
Ganga: a tool for computational-task

management and easy access

to Grid resources

J.T. Mościcki f,∗, F. Brochu a, J. Ebke c U. Egede b,
J. Elmsheuser c, K. Harrison a, R.W.L. Jones d, H.C. Lee, e,1,

D. Liko f , A. Maier f , A. Muraru f , G.N. Patrick g, K. Pajchel j,
W. Reece b, B.H. Samset j, M.W. Slater i, A. Soroko h,

C.L. Tan i, D.C. Vanderster f M. Williams b

aUniversity of Cambridge, Cambridge, United Kingdom
bImperial College London, London, United Kingdom
cLudwig-Maximilians-Universität, Munich, Germany
dLancaster University, Lancaster, United Kingdom

eNIKHEF, Amsterdam, The Netherlands
fCERN, Geneva, Switzerland

gSTFC Rutherford Appleton Laboratory, Didcot, United Kingdom
hUniversity of Oxford, Oxford, United Kingdom

iUniversity of Birmingham, Birmingham, United Kingdom
jUniversity of Oslo, Oslo, Norway

Abstract

In this paper, we present the computational task-management tool Ganga, which
allows for the specification, submission, bookkeeping and post-processing of compu-
tational tasks on a wide set of distributed resources. Ganga has been developed to
solve a problem increasingly common in scientific projects, which is that researchers
must regularly switch between different processing systems, each with its own com-
mand set, to complete their computational tasks. Ganga provides a homogeneous
environment for processing data on heterogeneous resources. We give examples from
High Energy Physics, demonstrating how an analysis can be developed on a local
system and then transparently moved to a Grid system for processing of all available
data. Ganga has an API that can be used via an interactive interface, in scripts, or
through a GUI. Specific knowledge about types of tasks or computational resources
is provided at run-time through a plugin system, making new developments easy to
integrate. We give an overview of the Ganga architecture, give examples of current
use, and demonstrate how Ganga can be used in many different areas of science.

Preprint submitted to Elsevier 30 August 2018

ar
X

iv
:0

90
2.

26
85

v2
 [

cs
.D

C
]

 9
 J

un
 2

00
9

Key words: Grid computing, Data mining, Task management, User interface,
Interoperability, System integration, Application configuration
PACS: 07.05.Kf, 07.05.Wr, 29.50.+v, 29.85.+c, 87.18.Bb, 89.20.Ff

1 Introduction1

Scientific communities are using a growing number of distributed systems,2

from local batch systems and community-specific services to generic, global3

Grid infrastructures. Users may debug applications using a desktop computer,4

then perform small-scale application testing using local resources and finally5

run at full-scale using globally distributed Grids. Sometimes new resources6

are made available to the users through systems previously unknown to them,7

and signficant effort may be required to gain familiarity with these systems8

interfaces and idiosyncracies . The time cost of mastering application config-9

uration, tracking of computational tasks, archival and access to the results is10

prohibitive for the end-users if they are not supported by appropriate tools.11

Ganga is an easy-to-use frontend for the configuration, execution, and man-12

agement of computational tasks. The implementation uses an object-oriented13

design in Python [1]. It started as a project to serve as a Grid user inter-14

face for data analysis within the ATLAS [3] and LHCb [4] experiments in15

High Energy Physics where large communities of physicists need access to16

Grid resources for data mining and simulation tasks. A list of projects which17

supported the development of Ganga may be found in section 10.18

Ganga provides a simple but flexible programming interface that can be used19

either interactively at the Python prompt, through a Graphical User Inter-20

face (GUI) or programmatically in scripts. The concept of a job component is21

essential as it contains the full description of a computational task, including:22

the code to execute; input data for processing; data produced by the applica-23

tion; the specification of the required processing environment; post-processing24

tasks; and metadata for bookkeeping. The purpose of Ganga can then be25

seen as making it easy for a user to create, submit and monitor the progress26

of jobs. Ganga keeps track of all jobs and their status through a repository27

that archives all information between independent Ganga sessions. It is pos-28

sible to switch between executing a job on a local computer and executing on29

the Grid by changing a single parameter of a job object. This simplifies the30

∗ Corresponding author
Email address: jakub.moscicki@cern.ch (J.T. Mościcki).

1 On leave from University of Insbruck, Austria.

2

progression from rapid prototyping on a local computer, to small-scale tests31

on a local batch system, to the analysis of a large dataset using Grid resources.32

In Ganga, the user has programmatic access through an Application Pro-33

gramming Interface (API), and has access to applications locally for quick34

turnaround during development.35

Ganga is a user- and application-oriented layer above existing job submission36

and management technologies, such as Globus [5], Condor [6], Unicore [7] or37

gLite [8]. Rather than replacing the existing technologies, Ganga allows them38

to be used interchangeably, using a common interface as the interoperability39

layer.40

It is possible to make Ganga available to a user community with a high41

level of customisation. For example, an expert within a field can implement a42

custom application class describing the specific computational task. The class43

will encapsulate all low-level setup of the application, which is always the44

same, and only expose a few parameters for configuration of a particular task.45

The plugin system provided in Ganga means that this expert customisation46

will be integrated seamlessly with the core of Ganga at runtime, and can be47

used by an end-user to process tasks in a way that requires little knowledge48

about the interfaces of Grid or batch systems. Issues such as differences in data49

access between jobs executing locally and on the Grid are similarly hidden.50

Ganga may be used as a job management system integrated into a larger51

system. In this case Ganga acts as a library for job submission and control.52

In particular, Ganga may be used as a building block for the implementation53

of Grid Portals which allow users access to Grid functionality through their54

web browsers in a simplified way. These portals are normally domain specific55

and allow users of a distributed application to run it on the Grid without56

needing to know much about Grid tools.57

Ganga is licensed under the GNU General Public License 2 and is available for58

download from the project website: http://www.cern.ch/ganga. The instal-59

lation of Ganga is trivial and does not require privileged access or any server60

configuration. The Ganga installer script provides a self-contained package61

and most of the external dependencies are resolved automatically. However,62

Ganga generally does not attempt to install Grid or batch submission tools63

or the application software 3 . Typically such software is installed and managed64

separately by system administrators. Simple configuration files allow customi-65

2 Ganga is licensed under GPL version 2 or, if preferred by the user, any later
version. Details of the GPL are available at http://www.gnu.org/licenses/gpl.
html.
3 Some external dependencies, such as NorduGrid submission tools, are automati-
cally installed.

