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Abstract
We describe the new version (v2.38j) of the code hfodd which solves the nuclear Skyrme-

Hartree-Fock or Skyrme-Hartree-Fock-Bogolyubov problem by using the Cartesian deformed
harmonic-oscillator basis. In the new version, we have implemented: (i) projection on good
angular momentum (for the Hartree-Fock states), (ii) calculation of the GCM kernels, (iii)
calculation of matrix elements of the Yukawa interaction, (iv) the BCS solutions for state-
dependent pairing gaps, (v) the HFB solutions for broken simplex symmetry, (vi) calculation
of Bohr deformation parameters, (vii) constraints on the Schiff moments and scalar multipole
moments, (viii) the DT

2h transformations and rotations of wave functions, (ix) quasiparticle
blocking for the HFB solutions in odd and odd-odd nuclei, (x) the Broyden method to accelerate
the convergence, (xi) the Lipkin-Nogami method to treat pairing correlations, (xii) the exact
Coulomb exchange term, (xiii) several utility options, and we have corrected two insignificant
errors.

PACS numbers: 07.05.T, 21.60.-n, 21.60.Jz

NEW VERSION PROGRAM SUMMARY

Title of the program: hfodd (v2.38j)

1E-mail: jacek.dobaczewski@fuw.edu.pl
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Catalogue number: ....

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
(see application form in this issue)

Reference in CPC for earlier version of program: J. Dobaczewski and P. Olbratowski, Comput.
Phys. Commun. 167 (2005) 214 (v2.08k).

Catalogue number of previous version: ADFL v2 1

Licensing provisions: none

Does the new version supersede the previous one: yes

Computers on which the program has been tested: Pentium-III, AMD-Athlon, AMD-Opteron

Operating systems: UNIX, LINUX, Windowsxp

Programming language used: FORTRAN-77 and FORTRAN-90

Memory required to execute with typical data: 10 Mwords

No. of bits in a word: The code is written in single-precision for the use on a 64-bit processor.
The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real
and complex single-precision floating-point items to double precision when the code is used on
a 32-bit machine.

Has the code been vectorised?: Yes

No. of lines in distributed program: 69 085 (of which 29 602 are comments and separators)

Keywords: Hartree-Fock; Hartree-Fock-Bogolyubov; Skyrme interaction; Self-consistent mean-
field; Nuclear many-body problem; Superdeformation; Quadrupole deformation; Octupole de-
formation; Pairing; Nuclear radii; Single-particle spectra; Nuclear rotation; High-spin states;
Moments of inertia; Level crossings; Harmonic oscillator; Coulomb field; Pairing; Point sym-
metries; Yukawa interaction; Angular-momentum projection; Generator Coordinate Method;
Schiff moments

Nature of physical problem
The nuclear mean-field and an analysis of its symmetries in realistic cases are the main in-
gredients of a description of nuclear states. Within the Local Density Approximation, or for
a zero-range velocity-dependent Skyrme interaction, the nuclear mean-field is local and ve-
locity dependent. The locality allows for an effective and fast solution of the self-consistent
Hartree-Fock equations, even for heavy nuclei, and for various nucleonic (n-particle n-hole)
configurations, deformations, excitation energies, or angular momenta. Similar Local Density
Approximation in the particle-particle channel, which is equivalent to using a zero-range interac-
tion, allows for a simple implementation of pairing effects within the Hartree-Fock-Bogolyubov
method.
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Method of solution
The program uses the Cartesian harmonic oscillator basis to expand single-particle or single-
quasiparticle wave functions of neutrons and protons interacting by means of the Skyrme effec-
tive interaction and zero-range pairing interaction. The expansion coefficients are determined
by the iterative diagonalization of the mean field Hamiltonians or Routhians which depend
non-linearly on the local neutron and proton densities. Suitable constraints are used to obtain
states corresponding to a given configuration, deformation or angular momentum. The method
of solution has been presented in: J. Dobaczewski and J. Dudek, Comput. Phys. Commun. 102
(1997) 166.

Summary of revisions

1. Projection on good angular momentum (for the Hartree-Fock states) has been imple-
mented.

2. Calculation of the GCM kernels has been implemented.
3. Calculation of matrix elements of the Yukawa interaction has been implemented.
4. The BCS solutions for state-dependent pairing gaps have been implemented.
5. The HFB solutions for broken simplex symmetry have been implemented.
6. Calculation of Bohr deformation parameters has been implemented.
7. Constraints on the Schiff moments and scalar multipole moments have been implemented.
8. The DT

2h transformations and rotations of wave functions have been implemented.
9. The quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei has been

implemented.
10. The Broyden method to accelerate the convergence has been implemented.
11. The Lipkin-Nogami method to treat pairing correlations has been implemented.
12. The exact Coulomb exchange term has been implemented.
13. Several utility options have been implemented.
14. Two insignificant errors have been corrected.

Restrictions on the complexity of the problem
The main restriction is the CPU time required for calculations of heavy deformed nuclei and
for a given precision required.

Typical running time
One Hartree-Fock iteration for the superdeformed, rotating, parity conserving state of 152

66Dy86

takes about six seconds on the AMD-Athlon 1600+ processor. Starting from the Woods-
Saxon wave functions, about fifty iterations are required to obtain the energy converged within
the precision of about 0.1 keV. In case when every value of the angular velocity is converged
separately, the complete superdeformed band with precisely determined dynamical moments
J (2) can be obtained within forty minutes of CPU on the AMD-Athlon 1600+ processor. This
time can be often reduced by a factor of three when a self-consistent solution for a given
rotational frequency is used as a starting point for a neighboring rotational frequency.

Unusual features of the program
The user must have access to (i) an implementation of the BLAS (Basic Linear Algebra Sub-
routines), (ii) the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, or
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zheevr, which diagonalize complex hermitian matrices, and (iii) the LINPACK subroutines
zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants, or
provide another set of subroutines that can perform such a tasks. The LAPACK and LIN-
PACK subroutines and an unoptimized version of the BLAS can be obtained from the Netlib
Repository at the University of Tennessee, Knoxville: http://www.netlib.org/.

LONG WRITE-UP

1 Introduction

The method of solving the Hartree-Fock (HF) equations in the Cartesian harmonic oscillator
(HO) basis was described in the previous publication, Ref. [1] (I). Four versions of the code
hfodd were previously published: (v1.60r) [2] (II), (v1.75r) [3] (III), (v2.08i) [4] (IV), and
(v2.08k) [5] (V). The User’s Guide for version (v2.08k) is available in Ref. [6] and the code
home page is at http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html. The present paper
is a long write-up of the new version (v2.38j) of the code hfodd. This extended version
features the angular-momentum projection, calculations of the generator-coordinate-method
(GCM) kernels, and several other major modifications, and is fully compatible with all previous
versions.

Information provided in previous publications [1]–[5] remains valid, unless explicitly men-
tioned in the present long write-up. Below we refer by Roman numbers (I)–(V) to section and
equation numbers in these previous publications

In Section 2 we review modifications introduced in version (v2.38j) of the code hfodd.
Section 3 lists all additional new input keywords and data values, introduced in version (v2.38j).
The structure of the input data file remains the same as in the previous versions, see Section II-3.
Similarly, all previously introduced keywords and data values retain their validity and meaning.

2 Modifications introduced in version (v2.38j)

2.1 Projection on good angular momentum and calculation of the GCM kernels

The code hfodd (v2.38j) contains a new option allowing for the angular-momentum projection
(AMP) after variation of an arbitrary symmetry-unrestricted Slater determinant |Φ〉 provided
by the code. This includes projection of cranked time-reversal symmetry breaking HF states
which is of particular interest in high-spin applications [7, 8, 9, 10, 11, 12].

The angular-momentum conserving wave function is obtained from the Slater determinant
|Φ〉 by applying the standard SO(3) AMP operator [13, 14]:

|IMK〉 = P̂ I
MK |Φ〉 =

2I + 1

8π2

∫

DI∗
MK(Ω) R̂(Ω)|Φ〉 dΩ, (1)

projecting onto angular momentum I with projection M and K along the laboratory and
intrinsic z-axes, respectively. The symbol Ω labels here a set of three Euler angles (α, β, γ),

DI
MK(Ω) is the Wigner function and R̂(Ω) = e−iαÎze−iβÎye−iγÎz is the active (body) rotation

operator [15].
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The intrinsic quantum number K is, in general, not conserved. The K-mixing is taken into
account by assuming the following form for the eigenstates [14]:

|i; IM〉 =
∑

K

g
(i)
IK|IMK〉 ≡

∑

K

g
(i)
IKP̂

I
MK |Φ〉. (2)

The mixing coefficients g
(i)
IK are determined by a minimization of energy, which amounts to

solving the following Hill-Wheeler (H-W) eigenvalue problem:

∑

K ′

HKK ′g
(i)
IK ′ = Ei

∑

K ′

NKK ′g
(i)
IK ′, (3)

separately for each angular momentum I. The Hamiltonian and norm matrix elements entering
the H-W equation (3) equal:

HKK ′ = 〈Φ|ĤP̂ I
KK ′|Φ〉 =

2I + 1

8π2

∫

dΩ DI∗
KK ′(Ω) H(Ω), (4)

NKK ′ = 〈Φ|P̂ I
KK ′|Φ〉 =

2I + 1

8π2

∫

dΩ DI∗
KK ′(Ω) N (Ω), (5)

where

H(Ω) = 〈Φ|ĤR̂(Ω)|Φ〉, (6)

N (Ω) = 〈Φ|R̂(Ω)|Φ〉, (7)

denote the Hamiltonian and norm kernels, respectively.
The H-W eigenvalue problem (3) should be handled with care due to its overcompleteness.

This difficulty is overcome in the code by solving the problem (3) in the collective basis spanned
by the natural states :

|IM〉(m) =
1√
nm

∑

K

η
(m)
K |IMK〉. (8)

These states are constructed of the eigenstates of the norm matrix:

∑

K ′

NKK ′η̄
(m)
K ′ = nm η̄

(m)
K , (9)

having non-zero nm > 0 eigenvalues. More precisely, due to numerical stability reasons, the
collective subspace is constructed by using only n = 1, 2, ..., mmax eigenstates having nm >
ζ , where ζ is an externally provided basis cut-off parameter. Final diagonalization of the
Hamiltonian matrix is performed in the mmax-dimensional collective subspace defined as:

|i; IM〉 =
mmax
∑

m=1

f (i)
m |IM〉(m). (10)

The code provides, for each angular momentum, eigenenergies and mixing coefficients recalcu-
lated to the representation defined by Eq. (2) according to the following formula:

g
(i)
IK =

mmax
∑

m=1

f (i)
m η

(m)
K√
nm

. (11)
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The cornerstone of the AMP scheme described above is a calculation of the Hamiltonian
(6) and norm (7) kernels. A prerequisite for this calculation is a spatial rotation of the Slater
determinant. It amounts to rotating independently each single-particle state R̂(Ω) ϕi(~r, σ) ≡
ϕ̃i(~r, σ):

R̂(Ω)|Φ〉 ≡ |Φ̃〉 =
1√
A!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ̃1(1) ϕ̃2(1) . . . ϕ̃A(1)
ϕ̃1(2) ϕ̃2(2) . . . ϕ̃A(2)

...
...

. . .
...

ϕ̃1(A) ϕ̃2(A) . . . ϕ̃A(A)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

This particular task is performed by the subroutine rotwav. Taking advantage of a fact
that the hfodd is coded in the Cartesian HO basis2 ψnx

(x)ψny
(y)ψnz

(z), cf. Eq. (I-71), the
three-dimensional rotation is factorized into three independent and numerically equivalent one-
dimensional rotations around z−, y− and again z−axis, respectively. To be more specific,
in the first step, each single-particle wave function is rotated around the z-axis by the Euler
angle γ, and the resulting rotated wave function is expanded in the original Cartesian harmonic
oscillator basis:

R̂z(γ)ϕi(~r, σ) = R̂z(γ)
∑

nxnynz ,sz

A
nxnynz ,sz
i ψnx

(x) ψny
(y) ψnz

(z) χsz(σ)

=
∑

nxnynz,sz

Ã
nxnynz ,sz
i (γ) ψnx

(x) ψny
(y) ψnz

(z) χsz(σ). (13)

The expansion coefficients Ã
nxnynz ,sz
i (γ) are calculated by using the one-dimensional rotation

of the basis vectors:

e−iγL̂zψnx
(x) ψny

(y) =
∑

n′

xn
′

y

B
n′

xn
′

y
nxny (γ)ψn′

x
(x) ψn′

y
(y), (14)

and the coefficients B
n′

xn
′

y
nxny (γ), which are non-zero only for nx + ny = n′

x + n′
y, are calculated

numerically by using the Gauss-Hermite (G-H) quadratures. Rotations around the y− and z−
axes by the Euler angles β and α, respectively, are performed in exactly the same way. This
method is exact, numerically very efficient, and inherent to the hfodd code. Indeed, since
the rotated state is expanded in the original HO basis the structure of the code is preserved
and allows, after only a minor generalization, for using the existing subroutines of the code to
calculate the Hamiltonian H(Ω) and norm N (Ω) kernels.

