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Single scale quantities, as anomalous dimensions and hard scattering cross sections, in renormalizable
Quantum Field Theories are found to obey difference equations of finite order in Mellin space. It is
often easier to calculate fixed moments for these quantities compared to a direct attempt to derive
them in terms of harmonic sums and their generalizations involving the Mellin parameter N. Starting
from a sufficiently large number of given moments, we establish linear recurrence relations of lowest
possible order with polynomial coefficients of usually high degree. Then these recurrence equations are
solved in terms of d’Alembertian solutions where the involved nested sums are represented in optimal
nested depth. Given this representation, it is then an easy task to express the result in terms of harmonic
sums. In this process we compactify the result such that no algebraic relations occur among the sums

Product-and-sum fields
Advanced computer algebra

involved. We demonstrate the method for the QCD unpolarized anomalous dimensions and massless
Wilson coefficients to 3-loop order treating the contributions for individual color coefficients. For the
most complicated subproblem 5114 moments were needed in order to produce a recurrence of order 35
whose coefficients have degrees up to 938. About four months of CPU time were needed to establish
and solve the recurrences for the anomalous dimensions and Wilson coefficients on a 2 GHz machine
requiring less than 10 GB of memory. No algorithm is known yet to provide such a high number of
moments for 3-loop quantities. Yet the method presented shows that it is possible to establish and solve
recurrences of rather large order and degree, occurring in physics problems, uniquely, fast and reliably
with computer algebra.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Precision predictions for observables in Elementary Particle Physics require the calculation of the corresponding Feynman diagrams, the
number of which grows fast with the order in the coupling constant being considered. According to the relevant number of different ratios
of Lorentz invariants or scales involved one may group these observables into 0-scale, 1-scale, 2-scale, etc. processes. In renormalizable
Quantum Field Theories the radiative corrections to the couplings, masses and external fields are examples for 0O-scale quantities [1].
Anomalous dimensions and hard scattering cross sections, as the Wilson coefficients for light and heavy flavors (for Q2 > mf,) in deeply
inelastic scattering, are single scale quantities, cf. [2-6]. Also the subsystem cross sections for the Drell-Yan process and the cross section
for hadronic Higgs-boson production in the heavy mass limit for the top-quark belong to this class. Mellin moments for single scale
quantities f(x),

1

M[fX)](N) = / dxx™ f (x) (1)
0
are 0-scale quantities again for N € N [7-10]. Here x usually denotes a fraction of Lorentz-invariants the support of which is or can

be extended to [0, 1]. In the lower orders in perturbation theory O-scale quantities can be expressed as linear combinations of specific
numbers over Q which are multiple ¢-values [11],
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at the beginning, with possible extensions in higher orders, which occur in both massive and massless calculations [12]. The 1-scale
quantities can be expressed in terms of finite harmonic sums [13,14]

N k
sign(ay)
aN) =) =T Sna®.  Sp=1. aecZ\(0)
k=1

and rational functions of the Mellin variable N at lower orders in perturbation theory. At higher orders one expects to find generalizations
of harmonic sums. Much less is known on the function-spaces spanning 2- and higher scale processes. The Mellin-transformation (1) is
empirically found to yield considerable structural simplifications of 1-scale processes, cf. [15]. In massless processes this is partly due to
the factorization properties, but it seems to hold to an even wider extent. Corresponding diagonalizations for processes with a higher
number of scales depend on their respective main symmetries, which may not even be fixed by just the number of scales.

In the present paper we study single scale processes and represent them in Mellin space. In order to apply our method under consid-
eration, we shall assume the case that M[f (x)](N) can be found as the solution of a linear recurrence equation

a(N)F(N) +a1(N)F(N+ 1) +---+a(N)F(N+1) =0, (2)

with polynomial coefficients ay(N).

There is no general proof that the k-loop contributions to a 1-scale observable have to obey such a recurrence. On the other hand,
it is known that all single scale processes having been calculated so far do, cf. [2-5,15]. This is due to the fact that the corresponding
observables are found as linear combinations of nested harmonic sums. The single harmonic sums obey
sign(a)N+1
(N +1)lal”

Exploiting holonomic closure properties [16] one obtains higher order difference equations for polynomial expressions in terms of nested
harmonic sums.

If a suitably large number of moments M[f(x)](N) is known, then a recurrence of the form (2) can be found automatically, see
Section 2. Once a recurrence of some order [ is found, this recurrence together with the first | moments specifies uniquely all the moments
M[ f(x)](N) for nonnegative integers N. Finally, we activate the summation package Sigma [17] and solve the recurrence (2) in terms
of generalized harmonic sums. In particular, using the underlying summation theory of I7X-difference fields [18-20] or exploiting the
algebraic relations [21], a closed form for M[f (x)](N) in terms of an algebraically independent basis of harmonic sums can be computed.

We emphasize that Eq. (2) covers a much wider class in which more general recurrent quantities can represent the corresponding
observables. In particular, our general recurrence solver for d’Alembertian solutions [22-24] finds any solution that can be expressed in
terms of indefinite nested sums and products. In even higher order or massive calculations further functions may contribute, which could
be only found in this way.

The Mellin-moments of the unpolarized 3-loop splitting functions and Wilson coefficients for deep-inelastic scattering are more easily
calculated [7-10] than the complete expressions, cf. [3-5]. In the present paper we investigate whether the exact formulae up to the
unpolarized 3-loop anomalous dimensions and Wilson coefficients [3-5] can be found establishing and solving difference equations (2) for
the Mellin moments of these quantities, without further assumptions.!

We consider the various color contributions to these quantities separately and try to find the complete result from a minimal number
of moments. As input we apply the moments calculated from the exact solution [3-5].

The paper is organized as follows. In Section 2 we describe how the difference equations of the form (2) are found by just using
a finite number of starting points of F(N). In Section 3 the algorithms are outlined that can solve these recurrences in the setting of
difference fields. They lead directly to the corresponding mathematical structures. These are nested harmonic sums in the present case.
In course of the solution we compactify the results applying the algebraic relations to the harmonic sums [21].2 The results are discussed
in Section 4. Our method applies in the same way to all other single scale processes of similar complexity, cf. [6,15]. Section 5 contains
the conclusions. In Appendix A we present a compactified form of the non-singlet 3-loop anomalous dimensions, which is automatically
provided in the formalism by Sigma. The corresponding expressions for the other anomalous dimensions and Wilson coefficients to 3-loop
order are presented in Mathematica and FORM codes attached.

FIN+1)—F(N)=

2. Finding a recurrence equation
Suppose we are given a finite array of rational numbers,

41,92, ..., 4K,

which are the first terms of a certain infinite sequence F(N), i.e., F(1) =qq, F(2) =@y, etc. Let us assume that F(N) satisfies a recurrence
of type

1 d
Z(Zq,W")F(N +k) =0, (3)

k=0 \ i=0

1 Approximate reconstruction methods based on special ansatzes were discussed in the literature e.g. in [7,25] to obtain first numerical estimates from a low number of
moments, see also [26]. We also remind that the description of QCD-evolution relating fixed integer moment information to orthogonal polynomials is an old topic [27]; see
also [28].

2 Further compactifications can be obtained using the structural relations, cf. [29,30].
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which we would like to deduce from the given numbers q; (i=1,..., K). In a strict sense, this is not possible without knowing how the
sequence continues for N > K. One thing we can do is to determine the recurrence equations satisfied by the data we are given. Any
recurrence for F(N) must certainly be among those.

To find the recurrence equations of F(N) valid for the first terms, the simplest way to proceed is by making an ansatz with undeter-
mined coefficients. Let us fix an order I € N and a degree d € N and consider the generic recurrence (3), where the c; ; are indeterminates.
For each specific choice N=1,2,..., K — 1, we can evaluate the ansatz, because we know all the values of F(N + k) in this range, and we
obtain a system of K —I homogeneous linear equations for (I+ 1)(d + 1) unknowns ¢; ;.

If K—1> (I+1)(d+ 1), this system is under-determined and is thus guaranteed to have nontrivial solutions. All these solutions will be
valid recurrences for F(N) for N=1, ..., K —1, but they will most typically fail to hold beyond. If, on the other hand, K —I < ((+1)(d+ 1),
then the system is overdetermined and nontrivial solutions are not to be expected. But at least recurrence equations valid for all N, if there
are any, must appear among the solutions. We therefore expect in this case that the solution set will precisely consist of the recurrences
of F(N) of order | and degree d valid for all N.