3

http://www.cern.ch/ganga
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html

sation and configuration of Ganga at the level of site, workgroup and user.66

Between January 2007 and December 2008 Ganga was used at 150 sites67

around the world, with 2000 unique users running about 250k Ganga ses-68

sions 4 .69

In this paper, we describe in section 2 the overall functionality, in section 370

details of the implementation, and in section 4 how the progress of jobs is71

monitored. Section 5 gives an overview of the Graphical User Interface. In72

sections 6 and 7 we discuss how Ganga is customised for specific user commu-73

nities. Interfacing and embedding Ganga in other frameworks is presented in74

section 8. In appendix A we provide some examples of how the API in Ganga75

can be used.76

2 Functionality77

Ganga is a user-centric tool that allows easy interaction with heterogeneous78

computational environments, configuration of the applications and coherent79

organisation of jobs. Ganga functionality may be accessed by a user through80

any of several interfaces: a text-based command line in Python, a file-based81

scripting interface and a graphical user interface (GUI). This reflects the differ-82

ent working styles in different user communities, and addresses various usage83

scenarios such as using the GUI for training new users, the command line to84

exploit advanced use-cases, and scripting for automation of repetitive tasks.85

For Ganga sessions the current usage fractions are 55%, 40% and 5% respec-86

tively for interactive prompt, scripts and GUI. As shown in Fig. 1, the three87

user interfaces are built on top of the Ganga Public Interface (GPI) which88

in turn provides access to the Ganga core implementation.89

A job in Ganga is constructed from a set of components. All jobs are required90

to have an application component and a backend component, which define91

respectively the software to be run and the processing system to be used.92

Many jobs also have input and output dataset components, specifying data93

to be read and produced. Finally, computationally intensive jobs may have a94

splitter component, which provides a mechanism for dividing into independent95

subjobs, and a merger component, which allows for the aggregation of subjob96

outputs. The overall component structure of a job is illustrated in Fig. 2.97

By default, the GPI exposes a simplified, top-level view suitable for most98

users in their everyday work, but at the same time allows for the details of99

4 The usage information was collected from a voluntary usage reporting system
implemented in Ganga.

4

Fig. 1. The overall architecture of Ganga. The user interacts with the Ganga
Public Interface (GPI) via the Graphical User Interface (GUI), the Command-Line
Interface in Python (CLIP), or scripts. Plugins are provided for different application
types and backends. All jobs are stored in the repository.

underlying systems to be exposed if needed. An example interactive Ganga100

session using the GPI is given in Appendix A.101

Ganga prevents modification by the user of a submitted job. However, a copy102

of the job may easily be created and the copy can be modified. Ganga mon-103

itors the evolution of submitted jobs and categorises them into the simplified104

states submitted, running, completed, failed or killed.105

All job objects are stored in a job repository database, and the input and106

output files associated with the jobs are stored in a file workspace. Both the107

repository and the workspace may be in a local filesystem or on a remote108

server.109

A large computational task may be split into a number of subjobs automati-110

cally according to user-defined criteria and the output merged at a later stage.111

Each subjob will execute on its own and the merging of the output will take112

place when all have finalised. The submission of subjobs is automatically op-113

timised if the backend component supports bulk job submission. For exam-114

ple, when submitting to the gLite workload management system [8] the job115

collection mechanism is used transparently to the user. Job splitting func-116

tionality provides a flat list of subjobs suitable for parallel processing of fully117

independent workloads. However, certain backends allow users to make use of118

5

Fig. 2. A set of components in Ganga can be combined to form a complete job.
The application to run and the backend where it will run are mandatory while all
other components are optional.

more-sophisticated parallelisation schemes, for example the Message Passing119

Interface (MPI) [8]. In this case, Ganga may be used to manage collections of120

subjobs corresponding to MPI processes.121

The GPI allows frequently used job configurations to be stored as templates,122

so that they may easily be reused, and allows jobs to be labelled and organised123

in a hierarchical jobtree.124

Ganga has built-in support for handling user credentials, including classic125

Grid proxies, proxies with extensions for a Virtual Organisation Management126

Service (VOMS) [12], and Kerberos [13] tokens for access to an Andrew filesys-127

tem (AFS) [14]. A user may renew and destroy the credentials directly using128

the GPI. Ganga gives an early warning to a user if the credentials are about129

to expire. The minimum credential validity and other aspects of the credential130

management are fully configurable.131

Ganga supports multiple security models. For local and batch backends, the132

authentication and authorisation of the users is based on the local security133

infrastructure including user name and network authentication protocols such134

as Kerberos. Grid security infrastructure (GSI) [15] provides for security across135

organizational boundaries for the Grid backends. Different security models are136

encapsulated in pluggable components, which may be simultaneously used in137

6

the same Ganga session.138

A Robot has been implemented for repetitive use-cases. It is a GPI script that139

periodically executes a series of actions in the context of a Ganga session.140

These actions are defined by implementations of an action interface. Without141

programming, the driver can be configured using existing action implementa-142

tions to submit saved jobs, wait for the jobs to complete, extract data about143

the jobs to an XML file, generate plain text or HTML summary reports, and144

email the reports to interested parties. Custom actions can easily be added by145

either extending or aggregating the existing implementations or implement-146

ing the action interface directly, allowing for a diverse variety of repetitive147

use-cases. An example is given in section 6.1.148

Details of the different kinds of Ganga component are given below, along149

with generic examples. More specialised components, designed for a particular150

problem domain, are considered in sections 6 and 7.151

2.1 Application components152

The application component describes the type of computational task to be153

performed. It allows the characteristics and settings of some piece of software154

to be defined, and provides methods specifying actions to be taken before and155

after a job is processed. The pre-processing (configuration) step typically in-156

volves examination of the application properties, and may derive secondary157

information. For example, intermediate configuration files for the application158

may be created automatically. The post-processing step can be useful for val-159

idation tasks such as determining the validity of the application output.160

The simplest application component (Executable) has three properties:161

exe : the path to an executable binary or script;162

args: a list of arguments to be passed to the executable;163

env : a dictionary of environment variables and the values they should be164

assigned before the executable is run.165

The configuration method carries out integrity checks – for example ensuring166

that a value has been assigned to the exe property.167

2.2 Backend components168

A backend component contains parameters describing the behaviour of a pro-169

cessing system. The list of parameters can vary significantly from one system170

7

to another, but can include, for example, a queue name, a list of requested171

sites, the minimum memory needed and the processing time required. In ad-172

dition, some parameters hold information that the system reports back to the173

user, for example the system-specific job identifier and status, and the machine174

where a job executed.175

A backend component provides methods for submitting jobs, and for can-176

celling jobs after submission, when this is needed. It also provides methods for177

updating information on job status, for retrieving output of completed jobs178

and for examining files produced while a job is running.179

Backend components have been implemented for a range of widely used pro-180

cessing systems, including: local host, batch systems (Portable Batch System181

(PBS) [16], Load Sharing Facility (LSF) [17], Sun Grid Engine (SGE) [18],182

and Condor [19]), and Grid systems, for example based on gLite [8], ARC [20]183

and OSG [21]. Remote backend component allows jobs to be launched directly184

on remote machines using ssh.185

As an example, the batch backend component defines a single property that186

may be set by the user:187

queue : name of queue to which job should be submitted, the system188

default queue being used if this left unspecified,189

and defines three properties for storing system information:190

id : job identifier;191

status : status as reported by batch system;192

actualqueue: name of queue to which job has been submitted.193

In addition, a remote-backend component allows a job defined in a Ganga194

session running on one machine to be submitted to a processing system known195

to a remote machine to which the user has access. For example, a user who196

has accounts on two clusters may submit jobs to the batch system of each197

from a single machine.198

2.3 Dataset components199

Dataset components generally define properties that uniquely identify a partic-200

ular collection of data, and provide methods for obtaining information about201

it, for example its location and size. The details of how data collections are202

described can vary significantly from one problem domain to another, and the203

only generic dataset component in Ganga represents a null (empty) dataset.204

Other dataset components are specialised for use with a particular application,205

8

and so are discussed later.206

A strict distinction is made between the datasets and the sandbox (job) files.207