Calculation of the kernel, 〈Φ|Ô|Φ̃〉, for an arbitrary quantum operator Ô, proceeds along
standard rules for calculating matrix elements between two non-orthogonal Slater determinants,
see e.g. [16]. In particular, the norm kernel is given by:

〈Φ|Φ̃〉 = Det Ō, (15)

with the overlap matrix elements defined as:

Oij =
∫

d~r
∑

σ

ϕ̃i(~r, σ)ϕ∗
j(~r, σ). (16)

2The present implementation assumes a spherical HO basis to ensure that the rotation does not induce
components of single-particle wave functions that would go beyond the assumed basis.
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The kernel of an arbitrary one-body operator F̂ reads:

〈Φ|F̂ |Φ̃〉
〈Φ|Φ̃〉

=
∑

ij

〈ϕj|F̂ |ϕ̃i〉O−1
ij =

∫∫

d~rd~r ′
∑

σσ′

〈~rσ|F̂ |~r ′σ′〉 ρ̃(~r ′σ′, ~rσ), (17)

where O−1
ij denotes the matrix element of the inverse of the overlap matrix Ō while ρ̃(~r ′σ′, ~rσ)

is the one-body transition density matrix defined as:

ρ̃(~r ′σ′, ~rσ) =
∑

ij

ϕ∗
i (~r, σ) ϕ̃j(~r

′, σ′) O−1
ji . (18)

At the same time, the most general GCM kernels can be calculated by using two different sets
of wave functions for ϕi(~r, σ) and ϕ̃j(~r, σ), which correspond to two arbitrary different Slater
determinants.

The kernel (17) and density matrix (18) can be further simplified by introducing auxiliary
ket-states defined as:

φ̃i(~r
′σ′) ≡

∑

j

ϕ̃j(~r
′σ′) O−1

ji . (19)

Indeed, this allows for rewriting the transition density matrix to a “diagonal” form:

ρ̃(~r, σ, ~r ′, σ′) ≡
∑

i

ϕ∗
i (~r, σ) φ̃i(~r

′, σ′), (20)

where the summation goes over a single index in full analogy to the diagonal HF density matrix.
It means that the transition density matrix and one-body kernels can be calculated by using
the standard subroutines of the code. All what needs to be done is a substitution of the HF
ket-state by the auxiliary ket-state (19).

Similar property also holds for the two-body-interaction kernel, which preserves the func-
tional form of an energy density functional (EDF) derived for this interaction by averaging it
over the Slater determinant. Again, all what needs to be done is a replacement of the density
matrix by the transition density matrix. In our particular case, the Skyrme EDF can be ex-
pressed by using six local isoscalar (t = 0) and six local isovector (t = 1) densities, including

the particle ρt, kinetic τt, spin ~st, spin-kinetic ~Tt, current ~jt, and spin-current
↔

J t densities and
their derivatives, see Eqs. (I-5)–(I-7). The Skyrme-interaction kernel preserves the functional
form of the Skyrme EDF:

〈Φ|VSk|Φ̃〉
〈Φ|Φ̃〉

≡ HSk(Ω)

N (Ω)
=

=
∑

t=0,1

∫

d3~r

[

Cρ
t [ρ̃0]ρ̃

2
t + C∆ρ

t ρ̃t∆ρ̃t + Cτ
t ρ̃tτ̃t + CJ

t

↔

J̃
2

t +C∇J
t ρ̃t~∇ · ~̃J t

+ Cs
t [ρ̃0]~̃s

2

t + C∆s
t
~̃st · ∆~̃st + CT

t
~̃st · ~̃T t + Cj

t
~̃j
2

t + C∇j
t
~̃st ·

(

~∇× ~̃jt
)

]

.

(21)

It depends on six local transition densities ρ̃t, τ̃t, ~̃st,
~̃T t,

~̃jt,
↔

J̃ t, which are the counterparts of the
six diagonal local densities mentioned above.
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However, in the case of density-dependent interactions, like the Skyrme force, the kernel is
not fully defined. The procedure must be augmented by a prescription concerning the treatment
of the density-dependent term. In the hfodd code we implement the standard prescription,
that is, in the primary coupling constants we replace the isoscalar density by its transition
counterpart, i.e., Cρ

t [ρ0] → Cρ
t [ρ̃0] and Cs

t [ρ0] → Cs
t [ρ̃0] (see discussion in Ref. [17]).

As already mentioned, implementation of the AMP requires a relatively minor recoding
of the standard routines of the code. This concerns two generic matrices, D and L (I-39),
which are used in the hfodd code to encode density matrices and their derivatives. In version
(v2.38j), these matrices were generalized in the following natural way:

Dqq′

µ̂ν̂,α =
∑

i

(

∇µ̂φ̃i(~rσ)
) (

∇ν̂ϕ
∗
i (~rσ

′)
)

, (22)

and

Lqq′ =
1

2

∑

i

(

φ̃i(~rσ)∆ϕ∗
i (~rσ

′) + ∆φ̃i(~rσ)ϕ∗
i (~rσ

′)
)

, (23)

where ∇µ̂ ≡ (1, ~∇) for µ̂ = 0, 1, 2, 3 and the indices q and q′ denote the signs of spins σ and
σ′, respectively. In order to allow for non-hermitian, complex transition densities and their
derivatives, the set of formulas expressing them in terms of the D and L matrices, see Eqs. (I-
40)–(I-51), was generalized in the following way:

• scalar densities

ρ̃ = D++
00 +D−−

00 , (24)

τ̃ =
∑

µ

(

D++
µµ +D−−

µµ

)

, (25)

∆ρ̃ = 2τ̃ + 2
(

L++ + L−−
)

, (26)

~∇ · ~̃J = i
(

D++
12 −D−−

12 −D++
21 +D−−

21

)

+ i
(

D+−
23 +D−+

23 −D+−
32 −D−+

32

)

−
(

D+−
31 −D−+

31 −D+−
13 +D−+

13

)

, (27)

• vector densities

s̃1 = D+−
00 +D−+

00 , (28a)

s̃2 = i
(

D+−
00 −D−+

00

)

, (29a)

s̃3 = D++
00 −D−−

00 , (30a)

T̃1 =
∑

µ

(

D+−
µµ +D−+

µµ

)

, (31a)

T̃2 = i
∑

µ

(

D+−
µµ −D−+

µµ

)

, (32a)

T̃3 =
∑

µ

(

D++
µµ −D−−

µµ

)

, (33a)
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∆s̃1 = 2T̃1 + 2
(

L+− + L−+
)

, (34a)

∆s̃2 = 2T̃2 + 2i
(

L+− − L−+
)

, (35a)

∆s̃3 = 2T̃3 + 2
(

L++ − L−−
)

, (36a)

∇µρ̃ = D++
µ0 +D−−

µ0 +D++
0µ +D−−

0µ , (37)

j̃µ =
1

2i
D++

µ0 +D−−
µ0 −D++

0µ −D−−
0µ , (38)

(

∇× s̃
)

1
=

(

D++
02 −D−−

02 +D++
20 −D−−

20

)

− i
(

D+−
03 +D+−

30 −D−+
03 −D−+

30

)

,(39a)
(

∇× s̃
)

2
=

(

D+−
03 +D−+

03 +D+−
30 +D−+

30

)

−
(

D++
01 −D−−

01 +D++
10 −D−−

10

)

,(40a)
(

∇× s̃
)

3
= i

(

D+−
01 +D+−

10 −D−+
01 −D−+

10

)

−
(

D+−
02 +D+−

20 +D−+
02 +D−+

20

)

,(41a)

(

∇× j̃
)

1
= i

(

D++
23 −D++

32 +D−−
23 −D−−

32

)

, (42a)
(

∇× j̃
)

2
= i

(

D++
31 −D++

13 +D−−
31 −D−−

13

)

, (43a)
(

∇× j̃
)

3
= i

(

D++
12 −D++

21 +D−−
12 −D−−

21

)

, (44a)

• tensor density

J̃µ1 =
1

2i

(

D+−
µ0 +D−+

µ0 −D+−
0µ −D−+

0µ

)

, (45a)

J̃µ2 =
1

2

(

D+−
µ0 −D−+

µ0 −D+−
0µ +D−+

0µ

)

, (46a)

J̃µ3 =
1

2i

(

D++
µ0 −D−−

µ0 −D++
0µ +D−−

0µ

)

. (47a)

The final step in the calculation of the Hamiltonian and norm kernels (4)-(5) is the numerical
integration over the Euler angles. In our implementation, these three-dimensional integrals are
calculated by using the Gauss quadratures [18]. To achieve a maximum accuracy, the Gauss-
Tchebyschev (G-T) quadrature is used for the integration over the α and γ Euler angles and the
Gauss-Legendre (G-L) quadrature is used for the integration over the β angle. This combined
technique ensures, in fact, exact integration, provided that the numbers of the G-T nodes
nα = nγ and the number of the G-L nodes nβ are sufficiently large.

The numbers of the Gauss nodes to be used depend on the value of the maximum-spin
component Imax in the Slater determinant expansion in good angular-momentum basis states
(1):

|Φ〉 =
Imax
∑

I=Imin

I
∑

K=−I

|IKK〉. (48)
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Therefore, condition 2Imax ≤ ni − 1 for i = α, β, γ is common for all three Euler angles. In
practice, twice as large numbers of nodes ensure good numerical stability for terms that are
not polynomial, like for example the density-dependent terms.

Note, however, that since Imax is a priori unknown, the precision of integration can be
verified only a posteriori . The user can verify this precision by inspecting the completeness
relations for the overlap:

1 =
∑

IK

〈IKK|IKK〉 ≡
∑

IK

2I + 1

8π2

∫

dΩDI∗
KK〈Φ|R̂(Ω)|Φ〉, (49)

and the Hamiltonian (or the Hartree-Fock energy EHF ):

EHF ≡ 〈Φ|Ĥ|Φ〉 =
∑

IK

〈IKK|Ĥ|IKK〉 =
∑

IK

2I + 1

8π2

∫

dΩDI∗
KK〈Φ|ĤR̂(Ω)|Φ〉. (50)

The results concerning the completeness relations constitute part of the standard printout of
the code.

2.2 Calculation of electromagnetic transition probabilities

Angular momentum projection opens up a possibility to compute fully quantum mechanically
transition rates for electromagnetic radiation between final 〈f ; IfMf | and initial |i; IiMi〉 K-
mixed states (2) of angular momenta If and Ii, respectively. Reduced transition probabilities
are defined by means of the reduced matrix elements, which are provided by the code, as :

B(Eλ, Ii −→ If) =
1

2Ii + 1

∣

∣

∣〈f ; If ||Q̂λ||i; Ii〉
∣

∣

∣

2
,

B(Mλ, Ii −→ If) =
1

2Ii + 1

∣

∣

∣〈f ; If ||M̂λ||i; Ii〉
∣

∣

∣

2
, (51)

for electric Q̂λµ = rλ Yλµ(ϕ, θ) and magnetic M̂λµ = gsM̂s;λµ + glM̂l;λµ transition operators,
where gs and gl denote spin and orbital gyromagnetic factors, respectively. The spin and orbital

parts of the magnetic transition operator equal M̂s;λµ = (~∇Qλµ) · ~̂S and M̂l;λµ = 2
λ+1

(~∇Qλµ) · ~̂L,
respectively.

The electric Q̂λµ and magnetic M̂λµ transition operators transform under spatial rotations

like components of spherical tensor T̂λµ of rank λ. According to the Wigner-Eckart theorem,
the matrix elements of these operators are, therefore, equal to:

〈f ; IfMf |T̂λµ|i; IiMi〉 = (−1)2λC
IfMf

IiMiλµ

〈f ; If ||T̂λ||i; Ii〉
√

2If + 1
, (52)

where C
IfMf

IiMiλµ
denotes the Clebsch-Gordan coefficient.

The left-hand side of Eq. (52) can be calculated by using the projected states (1). Using
the definition of the K-mixed states (2), it can be written as:

〈f ; IfMf |T̂λµ|i; IiMi〉 =
∑

KiKf

g
(f)∗
IfKf

g
(i)
IiKi

〈IfMfKf |T̂λµ|IiMiKi〉

=
∑

KiKf

g
(f)∗
IfKf

g
(i)
IiKi

〈Φf |P̂ If
KfMf

T̂λµP̂
Ii
MiKi

|Φi〉, (53)
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where |Φf 〉 and |Φi〉 are, in principle, different Slater determinants. The matrix element (53)
can be further simplified after applying the following transformation rule, valid for arbitrary
spherical tensor:

P̂
If
KfMf

T̂λµP̂
Ii
MiKi

= C
IfMf

IiMi λµ

∑

Mµ′

(−1)2µ
′

C
IfKf

IiM λµ′ T̂λµ′P̂ Ii
MKi

. (54)

Indeed, by using this formula one obtains:

〈IfMfKf |T̂λµ|IiMiKi〉 = C
IfMf

IiMiλµ

∑

Mµ′

(−1)2µ
′

C
IfKf

IiMλµ′〈Φf |T̂λµ′P Ii
MKi

|Φi〉, (55)

what brings the calculation of the transition rates down to a standard task of the AMP, namely
to the calculation of the matrix elements of the one-body operator 〈Φf |T̂λµ′P̂ Ii

MKi
|Φi〉 which is

described in detail in Section 2.1. By comparing Eq. (52) for f ≡ Kf and i ≡ Ki with Eq. (55),
we finally have:

〈IfKf ||T̂λ||IiKi〉 =
√

2If + 1
∑

Mµ′

C
IfKf

IiMλµ′ 〈Φf |T̂λµ′P̂ Ii
MKi

|Φi〉. (56)

These quantities enter directly the equation for the reduced matrix elements between the AMP
K-mixed states, which reads:

〈f ; If ||T̂λ||i; Ii〉 =
∑

KiKf

g
(f)∗
IfKf

g
(i)
IiKi

〈IfKf ||T̂λ||IiKi〉. (57)

For the sake of completeness, it should be recalled that in the code hfodd the multipole
operators are defined as Q̂λµ ≡ rλY ∗

λµ, see Eq. (IV-2). Hence, the matrix elements of multi-
pole electric and magnetic operators are calculated in the code for dual tensors. In order to
be consistent with the matrix elements of multipole operators printed by the code one needs,
therefore, to take T̂λµ = Q̂∗

λµ for electric transitions and use ~∇Q∗
λµ in the definition of mag-

netic transitions. Of course, these phase conventions do not influence the reduced transition
probabilities (51).