As an example, let us consider the contribution to the gluon splitting function o« C4 at leading order, ng(N).3 Here and in the
following we compute the input values using the representations given in Refs. [3-5] and follow the notation used there. Later on harmonic
sums of rather large arguments have to be calculated. This is done by an efficient algorithm written in MAPLE. For ng(N) the first 20
terms, starting with N = 3, of the sequence F(N) are

14 21 181 83 4129 319 26186 18421 752327 71203 811637 128911 29321129

2508266 292886261 7045513 611259269 1561447 4862237357 988808455
255255 ° 29099070 ° 684684 ' 58198140 ° 145860 ° 446185740 ° 89237148

Making an ansatz for a recurrence of order 3 with polynomial coefficients of degree 3 leads to an overdetermined homogeneous linear
system with 16 unknowns and 17 equations. Despite of being overdetermined and dense, this system has two linearly independent
solutions. Using bounds for the absolute value of determinants depending on the size of a matrix and the bit size of its coefficients, one
can very roughly estimate the probability for this to happen “by coincidence” to about 10~6>. And in fact, it did not happen by coincidence.
The solutions to the system correspond to the two recurrence equations

(7N? 4+ 113N? + 494N + 592) F(N) — (12N° + 233N? + 1289N + 2156) F(N + 1)
+ (3N? + 118N? + 1021N + 2476) F(N + 2) + (2N° + 2N* — 226N — 912) F(N +3) =0 (4)

and

(4N* + 64N? + 278N + 332) F(N) — (7N? + 134N? + 735N + 1222) F(N + 1)
+ (2N? + 7IN? + 595N + 1418) F (N + 2) + (N> — N> — 138N — 528) F(N + 3) =0, (5)

which both are valid for all N > 1. If we had found that the linear system did not have a nontrivial solution, then we could have concluded
that the sequence F(N) would definitely (i.e. without any uncertainty) not satisfy a recurrence of order 3 and degree 3. It might then still
have satisfied recurrences with larger order or degree, but more terms of the sequence had to be known for detecting those.

The method of determining (potential) recurrence equations for sequences as just described is not new. It is known to the experimental
mathematics community as automated guessing and is frequently applied in the study of combinatorial sequences. Standard software
packages for generating functions such as gfun [16] for Maple or GeneratingFunctions.m [31] for Mathematica provide functions which take
as input a finite array of numbers, thought of as the first terms of some infinite sequence, and produce as output recurrence equations
that are, with high probability, satisfied by the infinite sequence.

These packages apply the method described above more or less literally, and this is perfectly sufficient for small examples. But if
thousands of terms of a sequence are needed, there is no way to get the linear systems solved using rational number arithmetic. Even
worse, already for medium sized problems from our collection, the size of the linear system exceeds by far typical memory capacities of
16-64 GB. For the big problem Cf; e (N), it would require approximately 11 TB of memory to represent the corresponding linear system

explicitly. It is thus evident that computations with rational numbers are not feasible. Instead, we use arithmetic in finite fields together
with Chinese remaindering and rational reconstruction [32-34]. Modulo a word size prime, the size of the biggest systems reduces to a
few GB, a size which easily fits on our architecture. And modulo a word size prime, such a system can be solved within no more than a
few hours of computation time by Mathematica.

The modular results for several distinct primes p1, p2, ... can be combined by Chinese remaindering to a modular result whose coeffi-
cients are correct modulo the product p1p>.... If the bit size of this product exceeds twice the maximum bit size appearing in the rational
solution, then the exact rational number coefficients can be recovered from the modular images by rational reconstruction [32-34]. The
number of primes needed (and thus the overall runtime) is therefore proportional to the bit size of the coefficients in the final output.

The final output is a recurrence equation for F(N). But the recurrence equation satisfied by a sequence F(N) is not unique: if a
sequence satisfies a recurrence equation at all, then it satisfies a variety of linearly independent recurrence equations. The bit size of the
rational number coefficients in these recurrence equations may vary dramatically. In order to minimize the number of primes needed
for the computation of the rational numbers in the recurrence, it seems preferable to compute on a recurrence whose coefficients are as
small as possible in terms of bit size. According to our experience, this recurrence happens to be the (unique) recurrence whose order [ is
minimal among all the recurrence equations satisfied by F(N). We have no explanation for this, but it seems to be a general phenomenon,
as it can also be observed in certain combinatorial applications [35].

3 Here Pi(]'.‘)(N) is used synonymously with the anomalous dimension.
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Also the number of unknowns for the linear system may vary dramatically among the possible recurrence equations for F(N), and it
seems preferable to compute on a recurrence where the number of unknowns is as small as possible. Small linear systems are not only
preferable because of efficiency, but also because the number of unknowns in the linear system determines the number of initial terms q;
that have to be known a priori in order to detect the recurrence. According to our experience, the size of the linear system is minimized
when the order | and the degree d are approximately balanced.

Unfortunately, it seems that the recurrence with minimal (in terms of bit size) rational number coefficients has the maximal number
of unknowns in the corresponding linear system, and vice versa. But there is a way to combine the advantages of both at a reasonable
computational cost. Consider the two recurrence equations (4) and (5) from the example of the gluon-gluon splitting function at leading
order, Pgg o(N), quoted above. A recurrence of smaller order can be obtained from these by multiplying (4) by (N2 —9N —66) and (5) by
(2N% — 14N — 114), and then subtracting the results. The choice of the multipliers is such that the coefficient of F(N + 3) in the difference
cancels: we obtain

(N° +22N* + 189N? + 788N? + 1592N + 1224) F(N)
— (2N° +45N* ++ 396N + 1701N? + 3580N + 2988) F(N + 1)
+ (N° +23N* + 207N + 913N? + 1988N + 1764) F(N +2) =0.

The calculation just performed can be recognized as the first step in a difference operator version of the Euclidean algorithm [36]. Applied
to two recurrence equations satisfied by a sequence F(N), this algorithm yields their “greatest common (right) divisor”, which is, with
high probability, the minimal order recurrence satisfied by F(N). In our example, the algorithm terminates in the next step, and indeed
the sequence F(N) of Pgg o(N) does not satisfy a recurrence of order less than two. Note that the linear system for finding the second
order recurrence directly would have involved (5+ 1)(2 + 1) = 18 unknowns instead of the 16 unknowns we needed for finding the third

order recurrences. For the big problem Cf’; 3 (N), a direct computation would require 33 804 unknowns instead of the 5022 we actually
4L F

used. We combine the advantage of a small linear system with the advantage of small coefficients in the output as follows. We first
compute for several word size primes the solutions of a small linear system, but then instead of applying rational reconstruction to those,
we compute, for each prime independently, their greatest common right divisor modulo this prime. We then apply rational reconstruction
to recover the rational number coefficients of those.

In summary, we used the following procedure for finding the recurrence equations.

1. Choose a word size prime p.

2. Choose some bounds | and d and make an ansatz for a recurrence of order | and degree d. The linear system is constructed and solved
modulo p only.

3. If there are no solutions, repeat step 2 with increased bounds [ and d.

4. If there are solutions modulo p, compute their greatest common right divisor modulo p by the Euclidean algorithm for difference

operators.
5. Repeat steps 1-4 until Chinese remaindering and rational reconstruction applied to the greatest common right divisors for the various
primes yields a recurrence that matches the given data q1,q>, ..., qk.

6. Return the reconstructed recurrence as the final result.

For the big problem Cf; e (N), most of the computation time (about 53%) was spent in step 4. Solving the modular linear systems con-

sumed about 28% of the time, and Chinese remaindering and rational reconstruction took about 18% of the time. The memory bottleneck
is in step 2 where the linear system is constructed. The memory requirements for the other steps, if implemented well, are negligible.

For problems that are even bigger than those we considered, further improvements to the procedure are conceivable. First, there are
asymptotically fast special purpose algorithms for step 2 available [37,38]. These algorithms outperform the naive linear system approach
we are taking for problem sizes where fast polynomial multiplication algorithms outperform classical algorithms. It is likely that their use
would have already been beneficial for some of our problems. Second, a gain in efficiency might result from running the procedure on a
different platform. We have done all our computations within Mathematica 6, but we expect that in particular step 4 might considerably
benefit from a reimplementation in a computer algebra system providing high-performance polynomial arithmetic. Mathematica’s modular
arithmetic, on the other hand, appears to be quite competitive. Third, it might be worthwhile to run parts of the procedure in parallel. In
particular, computations for distinct primes are completely independent from each other and can be done on different processors without
any communication overhead. Observe that these steps dominate the runtime.