The former are the files or databases which are stored externally. The sandbox208

consists of files which are transferred from the user’s filesystem together with209

the job. The sandbox mechanism is designed to handle small files (typically210

up to 10MB) while the datasets may be arbitrarily large.211

2.4 Splitter components212

Splitter components allow the user to specify the number of subjobs to be213

created, and the way in which subjobs differ from one another. As an example,214

one splitter component (ArgSplitter) deals with executing the same task215

many times over, but changing the arguments of the application executable216

each time. It defines a single property:217

args: list of sets of arguments to be passed to an application.218

Specialised splitters deal with creating subjobs that process different parts of219

a dataset.220

2.5 Merger components221

Merger components deal with combining the output of subjobs. Typical out-222

put includes files containing data in a particular format, for example text223

strings or data representing histograms. As examples, one merger component224

(TextMerger) concatenates the files of standard output and error returned225

by a set of subjobs, and another (RootMerger) sums histograms produced226

in ROOT format [22]. Merging may be automatically performed in the back-227

ground when Ganga retrieves the job output or it may be controlled manually228

by the user.229

3 Implementation230

In this section we provide details of the actual implementation of some of the231

most important parts of Ganga.232

9

Fig. 3. A component class implements one of the abstract interfaces corresponding
to the different parts of a job.

3.1 Components233

Job components are implemented as plugin classes, imported by Ganga at234

start-up if enabled in a user configuration file. This means that users only see235

the components relevant to their specific area of work. Plugins developed and236

maintained by the Ganga team are included in the main Ganga distribution237

and are upgraded automatically when a user installs a newer Ganga version.238

Currently, the list includes around 15 generic plugins and around 20 plugins239

specific to ATLAS and LHCb. Plugins specific to other user communities need240

to be installed separately but could easily be integrated into the main Ganga241

distribution.242

Plugin development is simplified by having a set of internal interfaces and a243

mechanism for generating proxy classes [23]. Component classes inherit from244

an interface class, as seen in Fig. 3. Each plugin class defines a schema, which245

describes the plugin attributes, specifying type (read-only, read-write, inter-246

nal), visibility, associated user-convenience filters and syntax shortcuts.247

The user does not interact with the plugin class directly but rather with an248

automatically generated proxy class, visible in the GPI. The proxy class only249

10

includes attributes defined as visible in the schema and methods selected for250

export in the plugin class. This separation of the plugin and proxy levels is very251

flexible. At the GPI level, the plugin implementation details are not visible;252

all proxy classes follow the same design logic (for example, copy-by-value);253

persistence is automatic, session-level locking is transparent. In this way the254

low-level, internal API is separated from the user-level GPI.255

The framework does not force developers to support all combinations of appli-256

cations and backends, but only the ones that are meaningful or interesting. To257

manage this, the concept of a submission handler is introduced. The submis-258

sion handler is a connector between the application and backend components.259

At submission time, it translates the internal representation of the application260

into a representation accepted by a specific backend. This strategy allows in-261

tegration of inherently different backends and applications without forcing a262

lowest-common-denominator interface.263

Most of the plugins interact with the underlying backends using shell com-264

mands. This down-to-earth approach is particularly useful for encapsulating265

the environments of different subsystems and avoiding environment clashes.266

In verbose mode, Ganga prints each command executed so that a user may267

reproduce the commands externally if needed. Higher-level abstractions such268

as JSDL [24], OGSA-BES [25] or SAGA API [26] are not currently used, but269

specific backends that support these standards could readily be added.270

3.2 Job persistence271

The job repository provides job persistence in a simple database, so that any272

subsequent Ganga session has access to all previously defined jobs. Once a job273

is defined in a Ganga session it is automatically saved in the database. The274

repository provides a bookkeeping system that can be used to select particular275

jobs according to job metadata. The metadata includes such parameters as276

job name, type of application, type of submission backend, and job status. It277

can readily be extended as required.278

Ganga supports both a local and a remote repository. In the case of the279

former, the database is stored in the local file system, providing a standalone280

solution. In the case of the latter, the client accesses an AMGA [28] metadata281

server. The remote server supports secure connections with user authentication282

and authorisation based on Grid certificates. Performance tests of both the283

local and remote repositories show good scalability for up to 10 thousand284

jobs per user, with the average time of individual job creation being about285

0.2 seconds. There is scope for further optimisation in this area by taking286

advantage of bulk operations and job loading on demand.287

11

The job repository also includes a mechanism to support schema migration,288

allowing for evolution in the schema of plugin components.289

3.3 Input and output files290

Ganga stores job input and output files in a job workspace. The current291

implementation uses the local file system, and has a simple interface that292

allows transparent access to job files within the Ganga framework. These293

files are stored for each job in a separate directory, with sub-directories for294

input and output and for each subjob.295

Users may access the job files directly in the file-system or using Ganga296

commands such as job.peek(). Internally, Ganga handles the input and297

output files using a simple abstraction layer which allows for trivial integra-298

tion of additional workspace implementations. Tests with a prototype using a299

WebDav [30] server have shown that all workspace data related to a job can300

be accessed from different locations. In this case, a workspace cache remains301

available on the local file system.302

The combination of a remote workspace and a remote job repository effectively303

creates a roaming profile, where the same Ganga session can be accessed at304

multiple locations, similar to the situation for accessing e-mail messages on an305

IMAP [31] server.306

4 Monitoring307

Ganga provides two types of monitoring: the internal monitoring updates308

the user with information on the progress of jobs, and the external monitoring309

deals with information from third-party services.310

4.1 Internal monitoring311

Ganga automatically keeps track of changes in job status, using a monitoring312

procedure designed to cope with varying backend response times and load313

capabilities. As seen in Fig. 4, each backend is polled in a different thread314

taken from a pool, and there is an efficient mechanism to avoid deadlocks315

from backends that respond slowly. The poll rate may be set separately for316

each backend.317

12

Fig. 4. The internal monitoring updates the status of jobs using a pool of threads
running in the Ganga core. Additional monitoring thread runs in a job wrapper
and sends the monitoring information to external services.

The monitoring sub-system also keeps track of the remaining validity of au-318

thentication credentials, such as Grid proxies and Kerberos tokens. The user319

is notified that renewal is required, and if no action is taken then Ganga is320

placed in a state where operations requiring valid credentials are disabled.321

4.2 External Monitoring322

Ganga’s external monitoring provides a mechanism for dynamically adding323

third-party monitoring sensors, to allow reporting of different metrics for run-324

ning jobs.325

The monitoring sensors can be inserted both on the client side - where Ganga326

runs - and on the remote environment (worker node) where the application327

runs, allowing the user to follow the entire execution flow. Monitoring events328

are generated at job submission time, at startup, periodically during execution,329

and at completion.330

Individual application and backend components in Ganga can be configured331

to use different monitoring sensors, allowing collection of both generic execu-332

tion information and application-specific data.333

13

Use is currently made of two implementations of external monitoring sensors.334

One is the ATLAS Dashboard application monitoring [32]. Another is a custom335

service that allows the Ganga user to examine job output in real-time on the336

Grid. This streaming service is not enabled by default, but must be set up337

for each user community separately, and may then be requested by a user for338

specific jobs.339

5 Graphical User Interface340

The Ganga Graphical User Interface (GUI), shown in Fig. 5 and built us-341

ing PyQt3 [33], makes available all of the job-management functionality pro-342

vided at the level of the Ganga Public Interface. The GUI incorporates vari-343

ous convenience features, and its multi-threaded nature results in a degree of344

parallelism not possible at the command line: job monitoring and most job-345

management actions run concurrently, ensuring a good response time for the346

user.347

Fig. 5. Ganga graphical user interface (GUI). The overview of jobs can be seen to
the left, and the details of an individual job are to the right.

