouring
points.

2.5 Temporal discretisation

Time integration is performed using the second-order accurate Crank-Nicholson
method to approximate the time-derivative of equation (8) and which, rewrit-
ing the right-hand-side as a function, F(hi,j, pi,j, hi±1,j , pi±1,j, hi,j±1, pi,j±1),
leads to an equation of the form:

hn+1
i,j − ∆tn+1

2
F(hn+1

i,j , pn+1
i,j , hn+1

i±1,j , p
n+1
i±1,j, h

n+1
i,j±1, p

n+1
i,j±1)

= hn
i,j +

∆tn+1

2
F(hn

i,j, p
n
i,j, h

n
i±1,j, p

n
i±1,j, h

n
i,j±1, p

n
i,j±1), (10)

where ∆tn+1 = tn+1−tn; the right hand side of the above equation is expressed
in terms of known variables at the end of the nth time step, t = tn.

Automatic adaptive time-stepping is achieved by employing a temporal error
control algorithm based on predictor-corrector stages, as reported in [5]. The

7

method employed provides an efficient alternative to existing schemes such
as [11] by using time-stepping based on local error estimates, one that is im-
plicit and second order accurate, obtained from the difference between the
current solution and predicted one and which act as an indicator of whether
to increase or decrease the time step in a controlled manner whilst concur-
rently minimising the computational expense associated with repeated time
step failure.

2.6 Multigrid strategy

In line with the multigrid algorithm employed in [6], a sequence of progressively
finer grids (Gk: k = 0, 1, ..., K) is defined with uniform grid spacing, ∆k. Each
grid level, Gk, has nk = 2k+c+1 + 1 nodes per unit length in each co-ordinate
direction, where c is a constant defining the resolution of the coarsest grid
level such that mesh size, ∆k = 2−(k+c+1).

The associated time-dependent, nonlinear, coupled set of governing lubrication
equations (9) and (10) are solved using a full approximation storage (FAS)
multigrid scheme [12]. By combining and re-writing the above set of discretised
equations as follows:

Nku
n+1
k = fk(u

n
k) (11)

where uk = (hk, pk)
T with Nk = (N h

k ,N p
k)T and fk = (fh

k , f
p
k)T corresponds

to the left- and right-hand sides of the both the film thickness and pres-
sure equations on Gk, respectively, the multigrid method can be summarised
schematically, as in Algorithm 1.

Note that the cycle-index, κ, which represents the number of iterations of
the multigrid process at each intermediate grid level, determines the type of
coarse grid correction cycle. Here, the W-cycle (κ = 2) is employed to optimise
the convergence properties provided by the scheme for the time-dependent
lubrication solution.

The inter-grid transfer operators used in the multigrid algorithm consist of
restriction operator Rk−1

k (from Gk to Gk−1) and prolongation operator, Ik
k−1

(grid Gk−1 to Gk), whose orders depend on the order of derivatives being solved.
For the second order lubrication equations under consideration, the standard
half-weighting restriction and bi-linear interpolation are appropriate.

In order to avoid convergence problems that may arise from using an arbitrary
initial guess, the Full Multigrid (FMG) technique [12] is used together with
the FAS algorithm, see Algorithm 2. Note that Πk

k−1 is a prolongation operator

8

for transferring information from Gk−1 to Gk and its order may not necessary
be equal to that of the prolongation operator Ik

k−1.

2.7 Relaxation

Relaxation is performed using a fix number, (ν1, ν2), of pre- and post- Red-
Black Gauss-Seidel Newton iterations with the linearised Newton iterative
step written in the form:

∂N h
k

∂hn+1
k

∆hk +
∂N h

k

∂pn+1
k

∆pk = fh
k −N h

k (hn
k , p

n
k) , (12)

∂N p
k

∂hn+1
k

∆hk +
∂N p

k

∂pn+1
k

∆pk = f p
k −N p

k (hn
k , p

n
k) , (13)

for the increments ∆h and ∆p at point (i, j) on level k. The expressions are
then solved simultaneously to obtain a new approximate solution on Gk:

h̃n+1
k = hn+1

k + ∆hk , (14)

p̃n+1
k = pn+1

k + ∆pk . (15)

