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di Trieste, Strada Le Grazie 15 - CV1, I-37134 Verona, Italy

Abstract

Simulations of biophysical systems inevitably include steps that correspond to time
integrations of ordinary differential equations. These equations are often related
to enzyme action in the synthesis and destruction of molecular species, and in the
regulation of transport of molecules into and out of the cell or cellular compartments.
Enzyme action is almost invariably modeled with the quasi-steady-state Michaelis-
Menten formula or its close relative, the Hill formula: this description leads to
systems of equations that may be stiff and hard to integrate, and poses unusual
computational challenges in simulations where a smooth evolution is interrupted by
the discrete events that mark the cells’ lives. This is the case of a numerical model
(Virtual Biophysics Lab - VBL) that we are developing to simulate the growth of
three-dimensional tumor cell aggregates (spheroids). The program must be robust
and stable, and must be able to accept frequent changes in the underlying theoretical
model: here we study the applicability of known integration methods to this unusual
context and we describe the results of numerical tests in situations similar to those
found in actual simulations.
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1 Introduction

Most mathematical models of biochemical and biophysical processes in cells
are described by nonlinear differential systems that cannot be handled with
analytical methods and require numerical integrations [1,2]. However the high
speed of computers and the sophisticated computational methods that are
available today are powerful tools that allow the numerical exploration of these
exceedingly interesting dynamical systems. This also suggests that eventually
the biophysical models will no longer be analytic, but mostly computational;
and indeed we are now developing a program that simulates tumor spheroids
(VBL, Virtual Biophysics Lab) [3,4,5,6], which includes a reduced but still
quite complex description of the biochemistry of individual cells, plus many
diffusion processes that bring oxygen and nutrients into cells and metabolites
into the environment.

In a numerical model like VBL, each cell is described by a reduced metabolic
network, and by other mechanisms that include both discrete deterministic
and stochastic events. The description is thus mixed, with smooth evolutions
interspersed with discrete steps. The exchange of molecules with the surround-
ing environment means that transport into and out of cells is closely linked
with diffusion processes that involve the whole cluster of cells, and finally lead
to a very large set of (time) differential equations. Simulation steps between
discrete events require the integration of nonlinear differential equations that
describe the individual cell’s clockwork, and the integration of the diffusion
equations. These integrations are carried out under widely different condi-
tions, in a changing environment, and for this reason they need algorithms
that are both unconditionally stable and free from unwanted artifacts. These
conditions are not always fulfilled in the existing literature, and we feel that
a detailed understanding of the underlying mathematical and computational
bases may be important not just for us, but for other workers in the field of
systems biology as well.

Eventually the whole simulation program must run smoothly, and it must be
free of stability problems. Thus it is very important to ensure that step by
step integrations are stable and do not bring the biochemical variables into
unphysical regions (e.g., no concentration must ever become negative).

2 Biophysical models

Biophysical models are not arbitrary dynamical systems: indeed the phenom-
ena of life are characterized by remarkable stability properties, as most of
them display either homeostasis or (nearly) stable limit cycles. At the basic
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reaction level, many processes obey a straightforward enzyme kinetics, regu-
lated by the well-known Michaelis-Menten equation [1], or by a variant that
applies to cooperative processes, the Hill equation [7].

Here we start with a special case that displays generic features shared by
many other processes, namely the transport of glucose into and out of cells
and its conversion into glucose-6-phosphate (G6P; this is part of the reduced
metabolic model incorporated in our simulator of cell metabolism, growth and
proliferation [4,5]). We begin with the equations for a single cell in a stable
environment:

Vin
d [Gin]

dt
=
vmax,1 [Gextra]

K1 + [Gextra]
− vmax,1 [Gin]

K1 + [Gin]

− vmax,2 [Gin]2

(K2 + [Gin]) (Ka + [Gin])

− vmax,22 [Gin]2

(K22 + [Gin]) (Ka + [Gin])
(1)

Vextra
d [Gextra]

dt
=−vmax,1 [Gextra]

K1 + [Gextra]
+
vmax,1 [Gin]

K1 + [Gin]

+D
[Genv]− [Gextra]

∆
S (2)

Here the dynamical variables are the glucose concentration inside the cell [Gin],
and the concentration in the extracellular space [Gextra]; the environmental
glucose concentration [Genv] is fixed and is one of the model parameters. The
introduction of the extracellular space may look like a useless nuisance in this
case, but it is justified on two different, and both important, grounds. The ex-
tracellular space is absolutely needed in multicellular systems, because in that
case it becomes the scaffolding that allows the diffusion of many substances
in closely bound cell clusters (and corresponds to an actual biological entity,
the free space available in the extracellular matrix [8,9,10]), and a consistent
treatment requires its extension also towards the environment; secondly, the
extracellular space, even in this simple case, acts as the cell-environment in-
terface, and corresponds to the buffer region actually observed in diffusion
measurements in tumor spheroids [11].