The job monitoring window takes centre stage, with job status and other348

monitored attributes displayed in table format. Other features include sub-349

job monitoring, subjob folding/hiding, a job-details display drawer, a logical-350

14

collections drawer, and a text-based job-search facility. Many characteristics of351

the monitoring window can be customised, allowing, for example, selection of352

the job attributes to be monitored, and of the colours used to denote different353

job states.354

The construction of a job, entailing selection of the required plugins and the355

entry of attribute values, is achieved from a job-builder window. This displays356

a foldable tree of job attributes, and associated data-entry widgets. The tree357

and widgets are generated dynamically based on plugin schemas, ensuring358

that the GUI automatically supports user-defined plugins without any change359

being needed to the GUI code. To assist with data entry, drop-down menus list360

allowed values, wherever these are defined; and tool tips provide explanations361

of individual job attributes. The job-builder window also features tool buttons362

for performing a wide range of job-related actions, including creation, saving,363

copying, submission, termination and removal. Finally, a multifunction Extras364

tool button provides access to arbitrary additional functionality implemented365

in the plugins.366

The GUI also has a scriptor window, providing a favourite-scripts collection,367

a job-script editor and an embedded Python session. The favourite-scripts368

collection allows frequently used Ganga scripts to be created, imported, ex-369

ported and cloned; the job-script editor facilitates quick modification and ex-370

ecution of scripts; and the embedded Python session allows interactive use371

of Ganga commands.372

Finally, a scrollable log window collects and displays all messages generated373

by Ganga.374

6 Use in experiments at the Large Hadron Collider375

The ATLAS and LHCb experiments aim to make discoveries about the fun-376

damental nature of the Universe by detecting new particles at high energies,377

and by performing high-precision measurements of particle decays. The ex-378

periments are located at the Large Hadron Collider (LHC) at the European379

Laboratory for Particle Physics (CERN), Geneva, with first particle colli-380

sions (events) expected in 2009. Both experiments require processing of data381

volumes of the order of petabytes per year, rely on computing resources dis-382

tributed across multiple locations, and exploit several Grid implementations.383

The data-processing applications, including simulation, reconstruction and fi-384

nal analysis for the experiments, are based on the C++ Gaudi/Athena [34]385

framework. This provides core services, such as message logging, data access,386

histogramming, and a run-time configuration system.387

15

The data from the experiments will be distributed at computing facilities388

around the world. Users performing data analysis need an on-demand access389

mechanism to allow rapid pre-filtering of data based on certain selection cri-390

teria so as to identify data of specific interest.391

The role of Ganga within ATLAS and LHCb is to act as the interface for392

data analysis by a large number of individual physicists. Ganga also allows393

for the easy exchange of jobs between users, something that can otherwise be394

difficult because of the complex configuration of analysis jobs.395

6.1 The LHCb experiment396

The LHCb experiment is dedicated to studying the properties of B mesons397

(particles containing the b quark) and in this section we describe the way in398

which Ganga interacts with the application and backend plugins specific to399

LHCb.400

In a typical analysis, users supply their own shared libraries, containing user-401

written classes, and these are loaded at run-time. The LHCb applications are402

driven by a configuration file, which includes definitions of the libraries to403

load, non-default values for object parameters, the input data to be read, and404

the output to be created.405

Ganga includes an application component for Gaudi-based applications to406

simplify the task of performing an analysis. During the configuration stage,407

and before job submission, the application component undertakes the following408

tasks:409

• it locally sets up the environment for the chosen application;410

• it determines the user-owned shared libraries required to run the job;411

• it parses the configuration file supplied, including all its dependencies;412

• it uses information obtained from the configuration file to determine the413

input data required and the outputs expected;414

• it registers the inputs and outputs with the submission backend.415

The user, then, only needs to specify the name and version of the application416

to run, and the configuration file to be used.417

Code under development by a user may contain bugs that cause runtime errors418

during job execution. The transparent switching between processing systems419

when using Ganga means that debugging can be performed locally, with420

quick response time, before launching a large-scale analysis on the Grid, where421

response times tend to be longer.422

16

Some studies in LHCb, rather than being based on Gaudi, are performed using423

the RooFit [37] framework, most notably studies that make use of simplified424

event simulations. Jobs for these studies require large amounts of processing425

power, but do not require input data and produce only small amounts of426

output. This makes them very easy to deploy on the Grid, with support in427

Ganga provided by a generic Root [22] application component.428

In the LHCb computing model [29], Grid jobs are routed through the DIRAC [35]429

workload management system (WMS). DIRAC is a pilot-based system where430

user jobs are queued in the WMS server and the server submits generic pi-431

lot scripts to the Grid. Each pilot queries the WMS for a job with resource432

requirements satisfied by the machine where the pilot script is running. If a433

compatible job is available, it is pulled from the WMS and started. Otherwise,434

the pilot terminates and the WMS sends a new pilot to the Grid. This system435

improves the reliability of the Grid system as seen by the user. Ganga pro-436

vides a DIRAC backend component that supports submission of jobs to the437

DIRAC WMS, making use internally of DIRAC’s Python API [36].438

A splitter component implemented specifically for LHCb is able to divide the439

analysis of a large dataset into many smaller subjobs. During the splitting, a440

file catalogue is queried to ensure that all data associated with an individual441

subjob is available in its entirety at a minimum of one location on the Grid.442

This gives significant optimisation, as it avoids subjobs having to copy data443

across the network before an analysis can start.444

In total, above 300k user jobs finished successfully in 2008 with a total CPU445

consumption of 87 CPU years. The jobs ran at a total of 140 Grid sites across446

the globe. The system was responsive to a highly irregular usage pattern and447

spikes of several thousand simultaneous jobs were observed during the year.448

This usage is expected to rise dramatically after the start of the LHCb data449

taking.450

The Robot in Ganga is used within LHCb for end-to-end testing of the dis-451

tributed analysis model. It submits a representative set of analysis jobs on452

a daily basis, monitors their progress, and checks the results produced. The453

overall success rate and the time to obtain the results is recorded and pub-454

lished on the web. The Robot monitors this information, producing statistics455

on the long-term system performance.456

6.2 The ATLAS experiment457

ATLAS is a general-purpose experiment, designed to allow observation of new458

phenomena in high-energy proton-proton collisions.459

17

The distributed analysis model is part of the ATLAS computing model [38]460

which requires that data are distributed at various computing sites, and user461

jobs are sent to the data.462

An ATLAS analysis job typically consists of a Python or shell script that463

configures and runs user algorithms in the Athena framework [38], reads and464

writes event files, and fills histograms/n-tuples. More-interactive analysis may465

be performed on large datasets stored as n-tuples.466

There are several scenarios relevant for a user analysis. Some analyses require467

a fast response time and a high level of user interaction, for which the parallel468