2.8 Parallel implementation

Parallel implementation of the above automatic adaptive time-stepping multi-
grid solver is achieved through the use of a message passing interface (MPI)
framework, which facilitates portability across different (distributed and shared
memory) high performance computing platforms. Parallelism is achieved via a
geometric partitioning at each of the grid levels, using a strategy that automat-
ically constructs virtual topologies arranged so as to minimise communication
cost. This is illustrated in Figure 2, where the partitions, depending on the
number of processors and shape of the domain, are split into, or as close as
is possible, equally divisible rectangular blocks. Note that when the number
of columns or rows is not an exact multiple of the number of processors used,
the left over points are allocated to the last processor associated with the
respective rows and columns.

Each of the processors is responsible for implementing the FMG-FAS multigrid
algorithm on its own subdomain, making use of additional halo nodes (points
located within and adjacent to the dotted lines, Figure 2) to store exchanged
computed values between neighbouring processors. The inter-processor com-
munication provides updated values at the halo points during relaxation and

9

after the inter-grid transfer operations. Additionally, a global communication
exchange is performed at the end of each multigrid cycle to ascertain whether
a converged solution has been achieved.

The above approach allows standard sequential algorithms, such as the FMG-
FAS multigrid scheme to be parallelised without any fundamental alteration,
as the assembly of the underlying discrete system of equations is undertaken
by the initial domain decomposition process; maintaining this strategy for
the parallel solver minimises the need for data movement within a distributed
memory parallel code. Nonetheless, obtaining good parallel efficiencies for such
a scheme is challenging due to the fact that several computations must be
undertaken on relatively coarse meshes which may result in an undesirably
large communication overhead.

3 Benchmark numerical results

The benchmark test problem considered is that of the gravity-driven flow of
a thin film of water (viscosity, µ = 0.001 Pa s, density, ρ = 1000 kg m−3

and surface tension, σ = 0.07 N m−1), having an asymptotic film thickness
H0 = 100µm, over a rigid substrate (of size lp = wp = 100 and tilted at 30o to
the horizontal) containing a single localised, square trench topography (γ =
0.05, so = −0.25, and lt = wt = 1.54), centred at (xt, yt) = (30.77, 50). The
above fluid properties and associated flow parameters are consistent with the
experiments carried out by [1] enabling direct comparison with the same and
with complementary numerical predictions obtained using a serial multigrid
algorithm [6] employing automatic mesh adaption. The values for Lc = L0

and N are 0.78 mm and 0.12, respectively; the latter indicting the normal
component of gravity has little effect on the resultant free-surface shape [2].

The steady-state free-surface disturbance illustrated in Figure 3 was obtained
with a fine mesh containing 1025× 1025 nodes, guaranteeing an accurate grid
independent solution. It shows the gross characteristic “horse-shoe” bow-wave
and a “comet-tail” pattern that results. Streamwise free-surface profiles at
different spanwise cross-sectional locations are depicted in Figure 4, comparing
those obtained with FILMPAR against their experiment counterparts and ones
obtained using a serial multigrid solver. As can be seen, the FILMPAR profiles
shows very good qualitative agreement with experimental data, to within the
2% r.m.s experimental error reported in [1], and are indistinguishable from
the corresponding serial multigrid solutions [6].