We assume a spherical cell of radius r ≈ 5µm, so that the surface area is
S = 4πr2 ≈ 3 · 10−10m2, and the volume is Vin = (4/3)πr3 ≈ 5 · 10−16m3.
The first two terms on the rhs of equation (1) correspond to the transport of
glucose from the extracellular space into the cell and the reverse process of
transport from the inside of the cell back to the extracellular space (enacted
by the reversible GLUT transporters, see [12,13] and references therein); since
this transport process is facilitated [12,13] we describe it with two Michaelis-
Menten terms, where the maximum transport speed vmax,1 is proportional
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to the cell’s surface [4,12,13], and K1 is an experimental parameter [4].The
other two terms correspond to a cascade of two Michaelis-Menten processes
that involve the enzymes glucokinase and hexokinase, and is regulated by
parameters that do not depend on cell size [14].

The second equation (eq. (2)), in addition to the GLUT-mediated transport
terms, includes a standard diffusion term that corresponds to the diffusion of
glucose from the surrounding environment into the extracellular space. This
term is a discretization of glucose flux across the surface S (which is approxi-
mately the area of the cell-extracellular space interface); the distance used to
compute the concentration gradient is the thickness of the extracellular layer,
∆ ≈ 0.2µm.

Although equations like (1) and (2) are usually cast in terms of concentrations,
we prefer to use masses, as this makes total mass conservation stand out
clearly:

dmin

dt
=

vmax,1mextra

VextraK1 +mextra

− vmax,1min

VinK1 +min

− vmax,2m
2
in

(VinK2 +min) (VinKa +min)

− vmax,22m
2
in

(VinK22 +min) (VinKa +min)
(3)

dmextra

dt
=− vmax,1mextra

VextraK1 +mextra

+
vmax,1min

VinK1 +min

+
DS

∆

(
[Genv]−

mextra

Vextra

)
(4)

We postpone the listing of model parameters to section 4, where we summarize
the results of numerical tests.

3 Integration methods

There is a broad and comprehensive literature on integration methods, and
at first it may seem that in large-scale biophysical simulations the choice is
only limited by the required accuracy and by the available computing power,
however it is not so. In a simulation like VBL [4,5] there are many cells and
the number of equations is quite large: our aim is to simulate at least one
million cells, which corresponds to a spherical cell cluster with a diameter of
one millimeter. In VBL we make several simplifying assumptions and one of
them is that each cell has its own extracellular space: this means that in such
a system – for each molecular species which diffuses in the cell cluster – there
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are about two million local concentration variables (for each cell there is an
intracellular and an extracellular concentration) and a corresponding number
of equations.

The simulation includes random events as well (such as the partitioning of
organelles at the time of cell division), so that numerical inaccuracies are ab-
sorbed in this much larger randomness and turn out to be much less important
than they are in strictly deterministic systems.

Moreover, the life of cells is marked by discrete events: this discreteness pro-
duces endless transient responses in the deterministic part of the simulation
algorithm, and the most evident discrete process – cell division – also changes
the number of variables and equations.

Last but not least, there is a wide range of volumes (cells and extracellular
spaces), and this leads to very stiff systems of equations: in fact while the
metabolic processes can be quite slow (with characteristic times of the order
of thousands of seconds), a single extracellular space has a very small volume
and the time it takes to fill or empty this volume is very short (of the order of
10–100 µs). Thus the characteristic times span eight orders of magnitude, and
the system is quite stiff. This means that any adopted integration method must
be very stable, and that it should be able to overlook very short transients
that do not mean much from a biophysical point of view, and it should also
accept long time steps without crashing or producing unphysical results.

All this proves quite challenging, as it poses conflicting requests on the in-
tegration algorithms. The usual considerations on stability [15,16,17] suggest
that implicit methods should perform better than explicit methods, and this
also means that a robust algorithm must sacrifice speed, as implicit methods
require several function evaluations.

Multistep methods [16,17,18] may appear to be a smart choice, because they
can incorporate information from previous simulation steps and thus reduce
the number of required function evaluations: however numerical tests per-
formed in anticipation of the present work have shown that explicit Adams-
Bashforth multistep methods are highly unstable in this context, and that the
fourth-order Adams-Moulton implicit multistep method does not fare much
better as it seems to be very sensitive to the quality of the algorithm initial-
ization steps (that must necessarily be performed with another integration
algorithm), and unfortunately the discrete events lead to a constant flow of
equation initialization processes.