Root facility PROOF [41] is well suited. Other analyses require a low level469

of user interaction, with long response times acceptable, and in these cases470

Ganga and Grid processing are ideal.471

Analysis jobs can produce large amounts of data, which may initially be stored472

at a single Grid site, and may subsequently need to be transferred to other473

machines. This is supported in ATLAS by the Distributed Data Management474

system DQ2 [39]. This provides a set of services for moving data between475

Grid-enabled computing facilities, and maintains a series of databases that476

track the data movements. The vast amounts of data involved are grouped477

into datasets, based on various criteria, for example physics characteristics, to478

make queries and retrievals more efficient.479

6.2.1 ATLAS Grid infrastructures480

The ATLAS experiment employs three Grid infrastructures for user analysis481

and for collaboration-wide event simulation and reconstruction. These are the482

Grid developed in the context of Enabling Grids for e-Science (EGEE, mainly483

Europe) [42], accessed using gLite middleware [8], the Open Science Grid484

(OSG, mainly North America) [21], accessed using the PanDA system [40],485

and NorduGrid (mainly Nordic countries) [43], accessed using the ARC mid-486

dleware [20]. Ganga seamlessly submits jobs to all three Grid flavours.487

6.2.2 ATLAS user analysis488

A typical ATLAS user analysis consists of an event-selection algorithm devel-489

oped in the Athena framework. Large amounts of data are filtered to identify490

events that meet certain selection criteria. The events of interest are stored in491

files grouped together as datasets in the DQ2 system. The Ganga components492

for Athena jobs include the following functionality:493

• During job submission, DQ2 is queried for the file content and location494

of the dataset to be analysed. The number of possible Grid sites is then495

18

restricted to the dataset locations.496

• A job can be divided into several subjobs, each processing a given number497

of files from the full dataset.498

• In a Grid job, after the Athena application has completed, the user output499

is stored on the storage element of the site where the job was run, and is500

registered in DQ2.501

In the second half of 2008, more than 4×105 Grid jobs were submitted through502

Ganga by ATLAS users. Following a procedure similar to that of LHCb, the503

Ganga Robot submits test jobs daily to ATLAS Grid sites. Test results are504

used to guide users to sites that are performing well, avoiding job failures on505

temporarily misconfigured sites.506

6.2.3 ATLAS small-scale event simulations507

In addition to data analysis, users sometimes need to simulate event samples508

of the order of a few tens of thousands of events. The AthenaMC applica-509

tion component has been developed to integrate software used in the offi-510

cial ATLAS system for event simulation. This component consists of a set of511

Python classes that together handle input parameters, input datasets and512

output datasets for the three production steps: event generation, detector sim-513

ulation, and event reconstruction. As in the case of user analysis, datasets are514

managed by the DQ2 system.515

7 Other usage areas516

Ganga offers a flexible and extensible interface that make it useful beyond517

the original scope of particle-physics applications in the ATLAS and LHCb518

experiments. Here we provide details of just a few of the other contexts in519

which Ganga has been used.520

7.1 Enabling industrial-scale image retrieval521

Imense Ltd 5 , a Cambridge-based startup company, has implemented a novel522

image retrieval-system (Fig. 6), featuring automated analysis and recognition523

of image content, and an ontological query language. The proprietary image524

analysis, developed from published research [44], includes recognition of visual525

properties, such as colour, texture and shape; recognition of materials, such as526

grass or sky; detection of objects, such as human faces, and determination of527

5 http://imense.com

19

http://imense.com

their characteristics; and classification of scenes by content, for example beach,528

forest or sunset. The system uses semantic and linguistic relationships between529

terms to interpret user queries and retrieve relevant images on the basis of the530

analysis results. Moreover, the system is extensible, so that additional image531

classification modules or image context and metadata can easily be integrated532

into the index.

Copyright 2007

Pixel-based representation

Region-based
representation

Object-based
representation

Semantic
representation

Visual
primitive
extraction

Object formation

Semantic
description

Semantic
descriptor
extraction

Object formation

“Face”

“Hands”

User model

Ontological Query Language

Retrieval
Requirements

System model

Semantic
Gap

Retrieval
Results Relevance

Assessment
Query

Evaluation

“Mona Lisa”

“Woman”
“Smile”

“Skin”

“Painting”
Gender recognition

Face detection

Region
classification

Image
segmentation

Scene
classification

Expression analysis

Cambridge
Ontology Ltd.

Fig. 6. Schematic representation of the image-retrieval system developed by Imense
Ltd. Image characteristics are determined by applying feature-extraction algo-
rithms, and an ontological query language bridges the semantic gap between terms
that might be employed in a user query and terms understood by the processing
system.

533

By using the Ganga framework for job submission and management, it has534

been possible to port and deploy a large part of Imense’s image-analysis tech-535

nology to the Grid and build a searchable index for more than twenty-million536

high-resolution photographic images.537

The processing stages for the image-search system – image analysis and in-538

dexing – are intrinsically sequential. Analysis has been parallelised at the level539

of single images or small subsets of images. Each image can therefore be pro-540

cessed in isolation on the Grid, with this processing usually taking a few to541

ten seconds. In order to minimise overheads, images are grouped in sets of a542

few hundred per job submitted through Ganga. Results of the image pro-543

cessing and analysis are passed back to the submission server once a job has544

successfully completed.545

Support for Imense has been added to Ganga through the implementation of546

two specialised components: an application component that deals with running547

the image-processing software, and a dataset component for taking care of the548

20

output. As usual with Ganga, the jobs can run both locally and on the Grid,549

giving maximum flexibility.550

At runtime, images are retrieved and segmented one at a time, all of the images551

are classified, and finally an archive is created of the output files (several per552

input image). The archive is returned using the sandbox mechanism in Ganga553

when using the Local backend, and is uploaded to a storage element when554

using the Grid LCG backend.555

The specialised dataset component provides methods for downloading a re-556

sults archive from a storage element, and for unpacking an archive to a desti-557

nation directory. These methods are invoked automatically by Ganga when558

an image-processing job completes: the effect for the user is that a list of im-559

ages is submitted for processing and results are placed in the requested output560

location independently of the backend used.561

7.2 Smaller collaborations in High Energy Physics562

Large user communities, such as ATLAS and LHCb, profit from encapsulating563

shared use cases as specialised applications in Ganga. In contrast, individual564

researchers or developers in the context of rapid prototyping activities may565

opt to use generic application components. In such cases, Ganga still provides566

the benefits of bookkeeping and a programmatic interface for job submission.567

As an example of this way of working, a small community of experts in the568

design of gaseous detectors use Ganga to run the Garfield [45] simulation569

program on the Grid. A Ganga script has been written that generates a chain570

of simulation jobs using the Garfield generator of macro files and Ganga’s571

Executable application component. The Garfield executables, and a few572

small input files, are placed in the input sandbox of each job. Histograms and573

text output are then returned in the output sandbox. This simple approach574

allowed integration of Garfield jobs in Ganga in just a few hours.575

7.3 Ganga integrated with lightweight Grid middleware576

The open-plugin architecture of Ganga allows easy integration of additional577

Grid middleware, as has been achieved, for example, with the ARC (Advanced578

Resource Connector) Grid middleware [20]. This is a product of the NorduGrid579

project [43], and is used by many academic institutions in the Nordic countries580

and elsewhere.581

ARC jobs are accepted and brokered by a Grid manager, running at site level,582

and resource lookup is done through load balancing and runtime environments583

21

advertised by individual sites. File storage and access is ’cloudy’, meaning that584

all files registered in Grid–wide catalogues are accessible to all worker nodes.585