2.3 The Yukawa interaction

The code hfodd can now evaluate the expectation value of a two-body Yukawa interaction

V =
∑

i<j

e−αrij

rij
[a+ bσi · σj + cτi · τj + dσi · σkτi · τk] ,

where rij ≡ |ri − rj|, and α, a, b, c, and d are arbitrary constants. The code makes use of an
approximate expansion of the Yukawa function in terms of Gaussians:

e−x

x
≈ 6.79 e−34x2

+2.41 e−6.6x2

+0.786 e−1.44x2

+0.241 e−0.38x2−0.062 e−0.15x2

+0.078 e−0.13x2

, (58)

Of course, the Yukawa function is singular at the origin and Gaussians are not, but the volume
element contains a factor of r2 that makes the approximation quite accurate near the origin (it
is a bit less so at larger distances).
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As described in Ref. [19], hfodd can also use a series of Gaussians to approximate the
expectation value of the CP-violating potential produced by pion exchange with a CP-odd
pion-nucleon vertex:

V̂PT (r1 − r2) = −g m
2
πh̄ c

8πmN

{

(σ1 − σ2) · (r1 − r2)
[

ḡ0 ~τ1 · ~τ2 −
ḡ1
2

(τ1z + τ2z)

+ḡ2(3τ1zτ2z − ~τ1 · ~τ2)
]

− ḡ1
2

(σ1 + σ2) · (r1 − r2) (τ1z − τ2z)

}

×exp(−mπ|r1 − r2|)
mπ|r1 − r2|2

[

1 +
1

mπ|r1 − r2|

]

, (59)

where the g’s label the isoscalar, isovector, and isotensor pion-nucleon coupling strengths and
mπ and mN stand, respectively, for the pion and nucleon mass in units of fm−1. To simulate the
effects of short-range correlations, absent from HF wave functions, we include a phenomeno-
logical correlation function [20]

f(r) = 1 − e−1.1r2(1 − 0.68 r2) , (60)

and make the approximation

g(r) = f(r)2
e−mπr

r2

(

1 +
1

mπr

)

≈ 1.75 e−1.1r2 +0.53 e−0.68r2+ 0.11 e−0.21r2+ 0.004 e−0.06r2, (61)

where mπ ≡ 0.7045 fm−1 and the numbers in the fit all have units of fm−2. The extra factor of
r not included in Eq. (61) (i.e. the factor r1 − r2 in Eq. (59)) is treated separately.

A Gaussian interaction between, e.g., particles 1 and 2, leaving out the spin dependence,
factors into functions that each depend only on the x, y, or z component of the vector difference
r1− r2. To evaluate the expectation value of the first Gaussian, which depends on x1−x2, it is
easiest to write the product of two oscillator wave functions (of x1 and x2) in terms of relative
and center-of-mass coordinates. To do so, we use

a†CM =
a†1 + a†2√

2
, a†rel =

a†1 − a†2√
2

, (62)

to obtain the relatively compact one-dimensional “Moshinksky bracket”

〈n1, n2|n,N〉 = δn1+n2,n+N

√
n!N !n1!n2!

2
n1+n2

2

∑

i

(−1)n−n1+i

i!(N − i)!(n1 − i)!(n− n1 + i)!
, (63)

where n1, n2 refer to one-dimensional oscillator wave functions associated with particles 1 and
2, and n, N label oscillator wave functions in the corresponding relative and center-of-mass
coordinates. The expectation value of the interaction then involves the integrals of Gaussians
of arbitrary range against two Hermite polynomials, with additional factors of x, y, or z if the
T -violating potential in Eq. (59) is being used. The resulting expressions are straightforward.

Once the integrals have been evaluated for each Cartesian coordinate, they must be folded
with the two density matrices to give the final expectation value. To do this, the code must
sum over a large number of individual oscillator quantum numbers. Explicitly (and in general),
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the expectation value of a term in the Gaussian approximation to a finite-range potential like
the ones we have been considering reads

Eτ ′k′τk
dir =

∑

m
′
n

′
mn

∑

s′u′su

ρτ
′

n
′s′,m′u′ρτ

ns,muG
x
m′

xmx,n′

xnx
Gy

m′

ymy ,n′

yny
Gz

m′

zmz ,n′

znz
σk′

u′s′(m
′
yn

′
y)σ

k
us(myny) .

(64)
Here ρτ

ns,mu is the density matrix for particles of type τ=p,n in the basis specified by the
oscillator quantum numbers n=(nxnynz) or m=(mxmymz) in the three Cartesian directions
and the simplexes s or u, Gi

m′

i
mi,n′

i
ni

are one-dimensional integrals representing matrix elements

of a Gaussian (or a Gaussian times a coordinate) in the i=x, y, or z directions, and σk
us(myny)

for k=0, x, y, or z are the matrix elements of the Pauli matrices (with σ0 ≡ 1) in the simplex
basis (I-78) that depend on the numbers of quanta in the y direction (myny).

Altogether, sums in Eq. (64) require 12 independent sums over the oscillator states, i.e.,
about N12

0 operations for a basis cut at N0 oscillator shells, and are intractable unless performed
efficiently. To reduce the number of operations, hfodd sums over the simplex quantum numbers
first, resulting in the intermediate quantities

Dτ ′k′

n
′
m

′ =
∑

s′u′

ρτ
′

n
′s′,m′u′σk′

u′s′(m
′
yn

′
y), (65)

Dτk
nm

=
∑

su

ρτ
ns,muσ

k
us(myny) , (66)

the computation of which requires N6
0 operations. After these are stored, the sums in each

Cartesian direction are done one-by-one. hfodd first computes auxiliary y-direction matrices

Y τk
nxm′

ynz,mxn′

ymz
=

∑

nymy

Dτk
nxnynz ,mxmymz

Gy
m′

ymy,n′

yny
, (67)

a task that requires N8
0 operations. Next it performs the z sums, yielding

Zτk
nxm′

ym
′

z ,mxn′

yn
′

z
=

∑

nzmz

Y τk
nxm′

ynz ,mxn′

ymz
Gz

m′

zmz ,n′

znz
, (68)

the computation of which again requires N8
0 operations. The sum in the x direction is postponed

to save storage (the auxiliary matrices Y τk
nxm′

ynz ,mxn′

ymz
and Zτk

nxm′

ym
′

z ,mxn′

yn
′

z
are each four times

larger than the original density matrix). Instead, for fixed values of the x quantum numbers nx,
n′
x, mx, and m′

x, the code first sums over the “primed” y and z labels, computing and storing

Xτ ′k′,τk
n′

xnx,m′

xmx
=

∑

n′

yn
′

zm
′

ym
′

z

Dτ ′k′

n′

xn
′

yn
′

z ,m
′

xm
′

ym
′

z
Zτk

nxm′

ym
′

z ,mxn′

yn
′

z
, (69)

a procedure that once more requires N8
0 operations. The final result is obtained by summing

over the N4
0 x-direction labels, giving

Eτ ′k′τk
dir =

∑

n′

xnx,m′

xmx

Xτ ′k′,τk
n′

xnx,m′

xmx
Gx

m′

xmx,n′

xnx
. (70)

The separation of the Gaussian interaction into its Cartesian components is what allows the
original N12

0 terms to be reduced to N8
0 terms. For comparison, the mean-field matrix elements

calculated for a zero-range interaction require a sum over about N7
0 terms, see I.

Figures 1 and 2 show the actual CPU times required in calculations using the Skyrme
and Yukawa interactions, respectively. At N0 = 10, the latter take more than two orders of
magnitude longer and, moreover, their CPU times scale like N7

0 rather than N4
0 . A local EDF

clearly makes for easier computing.
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Figure 1: The hfodd CPU times required for calculations that use the standard Skyrme EDF,
shown as a function of the number of HO shells N0. The doubly logarithmic scale in the Figure,
shows that these times scale as N4
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Figure 2: Same as in Figure 1 but for calculations that use the Yukawa interaction. The CPU
times scale as N7
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2.4 The BCS solutions for state-dependent pairing gaps

In the previous versions of the code hfodd, only the seniority pairing force has been imple-
mented in the particle-particle channel. In version (v2.38j), we have introduced the subroutine
delpai which solves the BCS equations for the seniority pairing force, the seniority pairing
force with fixed pairing gap, as well as for the zero-range density-dependent pairing force. The
latter option amounts to using the state-dependent pairing gaps.

For the seniority pairing force, the neutron and proton pairing strength constants are defined
as in Ref. [21]. These values can be scaled by the multiplicative factors FACTGN and FACTGP for
neutrons and protons, respectively (see Section II-3.2).

The zero-range density-dependent pairing force, Eq. (IV-14), is defined by the sets of param-
eters {V0, V1, α} or equivalently by {V0, ρ0, α}, see Section IV-3.1. The pairing matrix elements
between pairs of time-reversed states (the array GMATRI) are calculated in subroutine ginter.
After solving the BCS equations for state-dependent pairing gaps ∆k, the code calculates the
average neutron and proton (spectral) gaps defined as:

〈∆〉 =

∑

k vkuk∆k
∑

k vkuk
, (71)

were vk and uk are the BCS occupation amplitudes.

2.5 Calculation of Bohr deformation parameters

The shape of the nuclear surface is usually described in terms of the multipole expansion,

R(θ, φ) = R0



1 +
∞
∑

λ=1

λ
∑

µ=−λ

αλµYλµ(θ, φ)



 . (72)

In self-consistent methods, the radius R0 and the deformation coefficients αλµ, λ ≥ 1, have to
be determined on the basis of the calculated density distribution according to some convention.
The general concept is to consider a sharp-edge body of constant density ρ0 and shape defined
by Eq. (72), and choose ρ0, R0, and αλµ so that the monopole surface moment, QS

00 (IV-3), and
the electric multipole moments, Qλµ (IV-2), λ ≥ 0, of the body equal those of the mean-field
solution.

The moments QS
00 and Qλµ of any density distribution, ρ(~r), are defined as average values

of the functions given by Eqs. (IV-2) and (IV-3), i.e.,

QS
00 =

∫

d3~r ρ r2 , Qλµ = aλµ

∫

d3~r ρ rλ Y ∗
λµ . (73)

The conventional factors aλµ are listed in Table IV-5; in particular, a00 =
√

4π. The monopole
components, QS

00 and Q00, are related to the root-mean-square radius, Rrms, Q
S
00 = Q00R

2
rms,

and particle number N , Q00 = N . Below, the quantities pertaining to the mean-field solution
are marked with bars, R̄rms, Q̄

S
00 and Q̄λµ. For the reference body, Eqs. (73) take the form

QS
00(ρ0, R0, α) =

ρ0
5

∫ 2π

0
dφ
∫ π

0
sin θ dθ R5(θ, φ) , (74)

Qλµ(ρ0, R0, α) = aλµ
ρ0

λ+ 3

∫ 2π

0
dφ
∫ π

0
sin θ dθ Rλ+3(θ, φ) Y ∗

λµ(θ, φ) , (75)
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where α denotes the ensemble of the parameters αλµ. Thus, the equations of the problem read

QS
00(ρ0, R0, α) = Q̄S

00 , Qλµ(ρ0, R0, α) = Q̄λµ . (76)

They cannot be solved analytically.
For small deformations, however, one can determine ρ0 and R0 from QS

00 and Q00 by setting
αλµ = 0 in Eqs. (74) and (75). Then, one can find αλµ by expanding the expression in Eq. (75)
up to first order in αλµ about αλµ = 0. This leads to the linear approximation,

ρ0 =
3

4π

Q̄00

R3
0

, R0 =

√

5

3
R̄rms , αλµ =

4π

3aλµ

Q̄λµ

Q̄00Rλ
0

, (77)

which was used in previous versions of the code hfodd, see Section III-2.9.
In version (v2.38j), exact solutions to Eqs. (76) are sought numerically, for arbitrary defor-

mations. First, the integrals in Eqs. (74) and (75) are evaluated by using the G-L quadratures.
Then, the problem is formulated in terms of fixed-point equations, which are solved by using
the standard iterative method. Iterations stop when Eqs. (76) are satisfied up to an accuracy
which guarantees that all the digits printed on the output are correct. It may happen for
very large deformations that the procedure diverges and the exact values of the deformation
parameters are not found.

Unlike in the linear approximation, the values referred to as exact depend on the value of
the maximum multipolarity λmax considered in Eqs. (76). This is not a very dramatic effect,
and in order to estimate the exact values for a multipolarity λ, it is recommended to perform
calculations for multipolarities up to the next one of the same parity, i.e., for λmax = λ + 2.
In the code, λmax is set independently of the number of multipole moments calculated for the
mean-field solution, although it must not exceed the latter one, of course.

According to the adopted convention, see Section III-2.9, the code prints the Bohr defor-
mation parameters, βλµ, which contain an additional factor of

√
2 introduced for µ 6= 0,

βλµ = αλµ

√

2 − δµ0 . (78)

2.6 Constraints on the Schiff moments and scalar multipole moments

Apart from calculating and constraining the multipole moments Qλµ (IV-2) and surface mo-
ments QS

λµ (IV-3), the code hfodd version (v2.38j) also calculates the average values of the
so-called Schiff multipole moments,

QF
λµ(r) = aλµ

[

rλ+2 − 5
3
〈r2〉rλ

]

Y ∗
λµ(θ, φ),

= QS
λµ(r) − 5

3
〈r2〉Qλµ(r), (79)

where for the neutron, proton, or total Schiff moment, 〈r2〉 denotes the neutron, proton, or
total mean-square radius, respectively. Note that the Schiff moments depend through 〈r2〉 on
the self-consistent solution; therefore, in the given iteration of the code, values of 〈r2〉 are taken
from the previous iteration of the code. In this way, a proper definition of the Schiff moment is
ensured only after the convergence is reached. Note also that the factor of 1

10
, which is included

in the standard definition of the Schiff moment [22, 19] is not included in the definition of
Eq. (79).
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In version (v2.38j), the code hfodd can calculate and constrain either the surface moments
or the Schiff moments, according to the switch ISCHIF, see Section 3.5 below, but not both
simultaneously.