Finally we have decided to include the following methods in the tests summa-
rized in the next section:

• the default integrator of Mathematica [19], as a benchmark algorithm;
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• the implicit Euler method;
• the implicit trapezoidal method (which corresponds to the second-order

Adams-Moulton algorithm).

Although it cannot be included as it is in a simulation program, we have de-
cided to choose the default setting of the Mathematica instruction NDSolve

as a benchmark since it incorporates a well-tuned mixture of standard algo-
rithms not included in our very short list [19], and thus provides a qualitative
guide to possible better choices. Here simplicity is an important bonus, since
the integration algorithm must be incorporated in a larger structure and the
biophysical model may change frequently, as new biochemical paths are incor-
porated: however we have not included the simple explicit Euler method in
the list, because it is well-known to fail badly in the case of stiff equations,
unless the step size is exceedingly small (and yet this method is widely used
in many similar contexts, see, e.g, [20]). The many important Runge-Kutta
(RK) methods are also missing, because the stable implicit RK methods are
not easily adopted for inclusion in a simulation program like VBL (or other
similar numerical stepping schemes), and also because the sophisticated inte-
grator of Mathematica [19] actually includes a choice of RK methods – both
explicit and implicit – and its performance may suggest corrections to our
selection of algorithms.

Since stability – and not precision – is the main feature that an integrator
must have in this context, it would be important to set the general problem
in a form such that the standard theorems on stability can be applied [16].
Unfortunately it is impossible to specify exactly the operating conditions of
the simulator, especially because the number of equations is variable – as
cells proliferate – and because the theoretical model must be open to changes
as our understanding of the biophysical and biochemical processes evolves.
However there are a couple of general considerations that can help: the first
is that the systems of equations must be autonomous, time cannot appear
explicitly. The second is that the equations describe the evolution of masses
and concentrations, i.e. quantities that must be non-negative, and this means
that the generic structure of the equations for non-negative quantities xk must
be

dxk
dt

= A(x1, . . . , xN ; t)−B(x1, . . . , xN ; t)xk (5)

where A andB are non-negative functions that express respectively production
and consumption/destruction of the quantity xk. The consumption/destruction
term must be proportional to xk to ensure the continued non-negativity of the
solution (if there were not such a proportionality, then the derivative could
be nonvanishing and negative for values of xk close to zero, and thus lead to
negative xk). Indeed the proportionality is often related to Michaelis-Menten
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terms with a generic structure xk/(Km+xk). A differential system such as (5)
can be locally approximated by the simpler equations

dxk
dt

= A0 −B0xk (6)

which shows that A-stable integration methods should normally be sufficient
in this complex context [16].

4 Numerical results on the test model of section 2

We have chosen parameter values derived from experiment or from fits of
experimental data and they are listed in table 1; all parameters are further
explained and referenced in [4,5], except D [21] and ∆. The approximate value
of ∆ is derived from the estimate that the extracellular matrix amounts to
about 20% of the total volume of human tissue [10] and assuming a free space
fraction of about 50% [8] (we note that this may actually be an overestimate):
then we obtain ∆ ≈ 0.5 (0.25Vin) /S ≈ 0.2µm.

Using the values in the table we can find the equilibrium values that correspond
to dmin/dt = 0 and dmextra/dt = 0, i.e., [Gin] ≈ 0.043 kg m−3 and [Gextra] ≈
0.90 kg m−3: this means that because of conversion into G6P, the glucose level
in this isolated cell is considerably lower than in the surrounding environment.

As explained above, the system of equations (3) and (4) is very stiff, and this
can be easily visualized setting an off-equilibrium initial glucose concentration
inside the cell. Some of the glucose is quickly converted into G6P, but part
of it either seeps out or enters the cell, and changes the concentration in the
extracellular space. Since the extracellular volume is very small it reacts very
quickly to this sudden change, and exchanges glucose with the environment,
exhibiting a sharp transient. The approximate duration of this transient can
be estimated expanding equation (4) for very low values of the masses: since
Vin � Vextra,

dmextra

dt
' −

(
vmax,1

VextraK1

+
DS

Vextra∆

)
mextra +

DS

∆
[Genv] , (7)

with the parameters of table 1, this gives mextra(t) ∼ A+ B exp (−t/τ), with
τ ≈ 60µs. It is also important to note that this very short time is entirely due to
the diffusion term in equation (7): without the diffusion term the characteristic
time τ would grow to more than 27 s.
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parameter value