3. Solving the recurrence equations
After having obtained difference equations of high order and degree we will now discuss general, efficient algorithms by which these
equations can be solved. Given a recurrence relation
a(N)F(N) +ay(N)F(N+ 1) +--- +a(N)F(N +1) =q(N) (6)

of order [, find all its solutions that can be expressed in terms of indefinite nested sums and products. Such solutions are also called
d’Alembertian solutions [22-24], they form a subclass of Liouvillian solutions [39]. Note that such solutions cover as special cases, e.g.,
harmonic sums [13,14] or generalized nested harmonic sums [40].

The solution to this problem consists of two parts.

1. First, compute all d’Alembertian solutions by factoring the recurrence as much as possible into linear right factors. Then each linear
factor contributes to one extra solution. To be more precise, the ith factor yields a nested sum expression of depth i — 1.
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2. Second, simplify these nested sum solutions to closed form expressions, e.g., in terms of harmonic sums, that can be processed further
in practical problem solving.

In general, the package Sigma [17] can solve these problems in the setting of ITX-difference fields [18,41]. This means that the

coefficients ag(N), ..., a;(N) and the inhomogeneous part q(N) of (6) can be given as polynomial expressions in terms of indefinite nested
sums and products.
For simplicity, we restrict ourself to the situation that the given coefficients ag(N), ..., a;(N) are polynomials in N and that the inho-

mogeneous part q(N) is zero. In other words, we assume that we are given a recurrence of the form (2) or (3) that is produced, e.g., by
the method described in the previous section.

3.1. Finding all d’Alembertian solutions

Subsequently, we present algorithms that find all d’Alembertian solutions of (2). Equivalently, we can say that we look for all d’Alem-
bertian sequences which are annihilated by the linear operator

L:=ag(N) +a;(N)S+--- +a(N)S', (7)
which is understood to act on a sequence F(N) via

(L-F)(N) :==ao(N)F(N) +a1(N)F(N+ 1) +--- + a(N)F(N + D).
We start as follows.

Step 1: Finding a product solution. First, we look for a solution of (7) which is of the form

N

To(N) = ]_[ r(i) (8)
i=A
for some rational function r(i) in i. In Sigma this task can be carried out by executing a generalized version of algorithm [42] that works
in general IT X -difference fields; for an alternative algorithm to find such hypergeometric terms we refer to [43].
If there does not exist such a product solution (8), then there is no d’Alembertian solution at all; see, e.g. [24, Theorem 4.5.5]. In this
case, we just stop. Otherwise, we look for additional solutions as follows.

Step 2: Splitting off a linear right factor. By dividing the operator (7) from the right with the operator
_To(N+1)

=S—r(N+1) (9)
To(N)
we arrive at an operator
L :=bo(N) +b1(N)S+--- +b_1(N)S! (10)

of order | — 1 such that

L=L(S—r(N+1)
= —r(N + Dbo(N) + (bo(N) — r(N + 2)b1(N))S + - - + (b1 (N) — r(N + Db;(N))S',
i.e, S—r(N+1) is a linear right factor of L.

Step 3: Recursion. Now we continue by recursion and look for all d’Alembertian solutions for the operator L’ with order I — 1. Note that
after at most [ — 1 steps we end up at a recurrence of order 1 whose d’Alembertian solution can be read off immediately.

Step 4: Combining the solutions. If we do not find any d’Alembertian solution for L', we just return the solution (8) for L.
Otherwise, let

t1(N), ..., tp(N) (11)
with 1 <k < be the solutions of L’ that we obtained after the recursion step. To this end, for 1 < j <k define

N

tii—1)
Tj(N):=To(N) Y — (12)
! ; To(i)
for some properly chosen A > 0 (i.e., To(i) is nonzero for all i with i > 1). Then the final output of our algorithm is
To(N), T1(N), ..., Tk(N). (13)

The following remarks are in place. By construction all the elements from (13) are solutions of (7): for each 1 < j <k,

N+1
(S—r(N+1)-Tj(N)=To(N+1) )
i=A

N

tii—1) — (N + 1)T0(N)Z
=

To (i)

tii—1)
To (i)

N

_ -1, GMN Ni-1n
_r(N+1)To(N)(§ oD +T0(N+1)> r(N+1)To(N)§ o =4
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and hence
L-Tj(N)=L-t;(N)=0.

But even more holds. The derived solutions (13) are linearly independent. In particular, any solution of L in terms of indefinite nested
sums and products can be expressed as a linear combination of (13); see [39, Theorem 5.1] or [24, Proposition 4.5.2].

Summarizing, with the algorithm sketched above we can produce all d’Alembertian solutions of L, i.e., all solutions that are expressible
in terms of indefinite nested sums and products.

We emphasize that the expensive part of the sketched method is the computation of the product solutions (8). The following improve-
ments were crucial in order to solve the recurrences under consideration.

Improvement 1. If one finds several product solutions, say P1(N), ..., Py(N), one can produce immediately a recurrence L’ like in (10),
but with order | — u instead of order | — 1. Moreover, given all d’Alembertian solutions of this operator L’, one gets all the solutions of the
recurrence (7) without any further computations; see [24, Theorem 4.5.6].

Improvement 2. For the problems under consideration, it turns out that it suffices to search for product solutions (8) that can be written
in the form

N N
PN oy = PN gy (14)
q(N) q(N)
for polynomials p(N) and q(N). Therefore, we used optimized solvers [44] of Sigma which generalize the algorithm presented in [45]. In
addition, arithmetic in finite fields is exploited in order to determine the solutions (14) effectively.

To(N) =

Improvement 3. In our applications, rather big factors from tj(i — 1) and To(i) cancel in the summand t’g(_i;) of (12); in particular, the

usually irreducible factor p(i) from (14) (N substituted with i) cancels. Hence it pays off to compute directly the summand expression
-0, Namely, instead of the operator (10) we continue with the operator

To() *
I-1
bo(N) +r(N)b1 (N)S+ - -+ + ( [Trov+ i))bl_l(MS’-K (15)
i=1
and look for all its d’Alembertian solutions t}(N), ..., t,(N). Then by construction, the solutions of (6) can be given directly in the form
N
T;(N) =To(N) Y _t;(D). (16)

i=2
Example 1. As illustrative example we solve the difference equation for the CFN%—term of the unpolarized 3-loop splitting function
qu,Z(N),
F(N) = qu,z,Ngcp (N).

Using the explicit representation from [4], see (25), we compute the first 41 initial values, and we generate the recurrence relation

ao(N)F(N) +a1(N)F(N +1) + a2(N)F(N +2) + as(N)F(N +3) =0, (17)

with

ao(N) = (1 — N)N(N + 1)(N® + 15N> + 109N* + 485N + 1358 N2 + 2216N + 1616),
a1(N) = N(N + 1)(3N” + 48N® + 366N> + 1740N* + 5527N° + 11576N? + 14652N + 8592),
az(N) = —(N + 1)(3N® + 54N’ + 457N°® + 2441N° + 9064N* + 23613N°
+ 41180N? + 43172N + 20768),
as(N) = (N +4)>(N® + 9N° + 49N* + 179N* + 422N? + 588N + 368)

by the methods presented in the previous section. Then given this recurrence, we produce its d’Alembertian solutions as follows. First,
Sigma computes a rational solution, namely

N2 +N+2
To(N)= ———— =
(N-1)N(N+1)
Now we can divide (17) from the right by the operator S — To(N + 1)/To(N) =S — %. Then the resulting recurrence of the
operator (15) is
bo(N)G(N) 4+ b1(N)G(N 4+ 1) +b2(N)G(N +2) =0, (18)

with
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bo(N) = (N + 1)(N +2)(N* — N +2)(N® + 9N° + 49N* + 179N> + 422N? + 588N + 368),
b1(N) = —(N +2)(2N° + 21N® 4 124N7 4 530N° + 1690N° + 3989N* + 6712N°> + 7524N?
+5232N +2080),
ba(N) = (N* 4+ 5N + 8)(N® + 3N> 4 19N* 4 53N> + 104N> + 124N + 64)(N + 3)°.
Next, we proceed recursively and can compute the rational solution