Since the physical constraints on the Schiff moments have to be set for the proton moments
only, the meaning of parameters IFLAGS (see keyword SURFCONSTR in Section IV-3.5) has been
generalized in the following way: As previously, for IFLAGS=1, the constraints on the surface
or Schiff moments pertain to the total moments, but for IFLAGS=2 or 3 they now may pertain
to the neutron or proton moments, respectively.

In version (v2.38j), the code hfodd can also set constraints on scalars Qλ built from the
multipole moments Qλµ:

Qλ = aλ0

√

√

√

√

√

λ
∑

µ=−λ

|Qλµ|2
a2λµ

. (80)

For λ = 2, such a constraint is useful when the minimum of energy is to be found as function
of the deformation γ for a fixed value of the deformation β. Constraints on scalars are also
insensitive to the overall orientation of nucleus in space.

2.7 Quasiparticle blocking for the HFB solutions in odd and odd-odd nuclei

In order to include pairing correlations, hfodd solves the HFB equations:

H
(

χ ϕ
)

=
(

χ ϕ
)

(

E 0
0 −E

)

, (81)

where

H =

(

h′ − λ ∆
−∆∗ −h′∗ + λ

)

(82)

is the HFB matrix. Here, h′ is the s.p. Routhian operator, λ is the Fermi energy, ∆ is the
antisymmetric pairing potential, and E is a diagonal matrix of quasiparticle energies. In the
case of even-even nuclei, χ (resp. ϕ) are the wavefunctions of quasiparticles with positive (resp.
negative) energies. Note that these are 2M ×M matrices, where M is the dimension of the s.p.
basis. One may write them down in terms of upper and lower components using the M ×M
matrices A and B:

χ =

(

A
B

)

, ϕ =

(

B∗

A∗

)

. (83)

The matrices A and B form the matrix of the Bogolyubov transformation:

A =

(

A B∗

B A∗

)

. (84)

In the case of the so-called proper Bogolyubov transformation, for which detA = 1, the HFB
state is a mixture of states with even number of particles only. The blocking of quasiparticle
k is done by replacing one column in the ϕ matrix by the column which corresponds to the
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quasiparticle state with the opposite energy from the χ matrix. This leads to exchange of the
two columns of the Bogolyubov transformation matrix A and detA = −1. Now A corresponds
to the improper Bogulyubov transformation and the resulting HFB wave function is a super-
position of states with odd number of particles only [14]. Let Ai denote the i-th column of the
matrix A. Then the corresponding HFB wave functions of blocked states have the form:

χk =

(

A1 . . . Ak−1 B∗
k Ak+1 . . . AM

B1 . . . Bk−1 A∗
k Bk+1 . . . BM

)

, (85)

ϕk =

(

B∗
1 . . . B∗

k−1 Ak B∗
k+1 . . . B∗

M

A∗
1 . . . A∗

k−1 Bk A∗
k+1 . . . A∗

M

)

. (86)

To decide which quasiparticle should be blocked the code calculates the overlap of s.p. and
quasiparticle states in the following way: overlaps of the s.p. state with the upper component
and with the time-reversed (complex-conjugate) lower component of the quasiparticle state.
The greater of these two is chosen. The quasiparticle state with the largest overlap with the
selected s.p. state is chosen to be blocked during each iteration.

In the case of conserved simplex symmetry, the Routhian and pairing potential have the
form:

h′ =

(

h′+ 0
0 h′−

)

, ∆ =

(

0 ∆+

∆− 0

)

. (87)

Then, the general HFB equations decouple into two different set of independent equations. The
code hfodd solves the equation:

(

h′+ − λ ∆+

−∆∗
− h′∗− + λ

)(

A+ B∗
+

B− A∗
−

)

=

(

A+ B∗
+

B− A∗
−

)(

E− 0
0 −E+

)

, (88)

from the solution of which, one may reconstruct the complete solution of Eq. (81):

χ =











0 A+

A− 0
B+ 0
0 B−











, ϕ =











B∗
+ 0

0 B∗
−

0 A∗
+

A∗
− 0











. (89)

Blocking of the k-th quasiparticle (for k ≤ M/2) leads to the following expressions for the
wave HFB functions (85) and (86):

χk =













0 . . . 0 B∗
+k

0 . . . 0 A+1 . . . A+M/2

A−1 . . . A−k−1 0 A−k+1 . . . A−M/2 0 . . . 0

B+1 . . . B+k−1 0 B+k+1 . . . B+M/2 0 . . . 0

0 . . . 0 A∗
−k

0 . . . 0 B−1 . . . B−M/2













, (90)

ϕk =















B∗
+1

. . . B∗
+k−1

0 B∗
+k+1

. . . B∗
+M/2

0 . . . 0

0 . . . 0 A−k 0 . . . 0 B∗
−1

. . . B∗
−M/2

0 . . . 0 B+k 0 . . . 0 A∗
+1

. . . A∗
+M/2

A∗
+1

. . . A∗
+k−1

0 A∗
+k+1

. . . A∗
+M/2

0 . . . 0















, (91)
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where horizontal and vertical lines are introduced to distinguish M ×M/2 blocks. One can
easily derive analogous expressions in the case of M/2 < k ≤ M . Instead of using the blocked
matrix ϕ in the form of (91), the code uses instead a 2M × (M + 1) matrix ϕ′:

ϕ′ =















B∗
+1

. . . B∗
+k−1

0 B∗
+k+1

. . . B∗
+M/2

0 . . . 0 0

0 . . . 0 0 0 . . . 0 B∗
−1

. . . B∗
−M/2

A−k

0 . . . 0 0 0 . . . 0 A∗
+1

. . . A∗
+M/2

B+k

A∗
+1

. . . A∗
+k−1

0 A∗
+k+1

. . . A∗
+M/2

0 . . . 0 0















. (92)

It can be easily seen that this matrix leads to the same generalized density matrix R = ϕϕ†. In
this representation, the wave function of the blocked quasiparticle is just zeroed and the wave
function of the quasiparticle with opposite energy is added as an additional column.

2.8 The Broyden method

The HFB equations are a system of non-linear integro-differential equations, which require to
be solved self-consistently: an initial guess for the density matrix and pairing density is used
to generate the HF potential and pairing field and define the HFB matrix; Solving the HFB
equations yield a new set of eigen-functions that are used to calculate the densities at the next
step, and this loop is executed until convergence is achieved. Different criteria can be used for
convergence. In hfodd, iterations are stopped when the difference between the HFB energy
and the sum of s.p. energies is less than EPSITE, see I and II.

Mathematically, the self-consistent HFB equations can be viewed as a particular example
of a fixed-point problem. Formally, they read:

V
(m)
out = I(V

(m)
in ), (93)

where V
(m)
in is a vector of size N containing certain initial conditions (i.e., the set of wave-

functions, HF potential, matrix elements of the HFB matrix, etc.) at iteration number m. The
solution V to the HFB equations satisfies: V = I(V), or: F(V) = V − I(V) = 0. By default,
most of nuclear structure codes iterate the vector V by taking as input to iteration m + 1 a
linear combination:

V
(m+1)
in = αV

(m)
out + (1 − α)V

(m)
in . (94)

This so-called linear mixing scheme was implemented in previous versions of hfodd.
If the function F(V) is differentiable, the roots of the equation F(V) = 0 can be found by

a generalized Newton-Raphson method: this is the basis for the Broyden method to accelerate
convergence. At each step m of the self-consistent process, the input to the next step is
computed from:

V
(m+1)
in = V

(m)
in −B(m)F(m), (95)

where B(m) is an approximation to the inverse of the Jacobian of the vector function F(V) at
iteration m. The exact expression of Eq. (95) was first given in [23]. The modified Broyden
method is a slight modification of the original Broyden method designed to avoid storing (po-
tentially large) N × N matrices. It was presented in [24] and applied in a variety of nuclear
structure problems in [25]. In practice, it is a correction term added to Eq. (94).
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The modified Broyden method was implemented in hfodd according to the formulation of
[25]. In hfodd the quantities that are iterated are the components of the HF fields on the G-H
integration mesh, see I. The Broyden vector therefore contains the value of the components of
the self-consistent HF fields at the G-H node (xi, yj, zk). The size N of this vector is proportional
to the total number of field components and the numbers of G-H nodes along each direction
NXHERM, NYHERM, NZHERM. It is given by: N =44×(NXHERM × NYHERM × NZHERM). For the
Broyden method applied within the Lipkin-Nogami (LN) calculations, the matrix elements of
the density matrices have to be stored in addition, which adds 2×M2 elements to the Broyden
vector (M being the size of the s.p. basis).

2.9 The Lipkin-Nogami method

Methods of restoring the particle-number symmetry must be implemented in studies of pairing
correlations because some observables like even-odd mass staggering or pair-transfer amplitudes
are influenced significantly. In addition, the quantitative impact of the particle-number restora-
tion depends on whether the pairing correlations are strong (open-shell systems) or weak (near
closed shells).

The LN regime of hfodd gives an efficient way of performing approximate particle-number
projection (PNP) calculations. It is based on the LN method [26, 27] considered as a variant of
the second-order Kamlah expansion [28, 29, 30, 31], in which the PNP energy is approximated
by a simple expression,

ETOT = EHFB + ELN, (96)

where EHFB is the HFB energy, and ELN is the LN correction,

ELN = −λ2(〈N̂2〉 −N2) = −2λ2Trρ(1 − ρ), (97)

with λ2 depending on the HFB state and representing the curvature of the energy with respect
to the particle number. In the Kamlah method λ2 is varied along with variations of the HFB
state while in the LN method this variation is neglected and λ2 is simply evaluated after each
iteration in order to find the best estimate of the energy curvature.

When the HFB method is applied to a given Hamiltonian, values of λ2 can be estimated
by calculating modified mean-field potentials that are analogous to the standard HFB mean
fields. However, in the spirit of the EDF approach, in hfodd is adopted an efficient algorithm
[32] estimating the curvature λ2 from the seniority-pairing expression,

λ2 =
Geff

4

Tr′(1 − ρ)κ Tr′ρκ− 2 Tr(1 − ρ)2ρ2

[Trρ(1 − ρ)]2 − 2 Trρ2(1 − ρ)2
, (98)

where TrA =
∑

nAnn stands for the trace of a matrix A, while Tr′A =
∑

n Ann̄. The effective
pairing strength,

Geff = − ∆̄2

Epair
, (99)

is determined from the HFB pairing energy,

Epair = −1

2
Tr∆κ∗, (100)
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and the average pairing gap,

∆̄ =
Tr′∆ρ

Trρ
. (101)

All quantities defining energy ELN, Eq. (97), and λ2, Eqs. (98)-(101), depend on the self-
consistent solution, and the microscopic interaction. In hfodd, they are calculated in the
subroutine lipcor using the canonical representation for the density matrices in terms of the
canonical occupation amplitudes Uk and Vk.

As a result of the LN calculations, pairing correlations never collapse, which is also the case
of the exact PNP before variation. A comparison of different HFB particle-number projection
results is further discussed in Ref. [32].

2.10 Exact Coulomb exchange

In evaluating the exact Coulomb exchange mean fields and energies we use the methods de-
veloped for the Gogny interaction, as described in Appendix A.5 of Ref. [33]. They are based
on expanding the Coulomb interaction into a sum of Gaussians, which allows using the same
infrastructure as developed for the Yukawa interaction discussed in Section 2.3. In particular,
we use the identities:

1

r
=

2√
π

∫ ∞

0
dα exp(−α2r2) =

2

L
√
π

∫ 1

0
dξ
(

1 − ξ2
)−3/2

exp

(

− ξ2r2

L2 (1 − ξ2)

)

, (102)

where the second integral has been reduced to a finite domain by the substitution α =
ξ
L

(1 − ξ2)
−1/2

and L stands for the largest of the three HO lengths Lµ =
√

h̄/mωµ, µ = x, y, z.
By using the G-L quadratures we can now present the Coulomb interaction as a finite sum of
NC Gaussians:

1

r
=

NC
∑

i=1

Ai exp
(

−air2
)

, (103)

where constants Ai and ai depend on the G-L weights Wi and nodes ξi as

Ai =
2Wi

L
√
π

(

1 − ξ2i
)−3/2

, ai =
ξ2i

L2 (1 − ξ2i )
. (104)

It turns out that this method provides for very precise and rapidly converging results for
the exact Coulomb energies. This is illustrated in Fig. 3, where the error in the exact Coulomb
exchange energy, ∆Eexc, is plotted as function of the number of Gaussians NC . A quite precise
estimate is obtained for NC = 7 Gaussians and the machine precision is obtained by doubling
this number (along with doubling the CPU time). For NC = 7, these CPU times are shown in
Fig. 4, which illustrates the fact that these times scale with the number of HO shells as N7

0 .

2.11 Utility options

The following utility options have been implemented:

1. In all the keywords, the minus character “-” can always be used in place of the underscore
character “ ” and vice versa.
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2. An external HO potential can be added to the self-consistent mean field to calculate
properties of an atomic gas in a trap, see the keyword INSERT HO below.

3. Arbitrary values can be added to the coupling constants, see the keywords EVE ADD TS,
ODD ADD TS, EVE ADD PM, and ODD ADD PM below.