r 5 · 10−6 m cell radius

S = 4πr2 3 · 10−10 m surface area

Vin = 4π
3 r

3 5 · 10−16 m2 cell volume

∆ 0.2 · 10−6 m thickness of extracellular space around cell

Vextra = S∆ 6 · 10−17 m3 extracellular volume

vmax,1 ≈ 2 · 10−9S 6 · 10−19 kg s−1 maximum speed of GLUT-mediated glu-
cose transport

vmax,2 1.2 · 10−19 kg s−1 maximum rate of glucokinase activity

vmax,22 1.2 · 10−18 kg s−1 maximum rate of hexokinase activity

K1 0.27024 kg m−3 Michaelis-Menten constant of glucose
transport

K2 1.8 kg m−3 Michaelis-Menten constant for glucoki-
nase

K22 1.8 · 10−2 kg m−3 Michaelis-Menten constant for hexokinase

Ka 5.4 · 10−2 kg m−3 constant for the homeostatic loop control-
ling glucokinase and hexokinase activity

D 7 · 10−10 m2 s−1 diffusion constant of glucose in water

[Genv] 0.9 kg m−3 glucose concentration in standard nourish-
ing solutions

Table 1
Parameters used in the numerical tests with one isolated cell. Parameters are ex-
plained and referenced in [4,5], except D [21] and ∆ (see discussion in the main
text).

The nearly exponential transient is clearly visible in a plot of the mass flow
into the extracellular space

dmextra

dt

∣∣∣∣∣
inflow

=
DS

∆

(
[Genv]−

mextra

Vextra

)
(8)

which is shown in figure 1 for the initial conditions min = 0.1 [Genv]Vin and
mextra = 0.1 [Genv]Vextra. Because of this fast transient, many standard algo-
rithms fail when integration is carried out on long time intervals with com-
paratively long time steps: rather surprisingly, Mathematica itself fails badly
(at least with the standard settings for NDSolve) even though it includes a
stiffness detection procedure [19]. This failure becomes slowly apparent as
the integration is carried out on longer and longer intervals; figure 2) shows
the concentration [Gin] vs. time for a 1000 seconds interval and initial condi-
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Fig. 1. Mass flow into the extracellular space (mass flow (kg s−1) vs. time (s))
obtained from the numerical integration of equations (3) and (4) with Mathematica.
A direct fit of this nearly exponential curve yields a decay time τ ≈ 62µs, very close
to the estimate in the main text.

tions min = 0.9 [Genv]Vin and mextra = 0.1 [Genv]Vextra: instead of a smooth
decay towards the equilibrium value the Mathematica solution shows some
unexpected undulations. The companion plot for the concentration in the ex-
tracellular space [Gextra] (not shown) displays a large, unphysical peak close
to the origin (this peak is about 100 times larger than the environmental con-
centration). A similar integration performed on a longer interval (10000 s)
returns an even worse result, as it produces negative and unphysical values
for the concentration [Gin] (see figure 3).

A careful analysis of the curve in figure 1 reveals that the fast transient is
very close to an exponential, and therefore we expect the standard results
on A-stability of integration methods [16] to be applicable to this and to
similar nonlinear differential systems. In particular, we know that both the
implicit Euler and the implicit trapezoidal method are unconditionally A-
stable. Indeed the tests performed show that both methods converge even
when the internal machinery of Mathematica – which uses a full array of
sophisticated methods – is foiled by this stiff system. And although it is known
that the accuracy of the implicit trapezoidal method (IT) is higher than that
of the implicit Euler algorithm (IE) [16], in these tests IE fares better, since the
IT method shoots below the equilibrium value of [Gin] before swinging – very
slowly back (see figure 4), and displays unwanted oscillations of [Gextra] that
very gradually die out. The IT method also alternates steps above and below
the equilibrium value of [Gextra], and these oscillations depend on the step size
and resemble those observed in a closely related method, the Crank-Nicolson
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Fig. 2. Plot of the concentration [Gin] (kg m−3) vs. time (s) obtained from the
numerical integration of equations (3) and (4) with Mathematica for a 1000 sec-
onds long time interval. The gray horizontal line shows the equilibrium level. The
internal stepping procedure (with the default values) fails and produces unexpected
undulations.
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Fig. 3. Plot of the concentration [Gin] (kg m−3) vs. time (s) obtained from the
numerical integration of equations (3) and (4) with Mathematica for a 10000 seconds
long time interval. The gray horizontal line shows the equilibrium level. The internal
stepping procedure (with the default values) fails badly and leads to large, negative
(unphysical) values of the concentration [Gin].
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Fig. 4. Plot of the concentration [Gin] (kg m−3) vs. time (s) obtained from the nu-
merical integration of equations (3) and (4) with the implicit Euler method (dashed
curve) and with the implicit trapezoidal method (dotted curve) for a 10000 seconds
long time interval; in each case the step size is 100 s. The gray horizontal line shows
the equilibrium level: the implicit Euler method reaches this equilibrium value with-
out unwanted oscillations, while the implicit trapezoidal method shoots below the
line and afterwards climbs very slowly back to the equilibrium value. We find that
this climb depends on the actual stepsize, and it is faster for shorter time steps.
Neither algorithm produces unphysical values (negative concentrations).

method for partial differential equations [22,23].