N4 +4N3 + 13N2 + 22N + 16
(N—T1)N(N +1)(N+2)(N2 + 3N + 4)

P'(N) =

of (18). Thus we divide (18) by the factor S — P ;,(,'\(’ﬁ;) which leads to the first order recurrence

co(N)H(N) +c1(N)H(N+1)=0 (19)

with

co(N) = —(N +1)(N? + N +2)(N* — 4N® + 13N? — 14N + 8)
x (N®+3N° + 19N* + 53N> + 104N? + 124N + 64),
c1(N) = (N +2)(N? = N +2)(N* + 4N> 4+ 13N? 4 22N + 16)
x (N® —3N° + 19N* — 13N3 + 44N? - 8N + 8).
Here we can read off directly the solution
(N? — N 4 2)(N® — 3N°> 4+ 19N* — 13N3 + 44N? + 8N +8)
(N 4+ 1)(N4 +7N2 + 4N + 4)(N4 —4N3 + 13N2 — 14N + 8)
Going back, we obtain besides t1(N) = P/(N) the solution

P//(N) —

N4+ 7N2+4N +4 ZN: (2 — j+2)(j8 —3j° +19j* — 133 + 44j2 + 8j +8)

N
Ny =P'(N) S P"(j) =
LN = PN 3 P"G) (N+D(N2 = N+2) (N> + N +2) & G+ D(+ 772 +4) +4)(J* - 47 + 1372 — 14) + 8)

j=1
of (18). Hence by (16) we obtain, besides To(N), the solutions
2 N 4472 +4i44
N"+N+2 Y im Eneinn @
(N—1N(N+1)
A 52 4 i (2—j+2)(5-3j5+19j4-133 1442 +8]+8)
(N2+N+2) YN W7 44D Kot () TP i a7 1449
Ty (n) = i=1 (i4+1)(i2—i+2) (2 +i+2) (20)
2 (N—T)N(N +1)
for (17). Since all three solutions To(N), T1(N) and To(N) are linearly independent over, say, the complex numbers, any solution F : N — C
of (17) can be described as a linear combination

T1(N)=

5

F(N) =c1To(N) + c2T1(N) 4 c3T2(N)

for c1, ¢, c3 € C. The initial values F(3) = 287 F(4) = 27BL F(5) = 29223 imply
32 64 8
Pyganzes M) == To(N) + o T (N) = S To(N). (21)

In Section 3.2 we focus on the problem how such expressions can be simplified further in the context of difference fields. In particular, in
Example 4 we will illustrate this machinery for (21) and we will compare the result with the representation given in [4].

For our concrete problems all the recurrences could be factored completely. Equivalently, for a recurrence of order d we found d linearly
independent solutions T1(N), ..., Tg4(N) where the solution T, with 1 <k <d can be given in the form

N . i _
Po(N) 5~ i P1(i1) Ji2 Pai2) Z‘lk Pr(ix)

Ti(N) =s
=90 00 2= Qiin 22 o) A Qi

(22)

where for 1 <i <k the P; and Q; are polynomials and s; € {—1, 1}.

Example 2. For the C4CpNp-term of the 3-loop non-singlet splitting function Py, we found a recurrence of order 7 which fills around
five pages. The 7 linearly independent solutions can be computed within 10 seconds; the largest solution fills around three pages and has
the form
I k j .
P1(5) o~ P2(r) x~ P3(D) g~ Patk) g~ Ps(j) <~ Pe(i)
(23)
Z Q1(s) ; Qa2(r) ,g: Qs Z Qa(k) Z Qs(Jj) Z Qe (i)’

k=5 j=1 i=
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where the irreducible polynomials Py, P3, ..., Pg have the respective degrees 4, 8, 16, 28, 63, 69, and the denominators are of the form

Qi(s) = (s —1’°s(s +1)°,

Qa(r) = (r* — 10r* +29r* — 34r + 12)(r* — 6r° + 5r% — 2r - 2),

Qs() = (1% — 241" + 2151° — 10171° + 28661* — 4975 + 51461* — 28121 + 576)

x (I8 — 1617 4 751° — 1751° + 2361* — 1651° — 41> + 64 — 24),

Qa(k) = (k —4)(k —3)*(k — 2)> (k — 1)°Kk* (k"® — 38k° + 566k® — 4628k’ + 23621k® — 79466k
+178404k* — 261580k> + 235712k* — 114624k + 21600) (k'® — 28k? + 269k® — 1348k’
+4091k® — 7768k° + 8451k* — 3560k> — 1612k> + 1872k — 432),

Qs(j) =2j2° —795;1° 4 40760;'® — 10366417 + 16752826'® — 191239786 + 1632641752
— 10786299042 + 563346950302 — 235648109263 j'! + 795075807544 j°
— 2168602473357 ° + 4771126881598 j8 — 8409573468828 7 + 11731291260824 °
— 12705852943232j° + 10375981856560 j* — 6104512549760 + 2399836168064 2
— 547585520256 j + 51445094400,

Qe(i) = (i — 5)(i — Di(i + 1)(16i** — 7192i** + 673840i°' — 33108234i%*° + 1069628658i*°
+ -+ 162245083333715039232i — 11706508031797555200) (16i** — 6664i** + 452144i°!
—15699130i°° + - - - + 6071537402380800i — 670382971978752i + 32623028121600).

Example 3. The solution of the recurrence for the C%—contribution to the unpolarized 3-loop Wilson coefficient for deeply inelastic scatter-
ing, cf. [5] Cf; 3 (N),* constituted the hardest problem to solve. We obtained a recurrence of order 35. Then our solver ran 25 hours and
4t F

used 3 GB of memory to derive the 35 linearly independent solutions. In total, we needed only 478 instead of Z?ioi =595 summation

quantifiers in order to represent those solutions. This is possible due to the Improvement 1. For each of the summands around 20 MB of
memory were used. In particular, in the summands the denominators have irreducible factors up to degree 1000; the integer coefficients
of the polynomials were up to 700 decimal digits long.

3.2. Simplification of d’Alembertian solutions

We consider the following problem: Given indefinite nested sum and product expressions, e.g., expressions of the form (22), find an
alternative sum representation with the following properties:

1. All the involved sums are algebraically independent with each other.

2. The nested depth of the sum expressions is minimal.

3. In the summands the degree of the denominators is minimal.

4. The sums should be tuned in such a way that algorithms can perform this simplification as efficiently as possible.

In principal, this problem can be solved with Karr’'s summation algorithm [18] based on [T X -difference fields, if one knows explicitly the
sum elements in which, e.g., the expression (22) should be expressed. For small examples such optimal sums with properties 1-3 from
above might be guessed. In particular, if one has additional knowledge about the objects under consideration, a good sum representation
might be known a priory. But if such additional knowledge is not available, Karr’s algorithm is not applicable.

In order to overcome this restriction, the fourth named author has refined Karr’'s I7 X-theory for symbolic summation [20,46]. As a
consequence, we can determine completely automatically such sum representations with the properties 1-4 from above; see [19,47].

Example 4. With Sigma we find the depth-optimal representation

88+25N+23N2+4N3+4N4+8(16+27N+13N2+8N3)2’V:1
9 (N—1N(N +1)3 9 (N-DNIN+D? &

4 (24 N+N?) N\ M
swoovaan|(27) TXn

i=1 i=1

of (21) where the sums are given in (20). We can read off the harmonic sum representation

4 Here the notation is as follows. The first index 2(L) stands for the structure function F;(F;). The second index q(g) labels the quarkonic and gluonic contributions,
respectively. The last index represents the contribution to the respective color- or ¢-value factor.
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88+25N+23N2 +4N3+4N* 8 (16+27N+13N?+8N?3)

"9 (N—T)N(N +1)3 9T NCONN£ 1?2

4 Q2+N+N?»
T3 (N=DN(N+1)
This compares to the representation [4]

quZNZCF(N) S1(N)

[S3(N) + S2(N)].