File transfers are handled by the Grid manager, between job acceptance and586

execution. ARC–connected resources are used e.g. by researchers in bioinfor-587

matics, genomics, meteorology, in addition to high–energy physics.588

Ganga has been interfaced to ARC through a backend, which translates589

Ganga input into ARC–readable xRSL language. The ARC user client is590

lightweight, and binaries are provided as an external library at Ganga in-591

stall time. The main user of this integration is the ATLAS experiment (see592

sec. 6.2), where it is the main user access portal to one of the experiment’s593

three main computing grids. Further collaboration between ARC and Ganga594

is envisaged, to employ Ganga as a fully featured frontend to ARC.595

8 Interfacing to other frameworks596

The Ganga Public Interface constitutes an API for generic job submission597

and management. As a result, Ganga may be programmatically interfaced to598

other frameworks, and used as a convenient abstraction layer for job manage-599

ment. Ganga has been used in combination with DIANE [46], a lightweight600

agent-based scheduling layer on top of the Grid, in a number of scientific ac-601

tivities. These have included: dosimetry-related simulation studies in medical602

physics [47]; regression testing of the Geant 4 [48] detector-simulation toolkit;603

in-silico molecular docking in searches for new drugs against potential variants604

of an influenza virus [49]; telecommunication applications [50]; and theoreti-605

cal physics [51]. The DIANE worker agents are executed as Ganga jobs, so606

that resource usage may be controlled by the user from the Ganga interface.607

This approach allows the efficiency of the DIANE overlay scheduling system608

to be combined with the well-structured job management offered by Ganga,609

as well as combining Grid and non-Grid resources under a uniform interface.610

Also, this allows the efficient implementation of low-latency access to Grid611

resources and improvements to responsiveness when supporting on-demand612

computing and interactivity [52].613

Ganga may be embedded in web-based services such as the bio-informatics614

portal developed by ASGC, Taipei. The portal is fully customized for analysis615

of candidate drugs against avian flu. The portal engine delegates job man-616

agement to the embedded DIANE/Ganga framework, as shown in Fig. 7.617

Following this approach, users can switch between different resources, or access618

heterogeneous computing environments through a single same web interface.619

22

Fig. 7. Ganga as a job management component embedded in DIANE, with an
application portal.

9 Conclusion620

Ganga has been presented as a tool for job management in an environment of621

heterogeneous resources and is particularly suited to the Grid paradigm that622

has emerged in large-scale distributed computing. Ganga makes it easy to623

define a computational task that can be executed locally for debugging, and624

subsequently be run on the Grid, for large scale data mining. We have shown625

how Ganga simplifies task specification, takes care of job submission, moni-626

toring and output retrieval, and provides an intuitive bookkeeping system.627

We have demonstrated the advantages of having a well-defined API, which can628

be used interactively at the Python prompt, through a GUI or programmat-629

ically in scripts. By virtue of its plugin system, Ganga is readily extended630

and customised to meet the requirements of new user communities. Examples631

of Ganga usage have been provided in particle physics, medical physics and632

image processing.633

Existing command-line submission interfaces, such as gLite, tend to include634

only limited usability features. Some higher level tools, for example GridWay[53],635

present jobs as if they were Unix processes and corresponding command line636

utilities. Interfaces based on Condor job-submission scripts have also been de-637

veloped [54]. A distinctive feature of Ganga is that it may easily be adapted638

23

to different styles of working, allowing simultaneous use of three different in-639

terfaces. Ganga also provides a higher level of abstraction than most job-640

management tools, and allows a user to focus on solving the domain-specific641

problems, rather than changing their way of working each time they switch to642

a new processing system.643

Ganga has a large user base and is in active development. Ganga is a tool644

which may easily be used to support new scientific or commercial projects on645

a wide range of distributed infrastructures.646

10 Acknowledgements647

The development of Ganga has been supported by the GridPP project in648

the United Kingdom [2], with funding from the Science and Technology Facil-649

ities Council (STFC) and its predecessor, the Particle Physics and Astronomy650

Research Council (PPARC); by the D-Grid project in Germany, with fund-651

ing from the Bundesministerium für Bildung und Forschung (BMBF); and by652

the project for Enabling Grids for E-scienceE (EGEE), co-funded by the Eu-653

ropean Commission (contract number INFSO-RI-031688) through the Sixth654

Framework Programme.655

Ganga has received contributions over the years from a number of individuals.656

Particular thanks are due to David Adams, Marcello Barisonzi, Mike Kenyon,657

Wim Lavrijsen, Janusz Martyniak, Pere Mato, Caitriana Nicholson, Rebecca658

Ronke, Vladimir Romanovski, David Tuckett, Ruth Dixon del Tufo, Craig659

Tull.660

The developers would also like to thank the large number of users, from both661

within and outside particle physics, for their valuable suggestions for improv-662

ing Ganga, and for their help in debugging problems.663

A Examples664

Below we give a set of examples of working with Ganga. For ease of reading,665

Python keywords are in bold. First we look at a complete Ganga session.666
667

~ % ganga668
*** Welcome to Ganga ***669
Version: Ganga-5-1-0670
Documentation and support: http://cern.ch/ganga671
Type help() or help(’index’) for online help.672

673
This is free software (GPL), and you are welcome to redistribute674
it under certain conditions; type license() for details.675
[1] : j=Job (name=’MyJob ’) # Create a d e f a u l t j o b676
[2] : j . submit () # Submit t h e j o b677

678
wai t f o r t h e moni tor ing679

24

680
[3] : j . peek (’ stdout ’) # Look a t t h e ou tpu t681
[4] : j=j . copy (name=’ GridJob ’) # Make a copy o f t h e j o b682
[5] : j . backend=LCG() # Change backend to t h e Grid683
[6] : j . submit () # Submit t h e j o b684
[7] : j obs # L i s t j o b s685

686
...job listing...687
[8] : Exit # Quit Ganga .688

In the next example, we create a job for analysis of LHCb data. A splitter is689

used to divide the analysis between subjobs. Data are assigned using logical690

identifiers, and the DIRAC WMS ensures that subjobs are sent to locations691

where the required data are available.692

[1] : j=Job (app l i c a t i on=DaVinci () , backend=Dirac ())693
[2] : j . inputdata=LHCbDataset (f i l e s =[# Data to read694
. . . ’LFN:/ foo . dst ’ ,695
. . . ’LFN:/ bar . dst ’ ,696
. . . many more data f i l e s])697
[3] : j . s p l i t t e r=D i r a cSp l i t t e r () # We want s u b j o b s698
[4] : j . submit ()699

700
Job submission output701

Here, we use the fact that standard Python commands are available at the702

Ganga prompt, and print information on subjobs.703

Sta t u s o f j o b s and where t hey ran704
[5] : for subjob in j . subjobs :705
. . . print subjob . s tatus , subjob . actualCE706

707
42708
Find backend i d e n t i f i e r o f a l l f a i l e d j o b s709
[6] : for j in j obs . s e l e c t (s t a tu s=’ f a i l e d ’) :710
. . . print j . backend . id711

712
42713

Groups of jobs may be accessed and manipulated using simple methods:714

[1] : j obs . s e l e c t (s t a tu s=’ f a i l e d ’) . resubmit ()715
[2] : j obs . s e l e c t (name=’ t e s t j o b ’) . k i l l ()716
[3] : newjobs = jobs . s e l e c t (s t a tu s=’new ’)717
[4] : newjobs . s e l e c t (name=’ urgent ’) . submit ()718