5 Diffusion in cell clusters

In the previous section we have considered just one cell, but as explained
above, we wish to simulate large clusters of cells, and this means that we
have to deal with large systems of coupled nonlinear differential equations.
We begin with a very small cluster of just two cells, where glucose dynamics
is described by the following equations for the masses

dm
(A)
in

dt
=

v
(A)
max,1m

(A)
extra

V
(A)
extraK1 +m

(A)
extra

−
v

(A)
max,1m

(A)
in

V
(A)
in K1 +m

(A)
in

+

v
(AB)
max,1m

(AB)
extra

V
(AB)
extraK1 +m

(AB)
extra

−
v

(AB)
max,1m

(A)
in

V
(A)
in K1 +m

(A)
in
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−
vmax,2

(
m

(A)
in

)2(
V

(A)
in K2 +m

(A)
in

) (
V

(A)
in Ka +m

(A)
in

)
−

vmax,22

(
m

(A)
in

)2(
V

(A)
in K22 +m

(A)
in

) (
V

(A)
in Ka +m

(A)
in

) (9)

dm
(B)
in

dt
=

v
(B)
max,1m

(B)
extra

V
(B)
extraK1 +m

(B)
extra

−
v

(B)
max,1m

(B)
in

V
(B)
in K1 +m

(B)
in

+
v

(AB)
max,1m

(AB)
extra

V
(AB)
in K1 +m

(AB)
extra

−
v

(AB)
max,1m

(B)
in

V
(B)
in K1 +m

(B)
in

−
vmax,2

(
m

(B)
in

)2(
V

(B)
in K2 +m

(B)
in

) (
V

(B)
in Ka +m

(B)
in

)
−

vmax,22

(
m

(B)
in

)2(
V

(B)
in K22 +m

(B)
in

) (
V

(B)
in Ka +m

(B)
in

) (10)

dm
(A)
extra

dt
=−

v
(A)
max,1m

(A)
extra

V
(A)
extraK1 +m

(A)
extra

+
v

(A)
max,1m

(A)
in

V
(A)
in K1 +m

(A)
in

+
DS(A)

∆

[Genv]−
m

(A)
extra

V
(A)
extra

 (11)

dm
(B)
extra

dt
=−

v
(B)
max,1m

(B)
extra

V
(B)
extraK1 +m

(B)
extra

+
v

(B)
max,1m

(B)
in

V
(B)
in K1 +m

(B)
in

+
DS(B)

∆

[Genv]−
m

(B)
extra

V
(B)
extra

 (12)

dm
(AB)
extra

dt
=−2

v
(AB)
max,1m

(AB)
extra

V
(AB)
extraK1 +m

(AB)
extra

+
v

(AB)
max,1m

(A)
in

V
(A)
in K1 +m

(A)
in

+
v

(AB)
max,1m

(B)
in

V
(B)
in K1 +m

(B)
in

+
DS(L)

∆L

[Genv]−
m

(AB)
extra

V
(AB)
extra

 (13)

where the superscripts (A) and (B) denote the two cells, and the parameters
in the numerical tests are a straightforward extension of those used for a single
cell and are listed in table 2.

The geometric structure of the two cells is depicted in figure 5: this structure
approximates the shape of two cells just after mitosis, and we distinguish six
different regions

• the two hemispherical cells;
• two hemispherical extracellular spaces that are the interface between the

cells and the environment;
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parameter value

r(A) = r(B) = r 5 · 10−6 m cell radius

∆ 0.2 · 10−6 m thickness of extracellular space around cell

∆L = r 5 · 10−6 m effective distance for calculation of flow
into and out of the extracellular space be-
tween cells