Poganzc,(N) = 16{ ( —N+)[ S1—$1 1}

5
——(2N 2—4N_—N++3)[ 51+3511—5111“

2151

(25)

with the shift operator for the argument of the harmonic sums defined by NiqS;(N) = S;(N & a). Eq. (25) depends on three different
harmonic sums at different arguments. Our result (24) is more compact and depends on two harmonic sums only. The sum S3(N)

contained in the polynomial representation of Sy 11(N) cancels in this expression.
Example 5. The sum expression for Py
depth-optimal representation

_ 2(1086N7 +3258N% 4+ 2129N> — 288N* — 67N3 — 206N% — 156N + 144)
PNSZCACFNF = 27N4(N+])3

32(8N4+33N3+53N2+25N+3) N 16 1 32— 1)1
+5 g Z

(=1 -
4
IN(N +1) £ 3 &

16(10N2 + 10N 4+ 3) <~ (—=1)) 1336 << 1  64(8N2 + 8N + 3) =1
- R >

9N(N + 1) i3 IN(N + 1)

i=1

16(4N6 + 88N> + 314N* 4 412N3 4 201N + 16N — 12) Z (- 1)1
9N2(N + 1)>(N +2)?

i=1

i=1

N N N 1 1 N
8(14N2 + 14N +3) 1 1 217 Y
S TR N 32
+( il Z Z " @ +2)2

3N(N+1) 3 = vl v

T
32(22N% 4+ 22N - 3) i i (jz> N XN:1 322N% +4N + 1)
9N(N +1) i+2 i 3(N+1)3

4(65N% + 195N° + 195N* + 137N3 4+ 36N? + 36N + 18) 32 XN: 1)! 128
t3

27N3(N + 1)3

32(2N3+2N2—3N—2)2N:( 1) 642N:Z]1 )
BNN+D(N+2) & i+2

i=1

256 N (—1)i23‘:1%+EXN:(21 1 jg)i)(zgvzl %)
3 P i 3 P i+2 )

Finally, we use ]. Ablinger’s HarmonicSums package [48],> which transforms this expression to the harmonic sum notation:

64(—1)NMAN +1) 2(270N7 4+ 810N® — 463N> — 1392N* — 211N3 — 206N? — 156N + 144)

9N+1)4 27N4(N + 1)3
64 2 16(10N? + 10N + 3) 32(10N% 4 10N — 3)

+ —S_4(N)+S_3(N)[ =5 (N S_21(N
3 4(N) 4+ S_3( )( 1(N) — ON(N+1) > ON(N+1) 2,1(N)
16(16N%2 + 10N —3) 320 8(14N? 4 14N +3)

S_5(N ——s N —s N — /SN
+5-5( )( NN 172 1(N) + —Sa( )) T PR R
—4(209N6 + 627N° + 627N4 +281N3 + 36N% + 36N + 18) 80
S1(N 16S3(N) + — S4(N
+ 51( )( NN T 1) +1653(N) + 3 S4( )
+13365 (N)+64S - 32(—=)N 325 ™ 64S ™ 128S ™
27 2 37721 3N+1)3) 3772 E ERRL

(=N

NS.2.C4CrNF containing in particular the 7-nested sum (23) can be simplified with Sigma to the

We emphasize that the harmonic sums in this expression are algebraically independent. The algebraic independence could be accomplished
with the Sigma package; out of convenience and efficiency we used the HarmonicSums package which contains among various other

features the harmonic sum relations of [21].

5 The package refers to algorithms and methods from [14,21,29,30,49,50].
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(3)

Example 6. The derived sum expression of C ; from Example 3 contains sums of the form (22) with depth k = 35. In around four days

and 20 hours this expression could be 51mpllﬁed to an expression in terms of 65 sums that satisfy the properties 1-3 from above. Among
them there are 47 sums with depth two; typical examples are

M (s P ) (St F)(Shr F) Tt §
Z X and Z k ' -

k=1

Only one sum of nested depth three has been used, namely

S E YL (L )
Z( )k( )J

k=1

We emphasize that these sums are constructed in such a way that the difference field algorithms [20] work most efficiently: The less
nested the sums are, the more efficient our algorithms work. E.g., if we switch to harmonic sum notation with Ablinger’s HarmonicSum
package, the first sum in (26) can be rewritten as

3
S_3(N)S3(N) —S_2,1(N)S3(N) + S_ z(N)( S1(N)* ——52(1\’) ——5 (N)>
+54,2(N) —35_-3,1,2(N) —=35_32,1(N) +3S_2(N)S2,1,1(N) — S3,1,—2(N)
+65-31,1,1(N) +35_21,1,2(N) +35_21,21(N) —65_2,1,1,1,1(N);

the involved sums have nested depths up to five. With such representations the algorithms in Sigma work much slower, or might even
fail for our specific input due to time and memory limitations.

4. 3-Loop anomalous dimensions and Wilson coefficients

In the following we apply the method described in the previous section to unfold all the unpolarized QCD anomalous dimensions and
Wilson coefficients to 3-loop order from a series of Mellin moments. This sequence is calculated using the relations given in [3-5] for
the different quantities per color factor and factors given by ¢-values. We will need rather high Mellin moments N. The corresponding
harmonic sums cannot be calculated by summer [14] directly, but have to be evaluated recursively,

sign(a)"*!
Sa1,az,A.A,ak(N+1)= 45 ak(N+1)+Sal ap

(N—l—l)lall ..... ak(N)' (27)

We used a Maple code for this. The highest moment to be calculated is N = 5114 for the C%—contribution to the 3-loop Wilson coefficient
C2,¢. Its recursive computation requires roughly 3 GB of memory and 270 min computational time on a 2 GHz processor. It is given by a
fraction with 13 888 numerator and 13 881 denominator digits. The set of moments has a size of 69 MB. The determination of most of the
other inputs sets requires far less resources.

In Tables 1-3 we summarize the run parameters for the individual color- and ¢-contributions to the splitting functions and in Tables 4-
8 to the Wilson coefficients in unpolarized deeply inelastic scattering up to 3-loop order. We specify the number of moments needed on
input and the order, degree, and length of the recurrence derived. For the solution we compare the number of harmonic sums in Refs. [3-5]
and in the present calculation. The computation times needed to establish and to solve the recurrences are also given.

To give some example for the rise of complexity for different orders in the coupling constant, we compare the C’j\ contributions to

p®

gg.Ck1” In case of the anomalous dimensions the largest amount of moments needed is n = 19 for ng Ca (n), n =181 for P;g) 2 (n),
Gy ’ LA

and n = 1393 for P;Zg) 3 (n). The order and degree of the recurrences found are exactly, resp. nearly, the same for P,(\f;’i(n). For the
A

p (k)

non-singlet anomalous dimensions and the singlet anomalous dimensions and Pgq 44(n) order and degree of the difference equation are

larger than in case of Pf,lg (n). The total computation time needed for all anomalous dimensions amount to less than 18 h. The largest
number of harmonic sums contributing is 26. There are significant reductions in their number comparing to the representation given in
the attachment to [3,4]. It amounts to a factor of two or larger, except in case of the very small recurrences. In the non-singlet case
ph* (n) the number reduces from 68 to 26. A large reduction is obtained for P(k) = (n) from 130 to 21 harmonic sums.

Ns,C}
C(3) G n), Cf) c2ca (N) and C(3) .CrC2 (n) four Weeks of computation time is needed in each case requiring
A

3)
Cz ,C2Cx

For the Wilson coefficients

< 10 GB on a 2 GHz processor. The number of necessary harmonic sums is 60, reducing from 290 in [5] for . This is the number

of all harmonic sums not containing the index {—1} up to weight w = 6 after algebraic reduction, cf. [30].

If one compares the number of harmonic sums obtained in the present calculation after the algebraic reduction yields groups charac-
terized by clusters of 58-60, 26-29, 11-15 and cases with a number of sums below 10, up to very few exceptions. As this pattern is the
same for quite different quantities, it may be related rather to the topology, but the color- or field-structure of the respective diagrams.
This pattern is not seen counting the harmonic sums in the representation of Refs. [3-5].