The parallel performance of the portable FILMPAR algorithm was assessed,
for illustrative purposes, on a distributed memory IBM BlueGene/P comput-
ing platform comprised of four 850 MHz PowerPC 450 cores per processor

10

and 2 GB of local memory. Figure 5 shows the speedup and parallel efficiency
of the parallel multigrid solver when executed on between 4 and 128 proces-
sors, together with the theoretically expected values. The results are presented
relative to the smallest number of processors used, which in this case is 4,
employing 4 multigrid levels with W(2,2)-cycles. Figure 5(a) indicates that a
relatively good level of speedup is achieved, as one would expect, giving better
returns when finer meshes (1025× 1025 and above) are employed, as opposed
to coarser grids due to the considerable inter-processor communication cost
incurred during coarse grid computations that lead to large computational
overheads. This is more clearly shown in Figure 5(b) where parallel efficiency
is seen to approach the theoretical limit when very fine grids are employed as
a result of large relative computation to communication ratios especially when
a larger number of processors are used. Indeed, super-linear parallel perfor-
mance is observed with 16 processor for a fine mesh having 2049×2049 points,
and with 16, 32 and 64 processors when the fine mesh contains 4097 × 4097
points. The reason for this can be attributed to the likely fact of the efficiency
of communication and cache effects, which come into play when the size of
the sub-domains become small and the variables accessed fit into the cache
dramatically reducing memory access times and hence computational times.

The precise choice made for size of the coarsest grid level has a bearing on
the overall parallel performance. A comparison of the efficiency of FILMPAR
for fine grid levels of 2049 × 2049 and 4097 × 4097, using different number of
multigrid levels is shown in Figure 6. It reveals that the cost of performing a
greater number of multigrid levels diminishes as a finer mesh is used, as indi-
cated by the improved consistency in speedup efficiencies depicted in Figures
6(a) and 6(b). Speedup becomes more pronounced as the number of multgrid
levels increases, particularly when a large number of processors is employed.
This is more evident for the case when the finest mesh contains 2049 × 2049
points, which is to be expected since the coarse grid levels utilised are coarser
and thus the amount of computation per processor is smaller.

Given that the computational complexity of the underlying sequential multi-
grid algorithm is of O(N) [5], with N the total number of unknowns, it is clear
that a perfectly scalable algorithm should yield the same performance for all
runs with a fixed number of points per processor. This is demonstrated plainly
in Figure 6 which shows that as the number of points per processor is halved,
the speedup efficiency doubles, suggesting that the parallel implementation is
very efficient.

11

4 Conclusions

A highly accurate and efficient portable parallel multigrid lubrication solver
is presented for the solution of three-dimensional gravity-driven continuous
thin film free-surface flow over substrates containing topography. It enables
results to be obtained on extremely fine meshes, ones that cannot be attempted
using a serial solver; the solver having a parallel efficiency that is both scalable
and cost effective. Benchmark results, compared against known experimental
data and with existing serial multigrid solutions reveal that the parallel solver
generates accurate steady-state free-surface disturbances for flow over a small
trench.

The performance characteristics of the parallel solver indicate that its imple-
mentation is highly efficient specifically when, as is the case of flow over small
topographical features, a fine mesh is required to produce accurate mesh in-
dependent solutions; small losses in efficiency that can be attributed to the
overhead associated with inter-processor communication. The latter becomes
apparent in the case of coarser grid levels where the amount of computation
per processor is relatively small. Accordingly, given that multigrid schemes
are designed do most of their work on coarser grid levels, it is important to
select a fine grid level that does not compromise parallel performance.

5 Overview of the software structure

FILMPAR is written entirely using C++, making full use of its object-oriented
framework to simplify the creation of arrays and variable structures as well
as to allow for code flexibility and future extensibility. The program has a
modular form, with routines and functions defined in separate files, as per the
following structure:

./input – stores user provided input data files

./src – location of the source files

./scr/core – location of the core source files

./src/include – location of the header files

./src/lib – location of general library routines

./src/template – location of template files

./output – stores the output of the program

12

6 Description of the individual software components

Core source files located at ./src/core:

• ats_predict.cpp – Computes and controls the adaptive time-stepping rou-
tine.

• ats_set.cpp – Initialises and defines variables h and p for the new time
step.