S = 4πr2 3 · 10−10 m total surface area

S(A) = S(B) = S/2 1.5 · 10−10 m surface area of each hemisphere

S(AB) = πr2 7.9 · 10−11 m contact area between cells

S(L) 1.5 · 10−10 m surface area of each hemisphere

V
(A)
in = V

(B)
in = 2π

3 r
3 2.5 · 10−16 m2 cell volume

V
(A)
extra = V

(B)
extra = 2πr2∆ 3 · 10−17 m2 volume of each hemispherical extracellular

space

V
(AB)
extra = πr2∆ 1.6 · 10−17 m2 volume of extracellular space between cells

v
(A)
max,1 = v

(B)
max,1 3 · 10−19 kg s−1 maximum speed of GLUT-mediated glu-

cose transport between each cell and
surrounding hemispherical extracellular
space

v
(AB)
max,1 1.6 · 10−19 kg s−1 maximum speed of GLUT-mediated glu-

cose transport between each cell and the
extracellular space between cells

vmax,2 1.2 · 10−19 kg s−1 maximum rate of glucokinase activity

vmax,22 1.2 · 10−18 kg s−1 maximum rate of hexokinase activity

K1 0.27024 kg m−3 Michaelis-Menten constant of glucose
transport

K2 1.8 kg m−3 Michaelis-Menten constant for glucoki-
nase

K22 1.8 · 10−2 kg m−3 Michaelis-Menten constant for hexokinase

Ka 5.4 · 10−2 kg m−3 constant for the homeostatic loop control-
ling glucokinase and hexokinase activity

D 7 · 10−10 m2 s−1 diffusion constant of glucose in water

[Genv] 0.9 kg m−3 glucose concentration in standard nourish-
ing solutions

Table 2
Parameters used in the numerical tests with two cells.
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Extracellular 
space A 

Extracellular 
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Extracellular 
space AB, 
between cells 

Cell A 

Cell B 

Fig. 5. Schematic view of the geometric structure of the pair of daughter cells
described in the main text, where it is assumed that just after mitosis the cells
are (nearly) hemispherical and are surrounded by two hemispherical extracellular
spaces – the interface with the environment – and are separated by one cylindrical
extracellular space. Left panel: perspective view; right panel: cross section. For clar-
ity the thickness of the extracellular spaces is exaggerated; the interface between
extracellular spaces is actually negligible and is not counted in the equations (9) to
(13).

• the cylindrical extracellular space between the cells; this cylindrical space
is in contact with the environment only through a narrow belt;
• the (fixed) environment.

This rough division of space contains the main elements of simulations where
diffusion plays an important role, and later in this section we shall see how to
expand it.

We have carried out extensive numerical tests similar to those in the previous
section, and essentially they confirm what we found with a single cell:

• the Mathematica solution obtained with the default settings fails for long
integration intervals;
• the implicit Euler method and the implicit trapezoidal method both con-

verge to the equilibrium value, but the implicit trapezoidal method displays
strong and very undesirable oscillations.

This small system with just two cells can be extended further, with the ad-
dition of more cells and their extracellular spaces: this is equivalent to the
discrete volume version of a diffusion problem (see, e.g., [24] for a review of
volume discretization for the solution of diffusion problems), i.e., we must deal
with a large system of equations (here we use concentrations ρ rather than
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the masses because the ensuing analysis is slightly easier to follow):

Va
dρa
dt

= Fa (ρa; ρa) +D
∑
〈b〉

(ρa − ρb) gab (14)

where indexes denote both cells and extracellular spaces, gab is term related
to geometry (it is equivalent to the S/∆ ratio that we met previously), the
Fa’s describe facilitated transport (for both cells and extracellular spaces) and
metabolic processes (cells only), and the diffusion term is actually included
only in the case of extracellular spaces. The subscript 〈b〉 indicates that the
sum is performed only on the set of cells b that are adjacent to cell a: since
in a simulator like VBL the cells are in arbitrary positions in space [3], and
not on the usual cubic lattice, the number of neighbors is random (in a 3D
configuration it fluctuates about an average of 12).

We have already remarked in the previous section that the Fa’s are slowly
varying functions and that the stiffness of the differential system and the
algorithmic stability problems are almost entirely due to the diffusion terms:
for this reason we concentrate on a reduced version of the differential system
(14), i.e.,

dρa
dt
≈ D

Va

∑
〈b〉

(ρa − ρb) gab (15)

It is well-known that differential systems like (15), obtained from the dis-
cretization of diffusion problems on regular lattices, can be integrated by
implicit methods like the Backward Differentiation Formulas (BDF) or the
Crank-Nicolson algorithm (CN) [17,22], and that in those cases both BDF
and CN are unconditionally stable [22]. However in simulation programs like
VBL, the equations are not discretized on a lattice, and may have a variable
number of diffusion terms, as the sum runs over a random number of neighbors:
are these implicit integration methods still stable in this more general setting?
Fortunately the answer is yes, because it is possible to develop a variation of
the standard Von Neumann stability analysis. The argument for BDF goes as
follows: we start from the discrete-time version of (15) that corresponds to the
BDF iterations