In case of the smaller recurrences the time needed for their derivation is usually shorter than that for its solution. Conversely, for
the larger recurrences the time required to establish them and the solution time behave roughly like 4(3):1. The total computation time

6 Here, the linear representation given in the text has been reduced already, following an idea of one of the present authors.
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Table 1
Run parameters for the unfolding of the non-singlet anomalous dimensions.
Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]
Pns,0 14 2 3 0.05 0.087 1[1] 0.55
Po. ., 142 31 3.32 4.666 6 [10] 7.45
NS,1,C%
PyNsa.cack 109 4 24 1.91 2.834 6[7] 6.28
P i e 24 2 7 0.13 0.271 2 [2] 0.92
Pr. 142 31 3.35 4.707 6 [10] 7.45
NS,1,C%
Pﬁs,l.c,;cp 109 4 23 1.88 2.703 6 (7] 6.23
PYs1.ceng 24 2 7 0.09 0.271 2[2] 0.89
. 1079 16 192 3152.19 529.802 26 [68] 1194.41
s LF
PNs.zcig 48 3 1 0.49 0.643 1[1] 1.56
PNs.z,cAc,% 974 15 181 1736.08 450.919 26 [62] 1194.41
NS.2.CaC20s 48 3 1 0.53 0.643 1[1] 1.53
NS.2.CCr 749 12 147 1004.12 242.892 26 [62] 1100.88
PNs,z,cﬁcm 48 3 1 0.56 0.643 1[1] 1.56
PNs,z.cpN,% 39 2 1 0.31 0.369 3 (3] 1.20
PNs.z.cﬁNF 377 8 68 76.34 33.946 11 [24] 72.22
PNs.zc;Nm 14 2 3 0.12 0.101 1[1] 0.53
P NS 2.CaCe Ny 356 7 62 65.25 23.830 11 [20] 52.67
P NS 2.CaCeNELs 14 2 3 0.12 0.101 11[1] 0.55
P;;S 203 1079 16 192 4713.27 527.094 26 [68] 1165.22
SR
+
PNS’Z’C%3 48 3 1 0.55 0.643 1[1] 1.562
s 5 974 15 178 1715.03 442.031 26 [62] 889.047
NS,2,C4C%
+
NS.2.CaC2es 48 3 11 0.61 0.643 1[1] 1.531
P;S @ 749 12 146 991.22 240.325 26 [50] 516.812
()
4
PliS.Z.CﬁCFQ 48 3 1 0.61 0.643 11[1] 1.593
Plis.z,cglv,: 377 8 69 111.38 33.872 11 [24] 71.235
PQ\I_S,Z,CﬁNrca 14 2 3 0.15 0.101 1[1] 0.531
PliS,Z,CACFNF 307 7 61 48.62 23.808 11 [24] 71.235
PlisvzchCFNFCB 14 2 3 0.15 0.101 1[1] 0.547
PNs,z,CFN‘% 39 2 11 0.40 0.369 3 3] 1.172
P NS 2 N doye 459 7 87 239.62 0.369 5 [20] 325

amounted to 110.3 CPU days. Concerning the size of the different problems to be dealt with a naive fivefold parallelization was possible.
Here we did not yet consider parallelization w.r.t. the number of primes N, chosen, which would significantly reduce the computational

time, of the C} term of C

(3)
2,q’

with N = 140, discussed above and for other comparably large contributions.

In course of solving the recurrences we reduce the harmonic sums appearing algebraically, [21], and can express all results in terms of

the following harmonics sums’:

S1

S$2,5
S3,S_3
S2,1,51,-2
S4,5-4

531,5-31,52,—2

$2.1,1,5-2.11

S5,5_5

S41,5-41,53,-2,532,5-32,5-3,2

5$3.1,1,5-3,1,1,52,2,1, 5-2,1,-2, 52,1,-2, 52,21

S2.1.1.1,5-2.1.1.1

7 Other, algebraically equivalent bases, can be used as well.
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Table 2
Run parameters for the unfolding of the singlet anomalous dimensions.
Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]
P{’jVFCF 24 1 8 0.19 0.204 0 [0] 0.244
é’jwr 109 3 26 6.32 1.891 2 [8] 2.812
NZCr
B e CACH 566 9 115 425.44 100.414 7 [40] 111.52
P e Cacsts 19 1 6 0.42 0.117 01[0] 0.204
ngw o 237 5 50 32.75 0.117 4 [24] 14.601
s F
Pé’fmz o 19 1 6 0.41 12.163 0 [0] 0.200
g F
Pgg.0 1 1 3 0.02 0.061 0[0] 0.16
Pgg 1.NpCy 120 4 29 3.31 3.769 3 [8] 4.872
Py 1.N5Cr 63 3 16 0.68 0.951 2 (9] 2.008
qu.z.N‘erA 239 6 54 45.30 17.403 6 [24] 21.993
P2 N2cr 194 5 41 27.75 7.911 3 [15] 8.021
qu.Z.NrCf\ 1088 15 201 3321.46 557.535 13 [88] 848.85
qu.Z.NFCflza 39 2 11 0.86 0.408 1[3] 0.932
Py 2.NrCaCr 1049 15 194 3963.62 552.100 12 [84] 714.45
Pag 2.NpCaCris 39 2 1 1.02 0.409 1[3] 0.93
qu,Z,N;C% 849 12 143 1337.36 261.804 13 [66] 387.6
qu,Z,N;C%Q 17 1 5 0.29 0.093 0 [0] 0.15
Pgq.0 11 1 3 0.03 0.062 0 [0] 0.15
qu,l,C% 63 3 16 0.72 0.869 2 [6] 1.924
Pgq.1,crCa 125 4 31 4.55 4.059 3[12] 5.068
Pgq.1,NrCr 24 2 6 0.18 0.192 1[3] 0.588
qu,Z,Ci 703 1 114 927.82 162.320 13 [59] 245.53
qu,Z,Cﬁrz 35 2 9 0.79 0.281 1[3] 0.776
qu,Z,C,Z,Cp 1088 15 203 3327.32 633.346 12 [93] 830.2
Poa2.Ccres 35 2 9 0.81 0.281 1[3] 0.776
qu,z,c,;cﬁ 1087 15 193 3184.13 528.827 14 [75] 853.31
Pyq2.Cacies 35 2 9 0.86 0.281 1[3] 0.776
qu,z,Npcf. 339 7 69 106.93 30.626 5 [25] 33.586
Pog2necies 11 1 3 0.24 0.062 0[0] 0.152
Pgq.2,NpCaCr 1087 15 194 3201.52 58.943 17 [87] 714.51
Pgq2.NFCaCres 1 1 3 0.21 0.062 0[0] 0.156
Pog2.n2cr 41 3 9 1.04 0.445 2 [6] 1.216
Pgg0 19 2 5 0.04 0.166 1[1] 0.65
ng’l’ci 181 5 45 12.07 9.053 6 [17] 11.62
Pgg 1.NsCa 29 2 9 0.23 0.395 1[1] 0.856
Pgg1.NsCr 31 1 1 0.23 0.228 0[0] 0.240
Table 3
Run parameters for the unfolding of the singlet anomalous dimensions (continued).
Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]
ng~2~c/3: 1393 16 277 12432.80 1087.615 21 [130] 2419.04
PogaNeC2 439 8 88 237.82 57.291 7 [35] 55.52
PogaNeCles 15 1 4 0.31 0.073 0 [0] 0.156
ng,z.NrC}\ 782 1 148 1638.62 205.980 6 [31] 160.89
Pyg2neCies 29 2 9 0.66 0.308 1[1] 0.796
P g 2NFCaCE 749 10 127 1169.37 146.921 7 [40] 128.37
Pgg aNgCaCres 29 2 9 0.72 0.305 1[1] 0.828
ng,Z,N%C,\ 55 2 17 4.53 0.979 1 [4] 1.092
ng,Z,N%CF 109 3 26 6.74 2.483 2 [12] 2.668