• engine_clean.cpp – Uninitialise the grid arrays used and free up memory.
• engine_init.cpp –Initialise the grid arrays, topography and initial profiles

of the thin film flow problem.
• engine_mpi_mg.cpp – Performs a full multigrid (FMG) iteration and de-

termine if additional multigrid iterations are required.
• engine_mpi_solver.cpp – Performs the adaptive or non-adaptive time-

stepping routine on the multigrid algorithm.
• engine_mpi_write.cpp – Determine types of output data.
• engine_parameters.cpp – Calls read, process and write input parameter

data.
• evalpressure.cpp – Calculates initial p from h and s values.
• func_mpi_lop.cpp – Calculates Nku

n+1
k .

• func_mpi_rhs.cpp – Calculates fn
k .

• grids_init.cpp – Initialises arrays and grid structure for parallel imple-
mentation.

• grids_mpi_reset.cpp – Resets temporary arrays.
• mg_mpi_cycle.cpp – Performs the parallel multigrid cycle with calls to

appropriate relaxation and interpolation operators.
• mg_mpi_lop.cpp – Sets up domain boundaries and calls func_mpi_lop.cpp.
• mg_mpi_relax.cpp – Set up domain boundaries and calls newtitr.cpp.
• mg_mpi_solve_coarsest.cpp – Performs multiple relaxation iterations for

coarsest grid solution.
• mg_mpi_solve_rhs.cpp – Setup domain and calls func_mpi_rhs.cpp.
• mpi_init.cpp – Initialises and sets up the parallel environment variables.
• mpi_uninit.cpp – Uninitialise the parallel environment variables.
• newtitr.cpp – Performs relaxation using Newton iteration on the coupled

system of equations h and p.
• nonats_set.cpp – Sets up appropriate variables and arrays for non-adaptive

time-stepping.
• parameters_mpi_write.cpp – Creates and sets up appropriate directories

for parameter output files.
• parameters_process.cpp – Calculates and processes the input parameters

used.
• parameters_read_tag.cpp – Defines the tags that are read from the input

parameter file.
• parameters_read.cpp – Reads the input parameter file.

13

• parameters_write_tag.cpp – Writes out the processed information and
parameters used.

• parameters_write.cpp – Creates and writes the parameters used into a
file.

• pre.cpp – Performs the exchange of halo data from initial h, p and s.
• profiles_film.cpp – Specifies and sets up the initial profile for the thin

film flow problem.
• profiles_init.cpp – Initialises the definition of the thin film profile.
• topography_init.cpp – Sets up the topography input file for reading.
• topography_read.cpp – Reads in the parameters from the input topogra-

phy file.
• topography_set.cpp – Creates and processes the topography information

read from the input file.
• write_data_array.cpp – Writes parallel output data to file.
• write_mpi_create_mesh.cpp – Determines the types of output files.
• write_mpi_data.cpp – Creates and prepares the appropriate filenames and

data for parallel output.
• xmg_main.cpp – The main file that performs the time-adaptive parallel

multigrid solver.

Library source files located at ./src/lib:

• anorm2_mpi.cpp – A function that returns the L2-norm value.
• copy_mpi.cpp – Duplicates a grid array variable.
• interp_mpi.cpp – Performs the bilinear interpolation of grid variables from

a coarse to fine grid.
• matadd_mpi.cpp – Calculates the addition of two grid array variables.
• matsub_mpi.cpp – Calculates the subtraction of two grid array variables.
• rstrct_mpi.cpp – Performs the half-weighting restriction of grid variables

from a fine to coarse grid.
• rstrctinject_mpi.cpp – Performs the injection of grid variables from a

fine to coarse grid.

Header files located at ./src/include:

• incl_core_header.h – Provides the namespace for all the core source files.
• incl_grids.h – Defines the structure of the array variables and parallel

parameters.
• incl_lib_header.h – Provides the namespace for all the library source

files.
• incl_parameters.h – Defines all the parameters used in the program.
• incl_template.h – Defines the one- and two-dimensional array template

structures.

Template files located at ./src/template:

14

• tmpl_array_1d.h – Defines the template and class for one-dimensional ar-
rays.

• tmpl_array_2d.h – Defines the template and class for two-dimensional ar-
rays.