ρn+1
a = ρna + ∆t

D

Va

∑
〈b〉

(
ρn+1
b − ρn+1

a

)
gab (16)

where ∆t is the time step, ρna = ρa(n∆t), and we take the test solution ρna '
An exp (ik · ra) that corresponds to the test solution used in the standard Von
Neumann stability analysis, but without the assumption of a regular spatial
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lattice. Substituting the test solution in the iteration formulas (16) we find

A−1 = 1 +
D∆t

Va

∑
〈b〉
gab (1− cosφab)− i

D∆t

Va

∑
〈b〉
gab sinφab (17)

where φab = k · (rb − ra), and since
∑
〈b〉
gab (1− cosφab) ≥ 0 we see that |A| ≤ 1

and thus the BDF algorithm is unconditionally stable.

The CN iteration formula is

ρn+1
a = ρna + ∆t

D

2Va

∑
〈b〉

(
ρn+1
b − ρn+1

a

)
gab +

∑
〈b〉

(ρnb − ρna) gab

 (18)

and we can repeat the steps followed for the BDF algorithm and find

A =
1− D∆t

Va

∑
〈b〉 gab (1− cosφab) + iD∆t

Va

∑
〈b〉 gab sinφab

1 + D∆t
Va

∑
〈b〉 gab (1− cosφab)− iD∆t

Va

∑
〈b〉 gab sinφab

(19)

and just as before we see that |A| ≤ 1 and that the CN algorithm is uncondi-
tionally stable.

To test the BDF and the CN algorithm in a realistic biophysical setting, we
have extended the two-cell model to a 1D string of cells, where we assume
that each cell is surrounded by its own extracellular space, and that adjacent
extracellular spaces can exchange material by diffusion. This means that the
diffusion problem becomes slightly more complex (although the previous sta-
bility analysis still holds) and the equations for each cell/extracellular space
are

VC
dρC
dt

=M (ρC) + T (ρc, ρC) (20)

Vc
dρc
dt

=D
∑
〈b〉

(ρb − ρc) gbc − T (ρc, ρC) (21)

where

MG (ρG,C) =−
vmax,2ρ

2
G,C

(K2 + ρG,C) (Ka + ρG,C)

−
vmax,22ρ

2
G,C

(K22 + ρG,C) (Ka + ρG,C)
(22)

TG (ρG,C , ρG,c) =
vmax,1ρG,c
K1 + ρG,c

− vmax,1ρG,C
K1 + ρG,C

(23)
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space 

time 

Fig. 6. Contour/density plots that show different aspects of the solutions of equa-
tions (20-21) for a string of 100 cells, that spans a spatial range (−500µm, 500µm).
Space runs along the x-axis and time runs upwards along the y-axis with timesteps
∆t = 2 s, and concentration values are also mapped on a gray scale (black corre-
spond to the minimum value, white to maximum). The panels show: a) the contour
plot of the glucose concentration in the extracellular spaces obtained with the BDF
method; b) contour plot of the glucose concentrations inside cells, for cells in the
reduced spatial range (−500µm,−200µm), for t = 0 s until t = 60 s, obtained with
the BDF method; c) same as b, but in this case the numerical solution has been
calculated with the CN method: notice that the contour lines are appreciably dis-
torted close to the boundary; d) contour plot of the glucose concentrations in the
extracellular spaces in the reduced spatial range (−500µm,−200µm), for t = 0 s
until t = 60 s, obtained with the CN method: notice the banded structure that is
due to the oscillatory instability of the CN method.

are the functions that describe the internal metabolic activity (conversion of
glucose to G6P) and the transport processes into and out of cells and that
we met earlier both in the one-cell and in the two-cell models. The upper-
case subscripts denote cells and the lowercase subscripts denote extracellular
spaces, and all the model parameters have already been listed in table 2. The
space coordinate (cell positions) span the range (xmin, xmax), with the bound-
ary conditions u (xmin, t) = u (xmax, t) = constant: thus this is a model with
both diffusion of glucose and local absorption and conversion into G6P.