Se6,S_6

S51,5-51,542,54-2,5-42,5-4-2,5_33

S41,1,5-41,1,53,2,1, 52,31, 5-3,2,1, 5-3,1,2, 5-2.3,1, 53,1,-2. 5-3,1,-2, 5-3,-21,. 52,22, 52,2, 2

S3.1,1,1,5-3,1,1,1, 522,11, $-2,-2,1,1, S2,-2,1,1, $-2.2.1,1, S—2,1,1.2

S2.1,1,1.1,S-2,1,1,1.1-
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Table 4
Run parameters for the unfolding of the unpolarized pure-singlet Wilson coefficients.
Number of Order of Degree of Total Length of Number of Solution
terms recurrence recurrence time [sec] recurrence harm. time [sec]
needed [kbyte] sums a [b]
G 209 5 42 20.85 8.422 3 [16] 7.70
e N 1847 19 334 41001.00 1989.043 14 [122] 2701.04
20909 CF
cf;s Nt 65 2 20 0.69 1.124 1[6] 0.92
R
Py . 19 1 6 0.08 0.117 0 [0] 0.14
,PS,.CENFLa
Gy 2023 20 368 54873.80 2670.459 14 [126] 4589.31
@ 71 2 21 0.82 1.429 1 [6] 0.97
CR—— 19 1 6 0.08 0.117 0 [0] 0.14
E)
€y psicand 479 8 103 629.05 75.646 5 [34] 53.28
e Nt 19 1 6 0.09 0.122 0 [0] 0.14
) F
G 41 2 11 0.20 0.384 1[4] 0.88
Cohs.cone 869 11 162 441120 250.352 8 [62] 163.17
p U
®)
b ciness 35 2 10 0.17 0.406 11[5] 0.63
Gy 840 11 153 2005.44 231.837 8 [64] 153.99
s i 35 2 10 0.17 0.403 1 [5] 0.59
Chs.con 224 5 52 72.64 12.440 3 [13] 9.87
0 NE

The 3-loop Wilson coefficients require the complete set of possible functions up to w = 6. This representation can be further reduced
using the structural relations [29,30] to:

S1

$2.1,S-21

S-31

S2.1,1,S-2.11

S41,S-41

S31,1,5-3.1.1, 52,21, S-2.1,-2, 52.1,-2, S—2.2.1

$2.1.1,1,5-2.1.11

S-51

S41,1,5-41,1,532,1,523,1,5-32,1,5-3,1,2, 5-2,3,1, 53,1,-2, S-3,1,-2, 5-3,-2,1, 5-2,2,2, 52,-2,2
$31,1.1,5-31.1,1, 52,211, 5-2,-2,1,1, 52,-2,1,1, $-2,2,1,1, 5-2,1,1,2
$2.1.1,1,1,S-2,1,.1,1.1-

In [29,30] we applied a slightly different basis referring to S_ > _» instead of Sz _» > and to S _3,; instead of S_3 12, which is alge-
braically equivalent. These 38 functions can be represented by 35 basic Mellin transforms.

The ab-initio calculation of moments for the quantities considered in the present paper can be performed by codes like mincer and
MATAD [51] available for physics calculations. Both the computational time and memory requests rise drastically going to higher values
of N. In case of mincer both parameters increase by a factor of ~5 enlarging N — N + 2. Comparable, but slightly larger factors are
obtained for MATAD. In the well-known leading order case, enough moments may be provided for our procedure. Already for some color
projections of the next-to-leading order corrections, this is no longer the case, [53], since around 150 initial values are needed. For the 3-
loop anomalous dimensions and Wilson coefficients N = 16 can be reached with computation times of the order of 0.5-1 CPU year, cf. [9].
The codes [51] still may be improved. However, the power-growth going to higher moments will basically remain due to the algorithms
used. The method presented in this paper can therefore not be applied to whole color-factor contributions for the anomalous dimensions
and Wilson coefficients at the 3-loop level. They may, however, be useful in solving medium-size problems. In view of constructing general
methods suitable to evaluate single scale quantities, methods to evaluate the fixed moments for these quantities at far lower expenses
have to be developed.

To illustrate the results of the present calculation, the non-singlet anomalous dimensions to O(a?) are given as an example in
Appendix A. The relations for all unpolarized anomalous dimensions and Wilson coefficients, separated according to the corresponding
color- and ¢-value terms, are attached to this paper in FORM- and Mathematica files. The FORM-codes provide a check of our relations
with the moments calculated in Refs. [7,8].
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'll;?llr)lli)grameters for the unfolding of the unpolarized quarkonic Wilson coefficients for the structure function F(x, Q2).
Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]
cg?;q 31 3 6 0.26 0.429 2 [3] 1.47
Cf; @ 689 1 137 1134.10 177.806 13 [39] 258.24
cf;' e 15 2 3 0.27 0.100 11[1] 0.54
P e, 545 10 121 413.33 127.893 12 [35] 178.73
Ca0.CaCres 15 2 3 0.27 0.112 1[1] 0.55
CaqNeCr 71 4 16 2.68 1.655 4[10] 3.95
Cf;.cg. 5114 35 938 1.79 x 108 30394.173 58 [289] 509242
Cf;_ s 284 8 64 31.02 32.363 6 [18] 27.60
cf; o 65 3 1 2.62 0.163 1[1] 1.47
cfg . 19 2 5 0.08 0.163 11[1] 0.47
cf; e, 5059 35 930 1.69 x 106 30122.380 60 [290] 0.478 x 106
cf; et 284 8 64 34.00 33.400 7 [18] 28.53
cfé' e 48 3 1 0.32 0.643 1[1] 1.01
Ly 19 2 5 0.08 0.167 1[1] 0.42
ocacl 4564 33 863 1.39 x 106 24567.518 60 [258] 0.349 x 10°
cf; crciis 284 8 63 26.83 29.918 7 [17] 30.46
Cf; et 48 3 1 0.32 0.643 1[1] 1.01
R 19 2 5 0.08 0.175 11] 0.42
;3; o 1762 20 348 40237.45 2339.516 28 [107] 7548.56
f;.cgm;a 87 4 21 1.94 2.354 3 [5] 2.83
Cf; . 15 2 3 0.07 0.101 11[1] 0.34
Gy 1847 20 360 47661.64 2507.362 28 [111] 7525.89
Gy PR, 89 4 24 2.47 2.935 3 [8] 3.19
) reanres 15 2 3 0.06 0.101 1 [1] 034
Cf;.cm; 131 5 30 58.00 5.347 7 [22] 12.22
cf'; Ntz 15 2 3 0.06 0.101 11[1] 0.38
e 1199 14 242 6583.27 738.498 15 [62] 841.24
G 109 4 25 233 3.164 2[7) 2.40
o 8 1 2 0.03 0.041 0 [0] 0.10

5. Conclusions

We established a general algorithm to calculate the exact expression for single scale quantities from a finite, suitably large number of
moments, which are zero scale quantities. The latter ones are much more easily calculable than single scale quantities. We applied the
method to the anomalous dimensions and Wilson coefficients up to 3-loop order. Hereby we compactified their representation exploiting
all algebraic relations between the harmonic sums. The 3-loop Wilson coefficients require the whole set of basic harmonic sums in the
sub-algebra spanned by the index set to w =6 without i = —1. A further compactification can be obtained using the structural relations
between the harmonic sums. After algebraic reduction the number of the harmonic sums contributing clusters in several classes mainly
determined by the topology of the graphs and widely independent of the color- and field structure of the respective contributions. The
CPU time for the whole problem amounted to about four months using 2 GHz processors and <10 GB of memory were needed. The
problem can be naively parallelized fivefold. The real computational time needed to establish the recurrences can be shortened further
running Chinese remaindering in parallel.

To solve 3-loop problems for whole color factor contributions is not possible at present, since the number of required moments is too
large for the methods available. Methods to evaluate the fixed moments for these quantities to high order at far lower expenses have still
to be developed.