• tmpl_io_check.h – Defines the template class for input and output file
checking.

• tmpl_level_define.h – Defines the template class for various multigrid
array structures.

Input files located at ./input:

• xmg-parameter.input – Defines the input flow, multigrid and domain vari-
ables.

• xmg-topography.input – Defines the shape and size of the topography.

7 Installation instructions

The code can be compiled on any system with a GNU C++ compiler and
OpenMPI libraries installed, by invoking the following command:

$ make

All the files will be compiled and linked to produce an output binary executable
file named filmpar.

Invoking the command:

$ make clean

will remove all compiled object files while

$ make clean-all

removes both the compiled object files and the executable binary.

8 Test run description

The binary executable file can be executed on a parallel system with multiple
processors by invoking, as an example:

$ mpirun -np 8 ./filmpar

15

in which, 8 processors are allocated and utilised for the execution of the pro-
gram based on the user defined inputs provided in files ./input/xmg-topography.input
and ./input/xmg-paramters.input, respectively.

All data outputs are stored in the ./output directory with each set of results
generated by the program automatically stored in their respective subdirecto-
ries; the first set of results is stored under the sub-directory ./output/result

while subsequent results generated from the execution of the program are
stored in sub-directories labelled result0, result1, . . . , increments.

The output files created in the result sub-directories consist of an output file
./output/result/xmg-parameters.output, which prints out the parameter
variables used by the program, and the associated output data files computed
on each processor labelled in their respective sub-directories beginning with
./output/result/rank0, ./output/result/rank1, . . . , ./output/result/rank7,
if 8 processors are used.

9 Acknowledgements

The authors wish to record their gratitude to the Engineering and Physi-
cal Sciences Research Council (EPSRC) for supporting this work via grant
reference EP/F010745/1. The authors also wish to thank Dr. XJ Gu and Pro-
fessor DR Emerson (Daresbury Laboratory, Warrington, UK) for informative
discussions surrounding parallel computing issues and for access to and use
of the Bluegene/P high performance computing platform for benchmarking
purposes.

References

[1] M.M.J. Decre, C-J. Baret, J. Fluid Mech. 487 (2003) 147.
[2] P.H. Gaskell, P.K. Jimack, M. Sellier, H.M. Thompson, M.C.T. Wilson, J. Fluid

Mech. 509 (2004) 253.
[3] M. Sellier, Y.C. Lee, H.M. Thompson, P.H. Gaskell, Comput. & Fluids 38 (2009)

171.
[4] L.W. Schwartz, R.R. Eley, J. Colloid Interface Sci. 202 (1998) 173.
[5] P.H. Gaskell, P.K. Jimack, M. Sellier, H.M. Thompson, Int. J. Num. Meth.

Fluids 45 (2004) 1161.
[6] Y.C. Lee, H.M. Thompson, P.H. Gaskell, Comput. & Fluids 36 (2007) 838.
[7] A. Oron, S.H. Davis, S.G. Bankoff, Reviews of Modern Physics 69 (1997) 931.
[8] N. Daniels, P. Ehret, P.H. Gaskell, H.M. Thompson, M.M.J. Decre, in:

Proceedings of the 1st international conference on CFD. Springer, 2001, 279-
284.

16

[9] L.M. Peurrung, G.G. Graves, IEEE Trans. Semi. Man. 6 (1993) 72.
[10] Y.C. Lee, H.M. Thompson, P.H. Gaskell, Int. J. Num. Meth. Fluids 56 (2008)

1375.
[11] J.A. Diez, L. Kondic, J. Comput. Phys. 183 (2002) 274.
[12] A. Brandt, in: Lecture notes in mathematics 960. Springer, Berlin, 1982, 220-

312.