The BDF and the CN algorithm are equivalent to the implicit Euler and to the
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Fig. 7. Plot of the glucose concentration in the leftmost extracellular space in the
string of cells described in the text, obtained numerically with the CN method for
the same problem of figure 6. In this solution there is a marked high frequency
spurious oscillation that depends on the time step and that very slowly fades away.
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Fig. 8. Plot of G6P concentration at two positions (close to the boundary and in
the middle of the string of cells), obtained numerically with the BDF method for
the same problem of figure 6, using the differential equation for G6P in [4], solved
with the implicit Euler method; the concentration of G6P is almost independent of
position along the string and the two curves are indistinguishable on this scale.
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Fig. 9. Plot of G6P concentration along the string of cells at t = 1000 s, obtained
numerically with the BDF method for the same problem of figure 6, using the
differential equation for G6P in [4], solved with the implicit Euler method. The
concentration is lowest in the center, and it mirrors a similar curve for glucose
concentration.

implicit trapezoidal method, respectively (they are actually the extensions of
these algorithms to partial differential equations), and thus – unsurprisingly
– they share with their counterparts both advantages and disadvantages. In
particular in our tests on this particular diffusion problem we find that:

• both BDF and CN eventually converge to the same equilibrium solution;
• the BDF method requires a larger number of function evaluations to reach

the required accuracy;
• the CN method displays unwanted oscillations, similar to those found in the

case of the implicit trapezoidal method.

Figure 6 shows contour plots obtained with the BDF and the CN methods,
and figure 7 shows the CN solution close to the boundary vs. time: while the
global behavior of the solutions is the same, the slow-dying oscillations of the
CN method close to the boundary are clearly visible.

The oscillatory behavior of the CN method is due to the reduced damping
of the high-frequency spatial modes (see the formula for A, eq. (19)), and
it is known to sometime spoil the quality of the CN solutions [23]. These
numerical tests indicate that the BDF algorithm – as an extension of the
implicit Euler algorithm – is a good choice for an integrator in large scale
biophysical simulations.
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Fig. 10. Simulated tumor spheroid in VBL. The simulation started from a single
cell and this cluster of cells corresponds to more than 6 days of simulated time.

6 Conclusions

We are developing a simulation program, VBL (Virtual Biophysics Lab) where
we aim to include a basic description of biochemical and biomechanical fea-
tures, to simulate cell clusters, and that should eventually be a numerical
model of tumor spheroids, a useful and important in vitro model of solid tu-
mors [25]: the stakes are high and this is just one of several attempts to use
mathematical and physical methods to understand the biochemical and me-
chanical properties of tumor spheroids [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42].

In our modeling effort we proceed in a partly phenomenological way that leads
to simple parameterizations: in exchange, we achieve a huge reduction in com-
putational complexity and a considerable reduction of the space-time scale
problems that affect simulations aimed at calculating the properties of macro-
scopic objects starting from microscopic models. We are in an advanced phase
of development of the program, and we have already included cell metabolism,
growth and proliferation and the extracellular environment. In the previous
sections we have discussed the stability properties of the integrators in VBL
and in similar programs: we have performed tests on a simple model system
and some of the results are interesting on their own, like, e.g., the time evo-
lution and the distribution of G6P in a 1D string of cells (see figures 10 and
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Fig. 11. Distribution of dead cells (dark gray) inside the simulated tumor spheroid
of figure 10. Here cells are represented as semitransparent balls, and dead cells in
the core become visible. The numbers on the axes are µm.

11). The 3D part of the program, i.e. geometry and biomechanical interac-
tions, is also included in the prototype version of the program, as well as a
description of the extracellular microenvironment. We can already simulate
large populations of dispersed cells, like those in the culture wells used for in
vitro growth, and we have produced numerical estimates that are in excellent
qualitative agreement, and in good quantitative agreement, with experimen-
tal data [4,5,6]. Figure 10 shows one simulated spheroid and figure 11 is an
alternate display that shows the distribution of dead cells inside the same
spheroid.

In the present stage of development of the program we are cleaning up the
biochemical part of the simulation and building a close integration with the
diffusion algorithm to achieve a robust, stable program. Because of discrete –
and sometimes random – events in the cells’ lives, the evolution is only partly
described by differential equations. Moreover – because of cell proliferation –
there is a variable number of equations. On the basis of the considerations
and the numerical tests described in this paper we have decided to settle on
the implicit Euler algorithm and its extension, the Backward Differentiation
Formula. The simulations that produced figures 10 and 11 were based on much
simpler (and unstable) explicit Euler integration steps, and stability problems
showed up at an early stage: soon we shall be able to carry out higher quality
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simulations based on the much more stable and reliable methods described
here.

Eventually we may have to tackle efficiency and speed as the simulations be-
come larger and more time-consuming. However the choice of BDF is open to
improvements in speed, since – as we have seen in the last section – biochem-
ical changes are comparatively slow, and stiffness is brought about mostly by
the diffusion terms in the equations: this means that we may eventually use
implicit-explicit methods like those described in [43] and this may help us re-
tain the advantages of the implicit BDF algorithm and greatly increase speed
– but this is something that we shall study in a future work.
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