We established and solved the recurrences for all color resp. ¢-projections at once, which forms a rather voluminous problem. Yet we
showed that rather large difference equations [order 35; degree ~1000], which occur for the most advanced problems in Quantum Field
Theory, can be reliably and fast established and solved unconditionally.
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Table 6
Run parameters for the unfolding of the unpolarized quarkonic Wilson coefficients for the structure function Fj(x, Q2).
Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]
1
Gy 5 1 1 0.02 0.033 0 [0] 0.12
cf; @ 203 5 51 7.86 12.381 6 [11] 17.21
4.5 F
@ 5 1 1 0.02 0.033 0 [0] 0/13
e
Gy 159 4 43 432 7.624 5 (8] 11.43
2)
Gy 5 1 0.02 0.033 0[0] 0.12
2)
G 19 2 4 0.05 0.134 1 6] 5.30
cf; = 2419 22 472 110504.41 4555.679 27 [142] 19060.10
4.5 F
Cf; . 131 5 34 3.52 6.257 3 [10] 7.40
a.C
;3; e 1 1 3 0.05 0.069 0 [0] 0.14
2q.CEls
cf; ac, 2551 23 486 124064.39 5176.054 27 [144] 24614.00
e
3)
Lo e 131 5 34 451 6.807 3 [10] 7.39
Chacicats 1 1 3 0.05 0.069 0[0] 0.14
;3; . 1803 18 344 42500.82 2064.227 27 [109] 6269.33
.q.CrCy
©)
Cone, o 131 5 31 3.50 5.463 2 [10] 6.32
Locr o 1 1 3 0.05 0.069 0 [0] 0.15
s 1014 14 203 4041.82 539.901 13 [58] 896.70
3)
Gy 41 2 12 0.19 0.518 15] 0.92
Cf; an, 959 13 188 3507.92 400.784 13 [51] 769.90
.5
©)
Cf"i' i 29 2 8 0.15 6.257 1[1] 0.85
e, i 47 3 10 1.58 0.498 2 [4] 1.45
©)
cg’vdawp 989 12 184 3536.04 371.269 15 [60] 384.00
Cg‘;_mwp " 89 4 18 1.90 2.034 271 2.68
G- 5 1 1 0.02 0.033 0[0] 0.12
Appendix A. The non-singlet anomalous dimensions
Th ingl lous dimensions P\ and P* iven b
e non-singlet anomalous dimensions Pyq’ and Pg; (n)|k—1,2 are given by
3n2 +3n+2
PO () =Cp|4S1 — ———— |, (28)
nn+1)
e o[ 3n®+9n°+9n* —5n° —24n> —32n—24
qu (n) - CF - 3 3 - ]65_3
2n°(n+1)
16 8(2n+1 4(3n% +3n+2
+S ol ———— —3251 )+ 51 H—lGSz +¥52
nmn+1) n“n+1) nn+1)
1655 +325_5 4 + 81
— 1653 21+
n+1)3
LChC 51n° + 102n* + 655n° + 484n% + 12n + 144 PYIN 2685
ACF| — 3+ ——51
18n3(n+1)2 9
+5_5( 165 8 M, 4855 — 165 81"
-2 1——— | — 5352 3— 21— 3
nmn+1) 3 T m+1)3
3n% 460 +47n% +20n—12 40 8
+ CrNF 5 5 - <S1+3S2, (29)
IN?(n+1) 9 3
14 o 3n®+9n° +9n* 4593 +40n? +32n 4 8
Pyt () =Cf|— i R —165_3
2n°(n+1)
16 8(2n+1
+S ol ———— —3251 )+ 54 %—1652
nn+1) n‘n+1)

43n® +3n+2) 16(—1)"
-~ = 5, —16S3+32S_ —_—
e R I
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Table 7
un parameters or the unfo ng o the unpolarized gluonic 1lson coefficients for the structure function Fj(x, .

R for the unfolding of th larized gluonic Wil fficients for th function Fy(x, Q2)

Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]

0

€ 24 2 6 0.14 0.191 1[3] 0.72

) e 459 9 93 202.96 73.022 7[35] 70.77

) e 8 1 2 0.11 0.038 0[0] 0.14

) e 419 8 91 207.98 63.468 7[32] 59.78
2

& . 8 1 2 0.14 0.038 0[0] 0.14
;3; i 3464 28 658 542132.00 11742.788 29 [228] 65721.40

.8, CeNF

E)

2 i 181 6 42 25.30 12.171 3 [14] 7.67
o e 17 1 5 0.23 0.093 0 [0] 0.12
E)

Ly 11 1 3 0.20 0.067 0 [0] 0.15
. 4014 30 739 869580.00 16320.095 28 [261] 97289.30
,8.CyNF

E)

2 CENets 194 6 44 4239 13.263 3 [15] 8.01
. 39 2 11 0.74 0.408 1[3] 0.67
E)

AT 11 1 3 0.17 0.063 0 [0] 0.13

& F 4014 30 747 889246.00 16640.997 29 [264] 100830.00
(é)v FLCANF

€ i 194 43 41.81 12.999 3 [15] 7.90
3

€ 39 11 0.61 0.409 1[3] 0.66
E)

€ i 11 1 3 0.17 0.068 0 [0] 0.11
;3; o2 1553 16 285 22235.00 1181.805 13 [101] 1506.79

28 F

3)

e 55 2 16 2.81 0.962 1[3] 0.70
f; o 1329 17 259 10692.80 1033.138 13 [96] 1162.99
,8.CaNE

3)

T 39 2 11 2.48 0.666 1[3] 0.70
€)

G 1403 15 282 13951.90 1048.336 19 [81] 2668.66
6)

C5oy daben 24 142 5 37 8.54 7.177 2 [12] 6.74
6)

Gy —— 19 1 7 0.30 0.139 0 [0] 0.14

Table 8

Run parameters for the unfolding of the unpolarized gluonic Wilson coefficients for the structure function Fj (x, Q2).

Number of Order of Degree of Total Length of Number of Solution
terms recur- recurrence time [sec] recurrence harm. time [sec]
needed rence [kbyte] sums a [b]

) 5 1 1 0.02 0.033 01[0] 0.13
2

T i 153 38 415 5.941 2 [6] 5.30
2

2 o 109 25 1.31 2.731 3 [10] 422
;3; N 1679 17 314 48496.50 1498.918 16 [100] 2019.46

2.C2

cf; CNee 120 4 28 3.64 3.967 28] 3.23

& CENFE3

Cf; Nt 5 1 1 0.02 0.033 0 [0] 0.09

£.C2

cf; N 1671 17 302 29219.30 1392.205 16 [112] 2012.38

2844

;3; Nty 109 4 24 2.46 3.007 2 [8] 2.836

2

;3; e 5 1 1 0.03 0.033 0 [0] 0.11
LCANFss

6)

G e 1935 18 351 44671.90 2036.550 16 [116] 3510.31
®)

G i 120 4 28 4.43 4.154 2 [8] 3.10
®)

G i 5 1 1 0.03 0.033 0[0] 0.11
® 699 9 140 1350.09 140.949 6 [35] 108.69
g
P 15 1 4 0.06 0.074 0 [0] 0.17
® 419 8 90 526.25 57.569 6 [30] 47.40
L,g.CaN%

3)
T 5 1 1 0.02 0.033 0 (0] 0.08
€)

el - 1109 13 231 10155.40 618.402 18 [75] 1714.70

G PN, 129 5 27 2.18 3.858 2 [11] 4.09

c® 1 2 2 0.06 0.074 01[0] 0.12

L,g,dabcNE¢s
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(32)

(33)

For brevity we abbreviated S;(n) = Sz. Here, C4 = N, Cr = (N? —1)/(@2N¢) are SU(N¢) color factors, N denotes the number of quark
flavors and N, is the number of colors, with N, = 3 for Quantum Chromodynamics. We have accounted for the color factor Tg = 1/2
explicitly, which is the same for all groups SU(N.). dg,c denotes a SU(N.) structure constant and the Einstein convention is applied

calculating dg,cd®e.
The functions P;(n) which appear in Egs. (28)-(33) are given by

P1(n) =29n'° + 145n° + 130n® — 146n” — 479n° — 11n° — 464n* — 1748n> — 1600n>
—752n — 16,

Py () = 1359110 + 6795n° + 15246n8 + 15646n” + 3851n° — 35089n° — 34648n*
+12280n° + 32592n% + 17616n + 3456,

P3(n) = 4971n'° + 24855n° + 11770n® — 86322n” — 150929n° — 135893n°> — 85692n*
+ —18992n> + 22824n? + 15840n + 259,

P4(n) =29n"° + 145n° + 226n% + 110n” + 353n% + 501n° + 976n* + 940n> + 576n°
+208n + 32,

(36)

(37)
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Ps(1) = 1359n® + 543617 + 8274n% + 24524n° + 11103n* + 12528n° + 412002

—2560n — 1584, (38)
Pg(n) = 4971n® + 24855n” + 10762n® — 57138n> — 92033n* — 40901n> + 10692n>

+ 1216n — 2904, (39)
P7(n) = 207n® + 828n” + 1491n% + 2291n° + 1338n* + 453n> — 8n? — 160n — 72, (40)
Ps(n) = 4(13n'° + 97n% 4 326n% + 72007 + 1399n° + 2416n° + 3017n* + 2412n°

+1184n* + 336n + 48), (41)
Po(n) = 2(9n° + 41n® — 3n” — 505n° — 1719n> — 2951n* — 3092n> — 2032n% — 768n — 144). (42)
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