4. Calculations with fixed values of the Fermi energies can be performed, see the keywords
FIXFERMI N and FIXFERMI P below.

5. For the HFB calculations, eigenvalues of the HFB mean-field s.p. Hamiltonian or Routhian
can be printed, see the keyword HFBMEANFLD below.

6. Within the HF calculations, the filling approximation can be used, see the keywords
FILSIG NEU and FILSIG PRO below.

7. Constraints on the intrinsic spin only can be used, see the keyword NORBCONSTR below.

8. Various one-line data can be printed during the iteration, see the keyword ONE LINE

below.

9. Integrals of several symmetry-violating terms can be printed, see the keyword PRINT VIOL

below.

10. The Nilsson labels with respect to the x, y, or z axes can be printed, see the keyword
NILSSONLAB below.

11. Matrix elements of the mean-field Hamiltonian can be saved on the disk, see the keywords
FIELD SAVE, FIELD OLD, REC FIELDS, and CONTFIELDS below.

2.12 Corrected errors

2.12.1 Euler angles. The Euler angles have been calculated for the quadrupole moment, i.e.,
for the complex conjugate spherical harmonics, instead of the complex conjugate quadrupole
moment, i.e., for the spherical harmonics themselves.

2.12.2 Predefinition of STIFFA. In subroutine predef, the value of variable STIFFA has been
incorrectly predefined to 0.01 instead of 0.00.

3 Input data file

The structure of the input data file has been described in Section II-3; in the present version
(v2.38j) of the code hfodd this structure is exactly the same. All previous items of the input
data file remain valid, and several new items are added, as described in Secs. 3.1–3.8.

Together with the FORTRAN source code in the file hfodd.f, several examples of the input
data files are provided. File dy152-f.dat contains all the valid input items, and the input data
are identical to the default values. Therefore, the results of running the code with the input
data file dy152-f.dat are identical to those obtained for the input data file containing only
one line with the keyword EXECUTE.
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File ge064-a.dat contains the input data that allow for determining the rotating triaxial
state in the nucleus 64Ge and then performing a 3D AMP of this state. This data file comprises
four runs of the code: (i) starting from the Nilsson initial potential, the code performs 20
iterations with constrained values of quadrupole moments Q20 and Q22, such that the initial
deformation and orientation of the nucleus is determined, (ii) after releasing the constraints, the
triaxial minimum is converged, (iii) the rotating solution for I = 6 is converged by setting the
angular frequency of h̄ω = 0.575 MeV, and (iv) the AMP of the rotating solution is performed.
Small numbers of G-T (10) and G-L nodes (10), see Section 2.1, which are used in this run, do
not allow for a precise AMP resolution of high angular momenta. This data file is only meant
to provide an example of rapid calculation.

File ge064-b.dat contains the input data that allow for a correct AMP, with higher numbers
of G-T (40) and G-L nodes (40), but its execution requires a CPU time which is 43=64 times
longer (about 200h). Alternatively, one can run in parallel 40 jobs by executing the input data
files ge064-c.dat with characters NUASTA replaced by integers from 1 to 40.

File sn120-b.dat contains the input data that allow for determining the ground state in
the nucleus 120Sn with the Lipkin-Nogami corrections taken into account.

File ge064-a.dat is reproduced in section TEST RUN INPUT below. Files ge064-a.out

and sn120-b.out contain results of executing code hfodd version (v2.38j) for the two corre-
sponding input files. Selected lines from the output file ge064-a.out are reproduced in section
TEST RUN OUTPUT below.

3.1 Interaction

Keyword: COULOMBPAR
7, 1, 1 = ICOTYP, ICOUDI, ICOUEX

For ICOUDI=0, 1, or 2, the Coulomb direct energy and Coulomb mean field are neglected,
calculated by using the Green-function method, see Section I-5, or calculated by using the
Gaussian-expansion method, see Section 2.10, respectively. Similarly, for ICOUEX=0, 1, or 2,
the Coulomb exchange energy and Coulomb mean field are neglected, calculated by using the
Slater approximation (I-19) or calculated exactly by using the Gaussian-expansion method,
see Section 2.10, respectively. For the Gaussian-expansion method, that is, for ICOUDI=2 or
ICOUEX=2, positive values of ICOTYP denote the numbers of G-L nodes used in the integral
of Eq. (103). For ICOUDI=2 or ICOUEX=2, the iteration can later be smoothly continued
(IFCONT=1, see the keyword CONTFIELDS) only by saving the matrix elements of the mean
field, that is, by requesting IWRIFI=1, see the keyword FIELD SAVE. Therefore, ICOUDI=2 or
ICOUEX=2 and ICONTI=1 requires IFCONT=1.

Keyword: PAIR MATRI

1, 0, 0, 0 = IDESTA, IDEMID, IDESTO, IDEDIS
For IDESTA=1, the pairing matrix elements, required for the BCS pairing calculations with
state-dependent pairing gaps (IPABCS=3), are calculated in the first iteration. At present, only
the value of IDESTA=1 is allowed, because the option of storing the pairing matrix elements is
not yet implemented. For IDEMID=1, the pairing matrix elements are calculated in the middle
iterations, for IDESTO=1 in the last iteration, and/or for IDEDIS=n, in every n-th iteration.

Keyword: INSERT HO
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0 = IPOTHO

For IPOTHO=1, an external HO potential is added to the self-consistent mean field. Parameters
of the potential are identical to those defining the HO basis.

Keyword: EVE ADD TS
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
ARHO T, ARHO S,ARHODT, ARHODS, ALPR T, ALPR S,

ATAU T, ATAU S,
ASCU T, ASCU S,
ADIV T, ADIV S

By using this item, the coupling constants corresponding to a given Skyrme parameter set can
be shifted by arbitrary values. The time-even coupling constants in the total-sum representation
(I-14) are modified by adding the 12 numbers from ARHO T to ADIV S. By setting the scaling
factors SRHO T to SDIV S equal to zero, see the keyword EVE SCA TS, one can input here a new
set of the coupling constants. The name convention of variables is here the same as for many
other variables in the code hfodd, see the keyword EVE SCA TS.

Keyword: ODD ADD TS
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
ASPI T, ASPI S,ASPIDT, ASPIDS, ALPS T, ALPS S,

ACUR T, ACUR S,
AKIS T, AKIS S,
AROT T, AROT S

Same as above but for the time-odd coupling constants.

Keyword: EVE ADD PM
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
ARHO P, ARHO M,ARHODP, ARHODM, ALPR P, ALPR M,

ATAU P, ATAU M,
ASCU P, ASCU M,
ADIV P, ADIV M

Same as above but for the time-even coupling constants in the isoscalar-isovector representation
(I-15). The total-sum additive factors are used first, and the isoscalar-isovector additive factors
are used afterwards.

Keyword: ODD ADD PM
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
ASPI P, ASPI M,ASPIDP, ASPIDM, ALPS P, ALPS M,

ACUR P, ACUR M,
AKIS P, AKIS M,
AROT P, AROT M

Same as above but for the time-odd coupling constants in the isoscalar-isovector representation.

Keyword: YUKAWATERM
0.7045, 4.7565, 1.0, 0.0, 0.0, 0.0, 1, 0
PIMASS, PNMASS, YUKAGT, YUKAG0, YUKAG1, YUKAG2, IYUTYP, I YUKA
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For I YUKA>0, the code calculates the average values of the time-reversal- and parity-violating
Yukawa interaction (59), with the pion mass (mπ) of PIMASS and the nucleon mass (mN ) of
PNMASS. If values of zero are read, variables PIMASS and PNMASS remain unchanged. Variables
YUKAGT, YUKAG0, YUKAG1, and YUKAG2 correspond, respectively, to the coupling constants g, ḡ0,
ḡ1, and ḡ2. For I YUKA=2 or 3, the direct matrix elements of the Yukawa interaction (59) are, in
addition, added to the self-consistent mean field. For I YUKA=2 or 4, the exchange matrix are
added. For IYUTYP=1, expression (61) is used, while for IYUTYP=2, an analogous six-Gaussian
expression is used without the short-range correction (60), that is, for f(r) = 1. For I YUKA=0,
all these input data are ignored and the Yukawa interaction is not taken into account.

3.2 Symmetries

Keyword: FILSIG NEU
2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0 =
KPFILG(0,0,0), KPFILG(0,1,0), KPFILG(1,0,0), KPFILG(1,1,0),
KHFILG(0,0,0), KHFILG(0,1,0), KHFILG(1,0,0), KHFILG(1,1,0),
KOFILG(0,0,0), KOFILG(0,1,0), KOFILG(1,0,0), KOFILG(1,1,0)

These parameters govern the filling approximation for the neutron s.p. parity–signature con-
figurations. Matrices KPFILG contain the indices of particle states in the four parity–signature
blocks denoted by (+,+), (+,−), (−,+), and (−,−), of given (parity,signature) combinations,
i.e., (π, r) = (+1,+i), (+1,−i), (−1,+i), and (−1,−i), respectively. Matrices KHFILG con-
tain analogous indices of hole states, and matrices KOFILG contain numbers of particles put
into the states between KHFILG and KPFILG, by using for them partial occupation factors of
KOFILG/(KPFILG−KHFILG+1)/2. For KOFILG=0, in the given parity–signature block the filling
approximation is inactive. The filling approximation is incompatible with pairing correlations,
IPAIRI=1.

Keyword: FILSIG PRO
2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0 =
KPFILG(0,0,1), KPFILG(0,1,1), KPFILG(1,0,1), KPFILG(1,1,1),
KHFILG(0,0,1), KHFILG(0,1,1), KHFILG(1,0,1), KHFILG(1,1,1),
KOFILG(0,0,1), KOFILG(0,1,1), KOFILG(1,0,1), KOFILG(1,1,1)

Same as above but for the proton s.p. parity–signature configurations.

Keyword: BCS
−1 = IPABCS

Parameter IPABCS defines the type of BCS paring calculations. For IPABCS=0, 1, 2, or 3, the
BCS pairing calculations are, respectively, not performed, performed with the seniority pairing
force, performed with fixed pairing gaps, or performed with the state-dependent pairing gaps.
Value of IPABCS=−1 is allowed for the sake of compatibility with earlier versions of the code,
before (v2.13f). Then, IPABCS=0 is set for IPAHFB=1 and IPABCS=IPAIRI is set for IPAHFB=0.

For IPABCS=1 the code hfodd solves the BCS equations with the neutron and proton pairing
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strengths defined in Ref. [21]. These values can be modified by defining the multiplicative
factors FACTGN and FACTGP for neutrons and protons, respectively. For IPABCS=2, the BCS
pairing calculations are performed with fixed values of the neutron or proton pairing gaps
equal to DELFIN or DELFIP, respectively. For IPABCS=3, the BCS pairing calculations are per-
formed with state-dependent pairing gaps corresponding to the pairing matrix elements (see
the keyword PAIR MATRI) calculated for the contact forces defined in the same way as for the
HFB pairing calculations.

Positive values of IPABCS require IPAIRI=1 and IPAHFB=0 and are incompatible with rotations
IROTAT=1 or broken simplex ISIMPY=0. IPABCS=2 requires IDEFIN=IDEFIP=1.

Keyword: INI INVERS

0, 0 = INIINV, INIKAR
Allowed values of INIKAR=0, 1, 2, or 3 and INIINV=0, 1, 2, or 3 correspond to the following
DT

2h transformations:

INIKAR=0 INIKAR=1 INIKAR=2 INIKAR=3

INIINV=0 Î R̂x R̂y R̂z

INIINV=1 P̂ Ŝx Ŝy Ŝz

INIINV=2 T̂ R̂T
x R̂T

y R̂T
z

INIINV=3 P̂ T ŜT
x ŜT

y ŜT
z

where P̂ is the space inversion, T̂ is the time reversal, R̂k is the signature (rotation by angle π
about the k = x, y, or z axis), and P̂ T = P̂ T̂ , Ŝk = P̂ R̂k (simplex), R̂T

k = T̂ R̂k (k-signatureT ),
and ŜT

k = T̂ Ŝk (k-simplexT ). For INIKAR=INIINV=0, no transformation is performed and this
option is inactive.

Transformations are performed at the level of the densities, after the first iteration. As a secu-
rity measure, nonzero values of INIKAR and INIINV require NOITER=1. Such values also require
SLOWEV=SLOWOD=SLOWPA=0.0, so as not to mix the old and new potentials corresponding to
the original and transformed densities, respectively. They are also incompatible with IPRGCM6=0.

A given DT
2h transformation must be accompanied by the correspondingly broken symmetries,

that is, INIINV=1 or 3 requires IROTAT=1 and INIINV=2 or 3 requires IPARTY=0.

Keyword: INI ROTAT

0.0, 0.0, 0.0, 0 = ALPINI, BETINI, GAMINI, INIROT
For INIROT=1, the wave functions are rotated by the Euler angles α, β, and γ corresponding,
respectively, to ALPINI, BETINI, and GAMINI (all in degrees). Transformations are performed
at the level of the densities, after the first iteration. As a security measure, INIROT=1 requires
NOITER=1. It also requires SLOWEV=SLOWOD=SLOWPA=0.0, so as not to mix the old and new
potentials corresponding to the original and transformed densities, respectively. INIROT=1 is
incompatible with IPRGCM6=0 and requires a spherical HO basis of h̄ωx = h̄ωy = h̄ωz.