References719

[1] G. van Rossum and F.L. Drake Jr., The Python language reference manual:720

revised and updated for version 2.5 (Network Theory Limited, Bristol, 2006).721

[2] P.J.W. Faulkner et al. [GridPP Collaboration], GridPP: development of the UK722

computing Grid for particle physics, J. Phys. G: Nucl. Part. Phys. 32 N1.723

[3] G. Aad et al. [ATLAS Collaboration], The ATLAS Experiment at the CERN724

Large Hadron Collider, JINST 3 (2008) S08003.725

[4] A.A. Alves Jr. et al. [LHCb Collaboration], The LHCb Detector at the LHC,726

JINST 3 (2008) S08005.727

[5] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the Grid: Enabling728

Scalable Virtual Organizations, International J. Supercomputer Applications,729

15 (3), 2001.730

25

http://www.network-theory.co.uk/python/language/
http://www.network-theory.co.uk/python/language/
http://www.network-theory.co.uk/python/language/
http://dx.doi.org/10.1088/0954-3899/32/1/N01
http://dx.doi.org/10.1088/1748-0221/3/08/S08003
http://dx.doi.org/10.1088/1748-0221/3/08/S08005

[6] D. Thain, T. Tannenbaum, and M. Livny, Distributed Computing in731

Practice: The Condor Experience Concurrency and Computation: Practice and732

Experience, 17 (2-4), pp 323-356, 2005.733

[7] A. Streit et al., UNICORE – From Project Results to Production Grids Grid734

Computing: The New Frontiers of High Performance Processing Advances in735

Parallel Computing 14, Elsevier, 2005, pp. 357-376736

[8] P. Andreett et al., The gLite workload management system, J. Phys.: Conf. Ser.737

119 (2008) 062007.738

[9] M.P. Thomas et al., Grid portal achitectures for scientific applications, J. Phys.:739

Conf. Ser. 16 (2005) 596.740

[10] M. Li and M. Baker, A review of Grid Portal technology, pp. 126-156 of:741

J.C. Cunha and O.F. Rana (Eds.), Grid computing: software environments and742

tools (Springer-Verlag London Ltd, 2006).743

[11] M. Snir and S. Otto, MPI-The Complete Reference: The MPI Core, MIT Press744

(1998) ISBN: 0262692155 .745

[12] R. Alfieri et al., From gridmap-file to VOMS: managing authorization in a Grid746

environment, Future Generation Computer Systems 21 (2005) 549.747

[13] B.C. Neumann and T. Ts’o, Kerberos: an authentication service for computer748

networks, IEEE Communications Magazine 32-9 (1994) 33.749

[14] J.H. Morris et al., Andrew: a distributed personal computing environment,750

Commun. ACM 29-3 (1986) 184.751

[15] I. Foster et al., A Security Architecture for Computational Grids Proc. 5th ACM752

Conference on Computer and Communications Security Conference, pp. 83-92,753

1998.754

[16] R.L. Henderson, Job scheduling under the Portable Batch System, pp. 279-294755

of: D.G. Feitelson and L. Rudolph (Eds.), Job scheduling strategies for parallel756

processing [Lecture Notes in Computer Science 949] (Springer, Berlin, 1995).757

[17] U. Schwickerath and V. Lefebure, Usage of LSF for batch farms at CERN,758

J. Phys.: Conf. Ser. 119 (2008) 042025.759

[18] W. Gentzsch, Sun Grid Engine: towards creating a compute power Grid, pp. 35-760

36 of: R. Buyya, G. Mohay and P. Roe (Eds.), Proc. First IEEE/ACM761

International Symposium on Cluster Computing and the Grid (IEEE Computer762

Society, Los Alamitos, CA, 2001).763

[19] D. Thain, T. Tannenbaum and M. Livny, Distributed computing in practice: the764

Condor experience, Concurrency Computat.: Pract. Exper. 17 (2005) 323.765

[20] M. Ellert et al., Advanced Resource Connector middleware for lightweight766

computational Grids, Future Generation Computer Systems 23 (2007) 219.767

[21] R. Pordes et al., The Open Science Grid, J. Phys.: Conf. Ser. 78 (2007) 012057.768

26

http://www.unicore.eu
http://www.unicore.eu
http://www.unicore.eu
http://www.unicore.eu
http://www.unicore.eu
http://dx.doi.org/10.1088/1742-6596/119/6/062007
http://dx.doi.org/10.1088/1742-6596/119/6/062007
http://dx.doi.org/10.1088/1742-6596/119/6/062007
http://dx.doi.org/10.1088/1742-6596/16/1/083
http://dx.doi.org/10.1088/1742-6596/16/1/083
http://dx.doi.org/10.1088/1742-6596/16/1/083
http://www.springer.com/computer/programming/book/978-1-85233-998-2
http://www.springer.com/computer/programming/book/978-1-85233-998-2
http://www.springer.com/computer/programming/book/978-1-85233-998-2
http://www.mpi-forum.org
http://dx.doi.org/10.1016/j.future.2004.10.006
http://dx.doi.org/10.1109/35.312841
http://dx.doi.org/10.1145/5666.5671
http://dx.doi.org/10.1007/3-540-60153-8
http://dx.doi.org/10.1007/3-540-60153-8
http://dx.doi.org/10.1007/3-540-60153-8
http://dx.doi.org/10.1007/3-540-60153-8
http://dx.doi.org/10.1007/3-540-60153-8
http://dx.doi.org/10.1088/1742-6596/119/4/042025
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1109/CCGRID.2001.923173
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1016/j.future.2006.05.008
http://dx.doi.org/10.1088/1742-6596/78/1/012057

[22] R. Brun and F. Rademakers, ROOT - an object oriented data analysis769

framework, Nucl. Instrum. Methods A389 (1997) 81.770

[23] E. Gamma et al., Design patterns: elements of reusable object-orientated771

software (Addison-Wesley, 1995).772

[24] Job Submission Description Language (JSDL) Specification, Version 1.0773

http://www.gridforum.org774

[25] OGSA Basic Execution Service http://www.ogf.org775

[26] A Simple API for Grid Applications (SAGA) http://www.ogf.org776

[27] F. Perez and B.E. Granger, IPython: a system for interactive scientific777

computing, Computing in Science and Engineering 9-3 (2007) 21.778

[28] B. Koblitz, N. Santos and V. Pose, The AMGA metadata service, J. Grid779

Computing 6 (2008) 61.780

[29] R. Antunes-Nobrega et al. [LHCb Collaboration], LHCb computing, Technical781

Design Report CERN/LHCC 2005-019 LHCb TDR-11 (2005).782

[30] E.J. Whitehead Jr., World Wide Web Distributed Authoring and Versioning783

(WebDAV): an introduction, StandardView 5 (1997) 3.784

[31] P. Heinlein and P. Hartleban, The book of IMAP: building a mail server with785

Courier and Cyrus (No Startch Press, San Francisco, CA, 2008).786

[32] J. Andreeva et al., Dashboard for the LHC experiments, J. Phys. Conf. Ser. 119787

(2008) 062008.788

[33] B. Rempt, GUI programming with Python: QT edition (Command Prompt Inc,789

White Salmon, WA, 2001).790

[34] G. Barrand et al., GAUDI - a software architecture and framework for building791

HEP data processing applications, Computer Physics Communications 140792

(2001) 45.793

[35] A. Tsaregorodtsev et al., DIRAC: a community grid solution, J. Phys. Conf.794