17

ũn+1
k = MGFASCYC(un+1

k , fn+1
k)

1: pre-relaxation

perform ν1 relaxation sweeps on un+1
k

2: coarse grid correction

compute residual dn+1
k = fn+1

k −N n+1
k un+1

k on Gk

restrict residual dn+1
k−1 = Rk−1

k dn+1
k onto Gk−1

restrict fine grid solution un+1
k−1 = Rk−1

k un+1
k onto Gk−1

compute right-hand side fn+1
k−1 = dn+1

k−1 + N n+1
k−1 u

n+1
k on Gk−1

If k = 0, solve for ũn+1
0 on G0

else perform κ iterations on ũn+1
k−1 = MGFASCYC(un+1

k−1, f
n+1
k−1)

endif

compute correction en+1
k−1 = ũn+1

k−1 − un+1
k−1 on Gk−1

interpolate en+1
k = Ik

k−1e
n+1
k−1 onto Gk

update solution un+1
k = un+1

k + en+1
k on Gk

3: post-relaxation

perform ν2 relaxation sweeps on un+1
k

Algorithm 1. FAS multigrid cycle

18

1: for k = 0, 1, 2, . . . , K

2: if k = 0, solve for ũn+1
0 on G0

3: else interpolate un+1
k = Πk

k−1ũ
n+1
k−1 onto Gk

4: compute ũn+1
k = MGFASCYC(un+1

k , fn+1
k)

5: endif

6: done

Algorithm 2. FMG iteration

19

Fig. 1. Schematic diagram of gravity-driven thin film flow (from left to right) over
a square trench topography.

20

Fig. 2. Partition of a (9 × 9) coarse grid solution domain across 4 processors. The
solid line denote the domain boundary; dash lines indicate the subdomains which
are split as closely as possible into equally divisible rectangular blocks based on the
total number of processors used.

21

Fig. 3. Characteristic three-dimensional resultant steady-state free-surface distur-
bance, showing the presence of: an upstream “bow-wave”; a “comet-tail”; a down-
stream surge. The direction if flow is from top left to bottom right.

22

0 10 20 30 40 50 60

x

-0.3

-0.2

-0.1

0

0.1

h
*

Experiment
Serial Multigrid
FILMPAR

(a)

0 10 20 30 40 50 60

x

-0.3

-0.2

-0.1

0

0.1

h
*

Experiment
Serial Multigrid
FILMPAR

(b)

0 10 20 30 40 50 60

x

-0.3

-0.2

-0.1

0

0.1

h
*

Experiment
Serial Multigrid
FILMPAR

(c)

Fig. 4. Comparison of experimentally obtained [1] and predicted FILMPAR
and serial multigrid solutions [6] streamwise free-surface film thickness profile,
h∗ = (h + s)/|s0|, at span-wise locations: (a) y − yt = 0; (b) y − yt = wt; (c)
y − yt = 2wt. The direction if flow is from left to right and the predicted profiles
are indistinguishable. 23

0 20 40 60 80 100 120

No. of processors

0

5

10

15

20

25

30
S
p
e
e
d
u
p

Theoretical
257x257
513x513
1025x1025
2049x2049
4097x4097

(a)

0 20 40 60 80 100 120

No. of processors

0.4

0.6

0.8

1

P
a
ra
lle
l
e
ffi
c
ie
n
c
y

Theoretical
257x257
513x513
1025x1025
2049x2049
4097x4097

(b)

Fig. 5. Performance of the parallel multigrid solver: (a) relative speedup; (b) parallel
efficiency. Comparison is drawn with the theoretical result that might be expected
for 5 different mesh densities performed on 4 multigrid W(2,2) levels.

24

 32 64 128

No. of processors

0

10

20

30

40

S
p
e
e
d
u
p

4 MG levels
5 MG levels
6 MG levels

(a)

 32 64 128

No. of processors

0

10

20

30

40

S
p
e
e
d
u
p

4 MG levels
5 MG levels
6 MG levels

(b)

Fig. 6. Parallel performance of the multigrid W(2,2) solver obtained using different
numbers of grid levels by varying the mesh densities of the coarsest grid employed
with different numbers of processors, the finest mesh size being: (a) 2049 × 2049;
and (b) 4097 × 4097.

25