A rotation about the z axis must be accompanied by the broken signature, that is, ALPINI6=0
or GAMINI6=0 requires ISIGNY=0.
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Keyword: PROJECTGCM
0, 0, 0, 1, 1, 0, 1, 1, 0
IPRGCM, IPROMI, IPROMA, NUAKNO, NUBKNO, KPROJE,

IFRWAV, ITOWAV, IWRWAV

For IPRGCM=1 and 2, the code calculates the diagonal and non-diagonal GCM kernels, respec-
tively. In addition, for NUAKNO6=1 or NUBKNO6=1, the AMP kernels are calculated, as described
in Section 2.1, although at present this option is not yet available for non-diagonal kernels
of IPRGCM=2. The AMP is performed for doubled angular momenta from IPROMI to IPROMA

and requires a spherical HO basis of h̄ωx = h̄ωy = h̄ωz. For even (odd) particle number
IN FIX+IZ FIX, IPROMI, IPROMA, and KPROJE must be even (odd). For IPRGCM=1 and 2, the
present version (v2.38j) also requires IROTAT=1 and IPAIRI=0.

The AMP has been tested up to the values of angular momenta of 70h̄, and therefore, IPROMA
must not be larger than 2*70=140. After further tests, higher values could be used by increas-
ing the parameter JMAX=70 in function dsmalg, which calculates the Wigner functions, see
Eqs. (1), (4), and (5).

NUAKNO is the number of G-T nodes, which are used to perform integrations over the α and γ
Euler angles. For NUAKNO=1, these integrations are not performed (1D AMP) and the states are
assumed to be axial with the doubled projection of the angular momentum on the z axis equal
to KPROJE. NUBKNO is the number of G-L nodes, which are used to perform integrations over
the β Euler angle. For NUAKNO>1 and NUBKNO>1, a full 3D AMP is performed and the value of
KPROJE is ignored. NUAKNO>1 requires ISIMPY=0 and ISIGNY=0. IPROMA must be larger than
the absolute value of KPROJE.

For IPRGCM=2, the code calculates the GCM kernels between the states labeled by three-digit
indices from ”000” to ”999”. Indices of the ”left” states vary between IFRWAV and ITOWAV,
and these states are read from the disc. The index of the ”right” state equals to ITOWAV, and
this state is equal to the current state. In addition, for IWRWAV=1, the current state is saved
on the disc with the index of ITOWAV. This allows for a simultaneous calculation of the ”right”
state along with calculating its kernels with all previously calculated and stored ”left” states.
The states can also be stored on disc without calculating kernels in the given run, that is, by
setting the value of ITOWAV along with IWRWAV=1 and IPRGCM=0. Names of files on the disc
are composed by concatenating the three-digit index, ”-”, and FILWAV.

Keyword: SAVEKERNEL
0 = ISAKER

For ISAKER=1, the code attempts reading the kernel files Nxxx-Lyyy-Rzzz-//FILKER, where the
three-digit indices are:

• xxx is the consecutive index of the kernel file,

• yyy is the index of the left wave function,

• zzz is the index of the right wave function.

28



In the work directory, the file names for all indices xxx are scanned, starting from 001. The
kernels stored in these files are read into memory and are not recalculated. The kernels that
have not been found in the kernel files are calculated and stored in the kernel file with the
lowest available index xxx. In this way, one can submit many parallel jobs, see the keyword
PARAKERNEL, that calculate kernels for different values of the Euler angles α, β, and γ. The
results are then collected in different kernel files with indices xxx attributed automatically. If
any of the jobs is terminated before completing its task, the same input data can be resubmitted
and the calculation automatically continues from the point where it has been interrupted. Once
all the kernels will have been calculated, which requires a large CPU time, the AMP can be
performed within a very small CPU time by reading, again automatically, all the created kernel
files. ISAKER=1 requires IPRGCM>0

Keyword: CHECKERNEL
1 = ICHKER

The names of kernel files are saved within these files. As a security measure, when reading the
kernel files, their names are cross-checked against the saved information. This cross-checking
can be deactivated by using ICHKER=0. This option is useful whenever the kernel files have
been renamed for any reason.

Keyword: PARAKERNEL
0, 1, 1, 1, 1 = IPAKER, NUASTA, NUASTO, NUGSTA, NUGSTO

For IPAKER=1, the code only calculates kernels for different values of the Euler angles α, β, and
γ and the AMP is suspended. Calculations are performed for the G-T nodes in the Euler angle
α from NUASTA to NUASTO, for those in the Euler angle γ from NUGSTA to NUGSTO, and for all the
G-L nodes in the Euler angle β, that is, from 1 to NUBKNO. For IPAKER=1, to save memory the
code can be compiled with IPARAL=1. IPAKER=1 requires IPRGCM>0 and ISAKER=1. Values
of NUASTA, NUASTO, NUGSTA, NUGSTO must all be between 1 and NUAKNO and must be ordered as
NUASTA≤NUASTO and NUGSTA≤NUGSTO.

Keyword: TRANSITION
2, 1, 0 = NMURED, NMARED, NSIRED

Maximum numbers of transition electric, magnetic, and surface or Schiff moments, respectively,
for which proton kernels and reduced matrix elements are calculated, printed, and stored in
the kernel files. NMARED and NSIRED must not exceed NMURED. For NMURED=0, NMARED=0, or
NSIRED, the corresponding proton kernels and reduced matrix elements are not calculated.

Keyword: CUTOVERLAP
0, 10−10, 1. = ICUTOV, CUTOVE, CUTOVF

For ICUTOV=0, parameters CUTOVE and CUTOVF are ignored and the collective states for the
K-mixing calculation, Eq. (10), are selected by their norm eigenvalues nm being larger than
the negative of the smallest norm eigenvalue OVEMIN. For ICUTOV=1, the collective states are
selected by their norm eigenvalues being larger than CUTOVE+CUTOVF*OVEMIN.

Keyword: LIPKIN
0, 0 = LIPKIN, LIPKIP

For LIPKIN=1 and/or LIPKIP=1, the Lipkin-Nogami corrections are included for neutrons
and/or protons, respectively, see Section 2.9. At present, LIPKIN=1 or LIPKIP=1 requires
IPAHFB=1.
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Keyword: INI LIPKIN

0.1, 0.1 = FE2INI(0), FE2INI(1)
For ICONTI=0 or ICONTI=1 and ILCONT=0, the Lipkin-Nogami calculations are started by using
the initial values of the neutron and proton Lipkin-Nogami parameters λ2 (98), FE2INI(0) and
FE2INI(1), respectively. For ICONTI=0 or ILCONT=0, values of FE2INI are ignored.

Keyword: FIXLAMB2 N

0.1, 0 = FE2FIN, IF2FIN
For IF2FIN=1, the neutron Lipkin-Nogami calculations are performed by using the fixed value of
the neutron Lipkin-Nogami parameter λ2 (98) equal to FE2FIN. IF2FIN=1 requires LIPKIN=1.

Keyword: FIXLAMB2 P

0.1, 0 = FE2FIP, IF2FIP
Same as above but for the proton Lipkin-Nogami calculations.

Keyword: SLOWLIPKIN
0.5 = SLOWLI

SLOWLI gives the value of the mixing fraction ǫ used for the Lipkin-Nogami parameter λ2 (98),
in analogy to the SLOWEV, SLOWOD and SLOWPA parameters.

Keyword: FIXFERMI N

-8.0, 0 = FERFIN, IFEFIN
For IFEFIN=1, the HFB pairing calculations are performed with a fixed value of the neutron
Fermi energy equal to FERFIN. At present, IFEFIN=1 requires IPAHFB=1.

Keyword: FIXFERMI P

-8.0, 0 = FERFIP, IFEFIP
Same as above but for the proton HFB pairing calculations.

3.3 Configurations

Keyword: BLOCKSIZ N

1, 0 = INSIZN, IDSIZN
For |IDSIZN|=1, the code performs the neutron quasiparticle blocking calculations in the case
when no symmetries are conserved, see Section 2.7. For IDSIZN=+1 or −1, the blocked quasi-
particle state is selected by having the largest overlap with the INSIZN-th neutron s.p. eigenstate
of the HFB mean-field Routhian or with its time-reversed partner, respectively. Note that for
rotating states, the time-reversed eigenstate is not necessarily an eigenstate of the Routhian.
|IDSIZN|=1 requires ISIMPY=0, IPARTY=0, IPAHFB=1, and IROTAT=1.

Keyword: BLOCKSIZ P

1, 0 = INSIZP, IDSIZP
Same as above but for the proton quasiparticle blocking. For odd-odd nuclei, neutron and
proton quasiparticles can be simultaneously blocked.

Keyword: BLOCKSIM N

1, 0, 0 = INSIMN, IRSIMN, IDSIMN
For |IDSIMN|=1, the code performs the neutron quasiparticle blocking calculations in the case
when simplex is conserved, see Section 2.7. For IDSIMN=+1 or −1, the blocked quasiparti-
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cle state is selected by having the largest overlap with the INSIMN-th neutron s.p. eigenstate
of the HFB mean-field Routhian in a given simplex block or with its time-reversed partner,
respectively. The simplex of the state, +i or −i, is defined by IRSIMN=0 or 1, respectively.
|IDSIMN|=1 requires ISIMPY=1, IPARTY=0, IPAHFB=1, and IROTAT=1.

Keyword: BLOCKSIM P

1, 0, 0 = INSIMP, IRSIMP, IDSIMP
Same as above but for the proton quasiparticle blocking. For odd-odd nuclei, neutron and
proton quasiparticles can be simultaneously blocked.

Keyword: BLOCKSIQ N

1, 0, 0 = INSIQN, IPSIQN, IDSIQN
For |IDSIQN|=1, the code performs the neutron quasiparticle blocking calculations in the case
when parity is conserved. For IDSIQN=+1 or −1, the blocked quasiparticle state is selected by
having the largest overlap with the INSIQN-th neutron s.p. eigenstate of the HFB mean-field
Routhian in a given parity block or with its time-reversed partner, respectively. The parity of
the state, +1 or −1, is defined by IPSIQN=0 or 1, respectively. |IDSIQN|=1 requires ISIMPY=0,
IPARTY=1, IPAHFB=1, and IROTAT=1.

Keyword: BLOCKSIQ P

1, 0, 0 = INSIQP, IPSIQP, IDSIQP
Same as above but for the proton quasiparticle blocking. For odd-odd nuclei, neutron and
proton quasiparticles can be simultaneously blocked.

Keyword: BLOCKSIG N

1, 0, 0, 0 = INSIGN, IPSIGN, ISSIGN, IDSIGN
For |IDSIGN|=1, the code performs the neutron quasiparticle blocking calculations in the case
when parity and signature are conserved. For IDSIGN=+1 or −1, the blocked quasiparticle
state is selected by having the largest overlap with the INSIGN-th neutron s.p. eigenstate of the
HFB mean-field Routhian in a given parity–signature block or with its time-reversed partner,
respectively. The parity of the state, +1 or −1, is defined by IPSIGN=0 or 1, respectively. The
signature of the state, +i or −i, is defined by ISSIGN=0 or 1, respectively. |IDSIGN|=1 requires
ISIMPY=1, IPARTY=1, IPAHFB=1, and IROTAT=1.

Keyword: BLOCKSIG P

1, 0, 0, 0 = INSIGP, IPSIGP, ISSIGP, IDSIGP
Same as above but for the proton quasiparticle blocking. For odd-odd nuclei, neutron and
proton quasiparticles can be simultaneously blocked.

Keyword: BLOCKFIX N

0, 0 = IFIBLN, INIBLN
For IFIBLN=1, the neutron quasiparticle blocking is based on calculating overlaps with a fixed
s.p. wave function. The method is based on beginning the iteration by defining the number of
the s.p. state, that is, INSIGN, INSIMN, INSIQN, or INSIZN, depending on the selected symmetry
conditions. Then, for INIBLN=1 this one s.p. wave function is stored in memory and on the
record file, and in consecutive iterations the overlaps are calculated with respect to this fixed s.p.
wave function. Therefore, subsequent changes in the ordering and structure of s.p. states do not
affect the blocking mechanism. For INIBLN=0, in the first iteration this fixed s.p. wave function
is not initialized, but it is read from the record file. IFIBLN=1 requires |IDSIGN|=1, |IDSIMN|=1,
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|IDSIQN|=1, or |IDSIZN|=1, depending on the selected symmetry conditions. IFIBLN=1 and
INIBLN=0 requires ICONTI=1.

Keyword: BLOCKFIX P

0, 0 = IFIBLP, INIBLP
Same as above but for the proton quasiparticle blocking.

3.4 Miscellaneous parameters

Keyword: BROYDEN
0, 7, 0.8, 1000. = IBROYD, N ITER, ALPHAM, BROTRI

For IBROYD=1, the Broyden method is used to accelerate the convergence, see Section 2.8. For
N ITER=0, variables N ITER, ALPHAM, and BROTRI, which are read on this line, are ignored, that
is, the previous values are kept. N ITER is the number of iterations used to approximate the
inverse Jacobian, ALPHAM is the value of the parameter α of the linear mixing to which is added
the Broyden correction, and BROTRI triggers an automatic switch to the Broyden method, that
is, when the absolute value of the stability energy becomes lower than BROTRI, iterations are
changed to the Broyden scheme. A large value of BROTRI ensures that the Broyden method
is used from the very first iteration. IBROYD=1 is incompatible with I YUKA>0, ICOUDI=2, or
ICOUEX=2. The Broyden method is implemented only in the FORTRAN-90 version of hfodd.

3.5 Constraints

Keyword: MULTCONSCA
1, 0., 0., 0 = LAMBDA, STIFFG, GASKED, IFLAGG

For IFLAGG=1, the total scalar multipole moment of the given multipolarity λ is constrained.
Values of LAMBDA, STIFFG, and GASKED correspond, respectively, to λ, Cλ, and Q̄λ in Eq.
(80). For IFLAGG=0, there is no scalar constraint in the given multipolarity. The constrained
multipolarity LAMBDA cannot be equal to 0 or exceed NMUCON. For conserved parity IPARTY=1,
only even moments can be constrained.