Ser. 119 (2008) 062048.795

[36] S. Paterson, LHCb distributed data analysis on the computing Grid, PhD Thesis,796

University of Glasglow (2006) [CERN-THESIS-2006-053].797

[37] W. Verkerke and D. Kirkby, The RooFit toolkit for data modeling, Contribution798

MOLT007 in: Proc. 2003 Conference for Computing in High Energy and Nuclear799

Physics, La Jolla, CA [SLAC eConf C0303241].800

[38] G. Duckeck et al. (Eds.), ATLAS computing, Technical Design Report801

CERN/LHCC 2005-022 ATLAS TDR-017 (2005).802

[39] M. Branco et al. Managing ATLAS data on a petabyte-scale with DQ2, J. Phys.803

Conf. Ser. 119 (2008) 062017.804

27

http://dx.doi.org/10.1016/S0168-9002(97)00048-X
http://www.pearsonhighered.com/educator/academic/product/0,,0201633612,00%2Ben-USS_01DBC.html
http://www.pearsonhighered.com/educator/academic/product/0,,0201633612,00%2Ben-USS_01DBC.html
http://www.pearsonhighered.com/educator/academic/product/0,,0201633612,00%2Ben-USS_01DBC.html
http://www.gridforum.org/documents/GFD.56.pdf
file:www.ogf.org/documents/GFD.108.pdf
http://www.ogf.org/documents/GFD.90.pdf
http://dx.doi.org/10.1109/MCSE.2007.53
http://dx.doi.org/10.1007/s10723-007-9084-6
http://dx.doi.org/10.1007/s10723-007-9084-6
http://dx.doi.org/10.1007/s10723-007-9084-6
http://cdsweb.cern.ch/record/835156
http://cdsweb.cern.ch/record/835156
http://cdsweb.cern.ch/record/835156
http://dx.doi.org/10.1145/253452.253458
http://nostarch.com/imap.htm
http://nostarch.com/imap.htm
http://nostarch.com/imap.htm
http://dx.doi.org/10.1088/1742-6596/119/6/062008
http://dx.doi.org/10.1088/1742-6596/119/6/062008
http://dx.doi.org/10.1088/1742-6596/119/6/062008
http://www.commandprompt.com/community/pyqt/
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1016/S0010-4655(01)00254-5
http://dx.doi.org/10.1088/1742-6596/119/6/062048
http://dx.doi.org/10.1088/1742-6596/119/6/062048
http://dx.doi.org/10.1088/1742-6596/119/6/062048
http://cdsweb.cern.ch/record/995676/
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOLT007.PDF
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOLT007.PDF
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOLT007.PDF
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOLT007.PDF
http://www.slac.stanford.edu/econf/C0303241/proc/papers/MOLT007.PDF
http://cdsweb.cern.ch/record/837738
http://cdsweb.cern.ch/record/837738
http://cdsweb.cern.ch/record/837738
http://dx.doi.org/10.1088/1742-6596/119/6/062017
http://dx.doi.org/10.1088/1742-6596/119/6/062017
http://dx.doi.org/10.1088/1742-6596/119/6/062017

[40] T. Maeno, PanDA: distributed production and distributed analysis system for805

ATLAS, J. Phys. Conf. Ser. 119 (2008) 062036.806

[41] M. Ballintijn et al., Parallel interactive data analysis with PROOF, Nucl.807

Instrum. Methods 559 (2006) 13.808

[42] R. Jones, An overview of the EGEE project, pp. 1-8 of: C. Türker, M. Agosti and809

H.-J. Schek (Eds.), Peer-to-peer, Grid, and service-orientation in digital library810

architectures [Lecture Notes in Computer Science 3664] (Springer, Berlin,811

2005).812

[43] M. Ellert et al., The NorduGrid project: using Globus toolkit for building Grid813

infrastructure Nucl. Instrum. Methods A502 (2003) 407.814

[44] C. Town and D. Sinclair, Language-based querying of image collections on the815

basis of an extensible ontology, Image and Vision Computing 22 (2004) 251.816

[45] R. Veenhof, Garfield - simulation of gaseous detectors, CERN Program Library817

User Guide W5050 (1984 et seq.).818

[46] J.T. Mościcki, Distributed analysis environment for HEP and interdisciplinary819

applications, Nucl. Instrum. Methods A502 (2003) 426.820

[47] J.T. Mościcki et al., Distributed Geant4 Simulation in Medical and Space821

Science Applications using DIANE framework and the GRID, Nucl. Phys. B822

(Proc. Suppl.) 125 (2003) 327-331823

[48] J .Allison et al., Geant 4 - a simulation toolkit, Nucl. Instrum. Methods A506824

(2003) 250.825

[49] H.-C. Lee et al., Grid-enabled high-throughput in silico screening against826

influenza A neuraminidase, IEEE Trans. NanoBioscience 5-4 (2006) 288.827

[50] J.T. Mościcki et al., ITU RRC06 on the Grid, in prep. for Journal of Grid828

Computing829

[51] J.T. Mościcki et al., Lattice QCD on the Grid in prep. for Computer Physics830

Communications831

[52] C. Germain-Renaud, C. Loomis , J. T. Mościcki and R. Texier, Scheduling for832

Responsive Grids, J. Grid Computing 6, (2008) 15-27833

[53] J. Herrera et al., Porting of Scientific Applications to Grid Computing on834

GridWay Scientific Programming 13 4 , pp. 317-331, 2005835

[54] R.P. Bruin et al., Job submission to grid computing environments Concurrency836

and Computation: Pract. and Exper. 20 11, pp. 1329-1340 (2008)837

28

http://dx.doi.org/10.1088/1742-6596/119/6/062036
http://dx.doi.org/10.1016/j.nima.2005.11.100
http://dx.doi.org/10.1016/j.nima.2005.11.100
http://dx.doi.org/10.1016/j.nima.2005.11.100
http://dx.doi.org/10.1007/11549819
http://dx.doi.org/10.1007/11549819
http://dx.doi.org/10.1007/11549819
http://dx.doi.org/10.1007/11549819
http://dx.doi.org/10.1007/11549819
http://dx.doi.org/10.1016/S0168-9002(03)00453-4
http://dx.doi.org/10.1016/j.imavis.2003.10.002
http://consult.cern.ch/writeup/garfield/
http://consult.cern.ch/writeup/garfield/
http://consult.cern.ch/writeup/garfield/
http://dx.doi.org/10.1016/S0168-9002(03)00459-5
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1109/TNB.2006.887943
http://dx/doi.org/10.1007/s10723-007-9086-4
file:httpL//dx/doi.org/10.1002/cpe.1290
file:httpL//dx/doi.org/10.1002/cpe.1290
file:httpL//dx/doi.org/10.1002/cpe.1290

	Introduction
	Functionality
	Application components
	Backend components
	Dataset components
	Splitter components
	Merger components

	Implementation
	Components
	Job persistence
	Input and output files

	Monitoring
	Internal monitoring
	External Monitoring

	Graphical User Interface
	Use in experiments at the Large Hadron Collider
	The LHCb experiment
	The ATLAS experiment

	Other usage areas
	Enabling industrial-scale image retrieval
	Smaller collaborations in High Energy Physics
	Ganga integrated with lightweight Grid middleware

	Interfacing to other frameworks
	Conclusion
	Acknowledgements
	Examples
	References