Keyword: NORBCONSTR
0 = NO ORB

For NO ORB=1, constraints on the intrinsic spin only are used and the orbital part of the angular
momentum is not constrained. NO ORB=1 requires IROTAT=1.

Keyword: BOHR BETAS

4, 0, 1 = NEXBET, IPRIBE, IPRIBL
For a given set of electric multipole moments, the code calculates and prints the corresponding
first-order (for IPRIBL=1) and/or exact (for IPRIBE=1) Bohr deformation parameters, see
Section 2.5. For IPRIBE=1, in case the code fails to find the exact values, the first-order values
are printed irrespective of the value of IPRIBL. The exact values are sought for multipolarities
up to NEXBET, which must not be greater than NMUPRI. The approximate values are printed up
to multipolarity of NMUPRI.

Keyword: SCHIFF MOM

0 = ISCHIF
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For ISCHIF=1, the surface moments are everywhere in the code replaced by the Schiff moments,
see Section 2.6.

3.6 Output-file parameters

Keyword: HFBMEANFLD
0 = IMFHFB

For IMFHFB=1, eigenvalues of the HFB mean-field s.p. Hamiltonian or Routhian are printed.
IMFHFB=1 requires IPAHFB=1.

Keyword: PRINT AMP
0, 999, 1, 1, 1, 0, 0
ISLPRI, ISUPRI, IENPRI, ISRPRI, IMIPRI, IKEPRI, IRMPRI

These parameters govern the printing of the AMP results. If not restricted by the values of
the doubled angular momenta for which the calculations are performed, IPROMI and IPROMA,
the results are printed only for the doubled angular momenta between ISLPRI and ISUPRI. For
IENPRI=1, the AMP energies are printed. In addition, for IENPRI=2, the AMP kernels are also
printed. For ISRPRI=1, the sum rules are printed and compared with the HF average values.
For IMIPRI=1, the energies of the K-mixed states are printed. For IKEPRI=1 and/or IRMPRI=1,
the proton reduced kernels and/or reduced matrix elements, respectively, are printed.

Keyword: TRANCUTPRI
0., 0., 0., = QMUCUT, QMACUT, QSICUT

Values of the electric, magnetic, and surface or Schiff proton kernels and reduced matrix ele-
ments are printed only if their absolute values are larger than, respectively, QMUCUT, QMACUT,
QSICUT. This may avoid printing long lists of very small or zero values.

Keyword: ONE LINE

1 = I1LINE

For I1LINE6= 0, a one-line convergence report is printed at each iteration. For I1LINE=1, the
code prints the values of deformation γ, total angular momentum, total angular frequency ω,
and angle between vectors of angular momentum and frequency. For I1LINE=2, the code prints
the values of neutron and proton pairing gaps and Lipkin-Nogami parameters λ2.

Keyword: PRINT VIOL

0 = IVIPRI

For IVIPRI=1, the code prints integrals of several symmetry-violating terms. IVIPRI=1 re-
quires IROTAT=1.

Keyword: NILSSONLAB
3 = NILXYZ

This option used for NILXYZ=1, 2, or 3, allows for printing the Nilsson labels defined with
respect to the x, y, or z axis, respectively. This feature is useful when the symmetry axis of a
nucleus and its spin are aligned along the x or y axis and not along the z axis, for which the
standard Nilsson labels are defined. This is particularly important for analyzing configurations
of band heads of odd nuclei within the conserved y-signature-symmetry limit.
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3.7 Files

Keyword: WAVEF FILE

HFODD.WFN = FILWAV

CHARACTER*68 file name of the wave function file. Must start at the 13-th column of the data
line. The binary wave function files must exist if IPRGCM=2, and will be read, see the keyword
PROJECTGCM.

Keyword: KERNELFILE
HFODD.KER = FILKER

CHARACTER*68 file name of the kernel file. Must start at the 13-th column of the data line. The
binary kernel files are written and read if ISAKER=1, see the keyword SAVEKERNEL.

Keyword: YUKAWASAVE
1 = IWRIYU

For IWRIYU=1 and I YUKA≥2, the Yukawa file is saved on disc after each iteration is completed.
The file contains the matrix elements of the Yukawa mean field. For IWRIYU=0 and I YUKA≥2,
the file is saved only once, after all iterations are completed. For IWRIYU=−1, the file is
never saved. The Yukawa calculations can be restarted by using the Yukawa file. Therefore,
IYCONT=1 requires setting IWRIYU=0 or 1 in the run that is to be continued. Equivalently, the
Yukawa calculations can be restarted by using the fields file, which requires setting IWRIFI=0
or 1 in the run that is to be continued.

Keyword: REPYUKFILE
HFODD.YUP = FILYUP

CHARACTER*68 file name of the Yukawa file. Must start at the 13-th column of the data line.
The binary Yukawa file with the name defined in FILREP must exist if IYCONT=1, and will be
read. If the filenames FILREP and FILREC are identical, the Yukawa file will be subsequently
overwritten as a new Yukawa file.

Keyword: RECYUKFILE
HFODD.YUC = FILYUC

CHARACTER*68 file name of the Yukawa file. Must start at the 13-th column of the data line.
If IWRIYU=1, binary Yukawa file is written after each HF iteration. It contains complete
information that allows restarting the Yukawa calculations in another run of the code. To
restart, one has to specify IYCONT=1 and provide the name of the file by defining FILREP.

Keyword: LIPKINSAVE
1 = IWRILI

For IWRILI=1 and LIPKIN=1 or LIPKIP=1, the Lipkin-Nogami file is saved on disc after each
iteration is completed. The file contains the matrix elements of the particle density matrices.
For IWRILI=0 and LIPKIN=1 or LIPKIP=1, the file is saved only once, after all iterations are
completed. For IWRILI=−1, the file is never saved. The Lipkin-Nogami calculations can be
restarted by using the Lipkin-Nogami file. Therefore, ILCONT=1 requires setting IWRILI=0
or 1 in the run that is to be continued. Equivalently, the Lipkin-Nogami calculations can be
restarted by using the fields file, which requires setting IWRIFI=0 or 1 in the run that is to be
continued.
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Keyword: REPLIPFILE
HFODD.LIP = FILLIP

CHARACTER*68 file name of the Lipkin-Nogami file. Must start at the 13-th column of the data
line. The binary Lipkin-Nogami file with the name defined in FILLIP must exist if ILCONT=1,
and will be read. If the filenames FILLIP and FILLIC are identical, the Lipkin-Nogami file will
be subsequently overwritten as a new Lipkin-Nogami file.

Keyword: RECLIPFILE
HFODD.LIC = FILLIC

CHARACTER*68 file name of the Lipkin-Nogami file. Must start at the 13-th column of the data
line. If IWRILI=1, binary Lipkin-Nogami file is written after each HF iteration. It contains
complete information that allows restarting the Lipkin-Nogami calculations in another run of
the code. To restart, one has to specify ILCONT=1 and provide the name of the file by defining
FILLIP.

Keyword: FIELD SAVE

−1 = IWRIFI

For IWRIFI=1, the field file, is saved on disc after each iteration is completed. The file contains
the matrix elements of the mean field. For IWRIFI=0, the file is saved only once, after all
iterations are completed. For IWRIFI=−1, the file is never saved. To restart calculations of the
exact Coulomb exchange energy, the field file must exist. IFCONT=1 requires setting IWRIFI=0
or 1 in the run that is to be continued.

Keyword: FIELD OLD

0 = IWRIOL

For IWRIOL=1, in the last iteration the mean fields are not updated, that is, the mixing fractions
ǫ are set equal to 1, irrespective of values of the SLOWEV, SLOWOD and SLOWPA parameters. In this
way, information stored on the record file corresponds to the last but one iteration. Only then,
restarting of the calculation from the field file leads to a smooth continuation of iterations.

Keyword: REP FIELDS

HFODD.FIP = FILFIP

CHARACTER*68 file name of the field file. Must start at the 13-th column of the data line. The
binary field file with the name defined in FILFIP must exist if IFCONT=1, and will be read. If
the filenames FILFIP and FILFIC are identical, the field file will be subsequently overwritten
as a new field file.

Keyword: REC FIELDS

HFODD.FIC = FILFIC

CHARACTER*68 file name of the field file. Must start at the 13-th column of the data line. If
IWRIFI=1, binary field file is written after each HF iteration. It contains complete information
that allows restarting the calculations from the matrix elements of fields. To restart, one has
to specify IFCONT=1 and provide the name of the file by defining FILFIP.
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3.8 Starting the iteration

Keyword: CONTYUKAWA
0 = IYCONT

For IYCONT=1, results stored in the Yukawa file are used to define the Yukawa fields in the
first iteration; otherwise the Yukawa fields are set equal to zero. When the Yukawa fields are
taken into account (i.e., for I YUKA=2), and if a smooth restart and continuation of iterations
from previously stored results is required, value of IYCONT=1 must be used. IYCONT=1 is
incompatible with either of I YUKA<2 or ICONTI=0.

Keyword: CONTLIPKIN
0 = ILCONT

For ILCONT=1, results stored in the Lipkin-Nogami file are used to define the density matrix
required for the Lipkin-Nogami calculations in the first iteration; otherwise the required den-
sity matrix is set equal to zero. For the Lipkin-Nogami calculations (i.e., for LIPKIN=1 or
LIPKIP=1), and if a smooth restart and continuation of iterations from previously stored re-
sults is required, value of ILCONT=1 must be used. ILCONT=1 is incompatible with either of
LIPKIN=LIPKIP=0 or ICONTI=0.

Keyword: CONTFIELDS
0 = IFCONT

For IFCONT=1, results stored in the field file are used to define the matrix elements of fields in
the first iteration; otherwise the matrix elements are recalculated. For the Gaussian-expansion
method used to calculate the Coulomb energy and Coulomb mean field, that is for ICOUDI=2 or
ICOUEX=2, and if a smooth restart and continuation of iterations from previously stored results
is required, value of IFCONT=1 must be used. IFCONT=1 is incompatible with ICONTI=0.

4 Output file

Together with the FORTRAN source code in the file hfodd.f, two examples of the output file
are provided in ge064-a.out and sn120-b.out. Selected lines from the file ge064-a.out are
presented in section TEST RUN OUTPUT below. This output file corresponds to the input
file ge064-a.dat, reproduced in section TEST RUN INPUT below.

The output file ge064-a.out contains the following new sections:

Section CODE COMPILED WITH THE... lists the values of the most important array dimensions
and switches declared in the PARAMETER statements, fixed at the compilation stage.

Sections BOHR DEFORMATIONS (EXACT MULTIPOLE MOMENTS) give values of the Bohr deforma-
tion parameters, determined as described in Section 2.5.

Section KERNELS AND AVERAGE VALUES... gives values of the diagonal norm kernels NKK (5)
and average AMP energies HKK/NKK for different values of I and K. Real and imaginary
parts of NKK are both printed, although all imaginary parts should be equal to zero when the
numerical precision is sufficiently good.
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Section SUM RULES... compares real and imaginary parts of the sum rules (49) and (50) with the
corresponding HF average values. Results are printed for the norm kernels N I

KK , which must
sum up to 1. This condition is a primary test of whether a sufficient number of the angular
momenta are included in the sum of Eq. (48). In the example of the file ge064-a.out, the sum
rule for the norm kernel NORM= 0.3248 indicates a much too small value of Imax and too small
numbers of the G-T and G-L integration nodes.

Sections REDUCED KERNELS... give values of the reduced kernels (56) of electric and magnetic
transition operators.

Sections RESULTS OF THE K-MIXING... give values of the energies Ei of K-mixed states, see
Eq. (3) and values of norm eigenvalues nm, see Eq. (9).

Sections REDUCED MAT.ELEMS... give values of the reduced matrix elements (57) of electric and
magnetic transition operators calculated for the K-mixed states.

Section NUMBERS OF CALLS TO SUBROUTINES gives the statistics of calls to subroutine, which
together with the section EXECUTION TIMES IN SUBROUTINES illustrates the work flow of the
code.

5 FORTRAN source file

The FORTRAN source code is provided in the file hfodd.f and can be modified in several
places, as described in this section.

5.1 FORTRAN-90 version

Similarly as for the previous version (v2.08k), the code hfodd version (v2.38j) is written in
FORTRAN-77 and FORTRAN-90. In the FORTRAN source code provided in the file hfodd.f,
all the FORTRAN-90 features are commented out and inactive. However, very simple modifica-
tions of the source code can easily be performed to transform the code hfodd to FORTRAN-90,
as described in Section (IV-5.2).

The present version of the code hfodd version (v2.38j) is the last one that works under
FORTRAN-77; future releases will only use FORTRAN-90 programming.

A set of c-shell and ex-editor scripts is provided within the hfodd distribution file, which
allows an easy installation, compilation, and execution of the FORTRAN-90 version on a Linux
computer running the INTEL c© FORTRAN COMPILER.

5.2 Library subroutines

5.2.1 BLAS.
The code hfodd requires an implementation of the BLAS (Basic Linear Algebra Sub-

progams) interface for common dense vector and matrix computations. A reference implemen-
tation of these subroutines can be downloaded from
http://www.netlib.org/blas/blas.tgz,

but for peak performance it is recommended that an optimized version of these routines should
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be installed. Optimized machine-specific BLAS (such as Sun Performance Library and Intel
Math Kernel Library) are available from most hardware vendors, and there are also third-party
optimized implementations such as GOTO and ATLAS available for various architectures.

The BLAS subroutines are in the REAL*8/COMPLEX*16 version, and should be compiled
without promoting real numbers to the double precision. On the other hand, the code hfodd

itself does require compilation with an option promoting to double precision. Therefore, the
code and the BLAS package should be compiled separately, and then should be linked together.

5.2.2 Diagonalization subroutines.
The code hfodd requires an external subroutine that diagonalizes complex hermitian ma-

trices. Version (v1.60r) (see II) has been prepared with an interface to the NAGLIB subroutine
f02axe, version (v1.75r) (see III) with an interface to the LAPACK subroutine zhpev, and
version (v2.08i) (see IV) with an interface to the LAPACK subroutine zhpevx. In the present
version (v2.38j), all these interfaces remain supported and can be activated as described in
II–IV. However, the recommended interface is now to the LAPACK subroutine zheevr, as
described in this section.

In version (v2.38j) we have implemented interface to the LAPACK subroutine zheevr,
which can be downloaded (with dependencies) from
http://www.netlib.org/cgi-bin/netlibfiles.pl?filename=/lapack/complex16/zheevr.f

This subroutine works with unpacked matrices and hence performs calculations in less CPU
time at the expense of using a larger memory. Alternatively, the entire LAPACK library can
be downloaded from
http://www.netlib.org/lapack/lapack.tgz

Subroutine zheevr and its dependencies are in the REAL*8/COMPLEX*16 version, and should
be compiled without promoting real numbers to the double precision. Therefore, the code and
the zheevr package should be compiled separately, and then should be linked together.

In order to activate the interface to the LAPACK zheevr subroutine, the following modi-
fications of the code hfodd (v2.38j) have to be made:

1. Change everywhere the value of parameter I CRAY=1 into I CRAY=0.

2. Change everywhere the value of parameter IZHPEV=0 into IZHPEV=3.

3. If your compiler and linker do not support undefined externals, or subroutines called with
different parameters, remove calls to subroutines cgemm, f02axe, zhpev, and zhpevx.

5.2.3 Matrix inversion subroutines.
The code hfodd requires external subroutines that invert complex matrices and calculate

their determinants. In version (v2.38j) we have implemented interfaces to the LINPACK sub-
routines zgedi and zgeco, which can be downloaded from
http://www.netlib.org/linpack/zgedi.f , and
http://www.netlib.org/linpack/zgeco.f , respectively, together with
http://www.netlib.org/linpack/zgefa.f

These subroutines are in the REAL*8/COMPLEX*16 version, and should be compiled without
promoting real numbers to the double precision. Therefore, the code and these subroutines
should be compiled separately, and then should be linked together.
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TEST RUN INPUT
============================================================================
| This file (ge064-a.dat) contains input data for the code HFODD (v2.38j) |
============================================================================

---------- General data ----------
NUCLIDE

32 32
ITERATIONS

20
ITERAT_EPS

0.000001
MAXANTIOSC

5
PING-PONG

0.0 3
CHAOTIC

0
PHASESPACE

0 0 0 0
---------- Interaction -----------

SKYRME-SET
SIII

SKYRME-STD
1 1 0 0 0

---------- Symmetries ------------
SIMPLEXY

1
SIGNATUREY

1
PARITY

-1
ROTATION

0
TSIMPLEX3D

1 1 1
PAIRING

0
HFB

0
---------- Configurations --------

VACSIG_NEU PPSP PPSM PMSP PMSM
7 7 9 9

VACSIG_PRO PPSP PPSM PMSP PMSM
7 7 9 9

OPTI_GAUSS
1

--- Parameters of the HO basis ---
BASIS_SIZE

14 680 800.
SURFAC_PAR

32 32 1.23
SURFAC_DEF

2 0 0.00
SURFAC_DEF

4 0 0.00
---------- Constraints -----------

OMEGAY
0.00

MULTCONSTR
2 0 1.0 2.7 1

MULTCONSTR
2 2 1.0 -1.3 1

---- Output-file parameters -----
PRINT-ITER

1 0 1
PRINT-MOME

0 0 1
PRINT-INTR

0
EALLMINMAX

-40. 0.
EQUASI_MAX

10.0
MAX_MULTIP

2 4 6
BOHR_BETAS

6 1 1
------------- Files --------------

REVIEW
0

RECORDFILE
ge064-a.rec

RECORDSAVE
1

REPLAYFILE
ge064-a.rec

COULOMFILE
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ge064-a.cou
COULOMSAVE

1 1
----- Starting the iteration -----

RESTART
0

---------- Calculate -------------
EXECUTE

---------- Next Run -------------
ITERATIONS

5000
MULTCONSTR

2 0 1.0 2.7 0
MULTCONSTR

2 2 1.0 -1.3 0
BROYDEN

1 0 0.0 0.0
RESTART

1
EXECUTE

---------- Next Run -------------
ROTATION

1
TSIMPLEX3D

1 -1 1
OMEGAY

0.575
EXECUTE

---------- Next Run -------------
ITERATIONS

1
SIMPLEXY

0
SIGNATUREY

0
TSIMPLEX3D

0 0 0
PROJECTGCM

1 0 10 10 10 0 1 1 0
SAVEKERNEL

1
PRINT_AMP

0 10 1 1 1 1 1
TRANCUTPRI

0.001 0.001 0.001
CUTOVERLAP

1 0.01 0.00
RECORDSAVE

-1
KERNELFILE

ge064-a.ker
BROYDEN

0 0 0.0 0.0
EXECUTE

---------- Terminate -------------
ALL_DONE
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TEST RUN OUTPUT

*******************************************************************************
* *
* HFODD HFODD HFODD HFODD HFODD HFODD HFODD HFODD *
* *
*******************************************************************************
* *
* SKYRME-HARTREE-FOCK-BOGOLYUBOV CODE VERSION: 2.38J *
* *
* NO SYMMETRY-PLANES AND NO TIME-REVERSAL SYMMETRY *
* *
* DEFORMED CARTESIAN HARMONIC-OSCILLATOR BASIS *
* *
*******************************************************************************
* *
* J. DOBACZEWSKI, B.G. CARLSSON, J. DUDEK, J. ENGEL *
* P. OLBRATOWSKI, P. POWALOWSKI, M. SADZIAK, W. SATULA *
* N. SCHUNCK, A. STASZCZAK, M. STOITSOV, M. ZALEWSKI *
* AND H. ZDUNCZUK *
* *
* INSTYTUT FIZYKI TEORETYCZNEJ, WARSZAWA *
* *
* 1993-2009 *
* *
*******************************************************************************
*******************************************************************************
* *
* CODE COMPILED WITH THE FOLLOWING ARRAY DIMENSIONS AND SWITCHES: *
* *
*******************************************************************************
* *
* NDBASE = 680 NDSTAT = 181 NDXHRM = 30 NDYHRM = 30 NDZHRM = 30 *
* *
* NDMAIN = 14 NDMULT = 9 NDMULR = 4 NDLAMB = 9 NDITER = 5000 *
* *
* NDAKNO = 50 NDBKNO = 50 NDPROI = 50 NDCOUL = 80 NDPOLS = 25 *
* *
* IPARAL = 0 I_CRAY = 0 IZHPEV = 3 *
* *
*******************************************************************************
* *
* REDUCED KERNELS AND MATRIX ELEMENTS: *
* FOR ELECTRIC MULTIPOLES CALCULATED UP TO = 2, PRINTED IF LARGER THAN 0.001 *
* FOR MAGNETIC MULTIPOLES CALCULATED UP TO = 1, PRINTED IF LARGER THAN 0.001 *
* FOR SURFACE MULTIPOLES CALCULATED UP TO = 0, PRINTED IF LARGER THAN 0.001 *
* *
*******************************************************************************
* *
* PRINTING THE RESULTS FOR ANGULAR-MOMENTUM-PROJECTED STATES: 0 < 2*I < 10 *
* AVERAGE ENERGIES OF PROJECTED STATES: YES *
* KERNELS BETWEEN THE PROJECTED STATES: NO *
* SUM RULES COMPARED TO THE H-F VALUES: YES *
* K-MIXED ENERGIES OF PROJECTED STATES: YES *
* REDUCED K E R N E L S BETWEEN THE PROJECTED STATES: YES *
* REDUCED MATRIX ELEMENTS BETWEEN THE K-MIXED STATES: YES *
* *
*******************************************************************************
* *
* BOHR DEFORMATIONS (EXACT MULTIPOLE MOMENTS) TOTAL *
* *
*******************************************************************************
* *
* B10 = ZERO B11 = ZERO ............. ............. ............. *
* *
* B20 = 0.2094 B21 = ZERO B22 = -0.1138 ............. ............. *
* *
* B30 = ZERO B31 = ZERO B32 = ZERO B33 = ZERO ............. *
* *
* B40 = -0.0306 B41 = ZERO B42 = -0.0348 B43 = ZERO B44 = -0.0049 *
* *
* B50 = ZERO B51 = ZERO B52 = ZERO B53 = ZERO B54 = ZERO *
* *
* B55 = ZERO *
* *
* B60 = -0.0054 B61 = ZERO B62 = 0.0147 B63 = ZERO B64 = -0.0098 *
* *
* B65 = ZERO B66 =-7.7E-04 *
* *
*******************************************************************************
* *
* KERNELS AND AVERAGE VALUES OBTAINED FOR ANGULAR-MOMENTUM PROJECTED STATES *
* *
*******************************************************************************
* *
* REAL(KERNEL) IMAG(KERNEL) AVERAGE ENERGY *
* *
* I,K= 0 0 NORM = 0.008035212882 0.000000000000 -542.137728 *
* I,K= 1 -1 NORM = 0.000867254021 0.000000000000 -509.681812 *
* I,K= 1 0 NORM = 0.000000000000 0.000000000000 -967.529412 *
* I,K= 1 1 NORM = 0.000867254021 0.000000000000 -509.681812 *
* I,K= 2 -2 NORM = 0.014229645333 0.000000000000 -541.456596 *
* I,K= 2 -1 NORM = 0.003145537421 0.000000000000 -530.120652 *
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* I,K= 2 0 NORM = 0.034483057875 0.000000000000 -541.966975 *
* I,K= 2 1 NORM = 0.003145537421 0.000000000000 -530.120652 *
* I,K= 2 2 NORM = 0.014229645333 0.000000000000 -541.456596 *
*******************************************************************************
* *
* SUM RULES OBTAINED FOR ANGULAR-MOMENTUM PROJECTED STATES VS THE HF VALUES *
* *
*******************************************************************************
* *
* REAL(SUM RULE) IMAG(SUM RULE) HF VALUE *
* *
* NORM= 0.324825071083 0.000000000000 *
* SKYRME= -587.075736 0.000000 -1808.113218 *
* EKIN_T= 358.576775 0.000000 1105.378182 *
* COUL_D= 57.290170 0.000000 176.353367 *
* COUL_E= -4.008437 0.000000 -12.345178 *
* *
* MULTIPOLE L= 0 M= 0 QMUL_P= 10.394402 0.000000 32.000000 *
* L= 1 M=-1 QMUL_P= 0.000000 0.000000 0.000000 *
* L= 1 M= 0 QMUL_P= 0.000000 0.000000 0.000000 *
* L= 1 M= 1 QMUL_P= 0.000000 0.000000 0.000000 *
* L= 2 M=-2 QMUL_P= -0.206203 0.000000 0.000000 *
* L= 2 M=-1 QMUL_P= 0.000000 0.032421 0.000000 *
* L= 2 M= 0 QMUL_P= 0.432164 0.000000 1.333826 *
* L= 2 M= 1 QMUL_P= 0.000000 -0.032421 0.000000 *
* L= 2 M= 2 QMUL_P= -0.206203 0.000000 -0.621629 *
* *
*******************************************************************************
* *
* REDUCED KERNELS OF PROTON MULTIPOLE MOMENTS [UNITS: (10 FERMI)^LAMBDA] *
* ONLY THE RESULTS WITH ABSOLUTE VALUES LARGER THAN 0.001 ARE BELOW PRINTED *
* *
*******************************************************************************
* * *
* IL KL L IR KR <||Q||> * IL KL L IR KR <||Q||> *
* * *
* 0 0 2 2 -2 -0.008 * 2 -2 2 2 -2 0.025 *
* 2 0 2 2 -2 -0.017 * 2 2 2 2 -2 0.025 *
* 1 -1 2 2 -1 0.003 * 1 1 2 2 -1 0.003 *
* 0 0 2 2 0 0.024 * 2 -2 2 2 0 -0.017 *
* 2 0 2 2 0 -0.055 * 2 2 2 2 0 -0.017 *
* 1 -1 2 2 1 -0.003 * 1 1 2 2 1 -0.003 *
* 0 0 2 2 2 -0.008 * 2 -2 2 2 2 0.025 *
* 2 0 2 2 2 -0.017 * 2 2 2 2 2 0.025 *
*******************************************************************************
* *
* RESULTS OF THE K-MIXING CALCULATION FOR THE FOLLOWING OVERLAP CUTOFF DATA *
* ICUTOV=1, CUTOVE= 1.0E-02, CUTOVF= 0.0E+00 *
* *
*******************************************************************************
* | *
* I N OVERLAP ENERGY | I N OVERLAP ENERGY *
* | *
*--------------------------------------|--------------------------------------*
* 2 1 4.02E-02 -541.817486 | 3 1 3.78E-02 -540.997225 *
* 2 2 2.71E-02 -541.344808 | *
*--------------------------------------|--------------------------------------*
* 4 1 7.90E-02 -541.775088 | 5 1 5.06E-02 -540.367910 *
* 4 2 3.04E-02 -540.196719 | 5 2 2.04E-02 -537.665199 *
* 4 3 2.06E-02 -538.486590 | *
*--------------------------------------|--------------------------------------*
*******************************************************************************
* *
* REDUCED MAT.ELEMS OF PROTON MULTIPOLE MOMENTS [UNITS: (10 FERMI)^LAMBDA] *
* ONLY THE RESULTS WITH ABSOLUTE VALUES LARGER THAN 0.001 ARE BELOW PRINTED *
* *
*******************************************************************************
* * *
* IL NL L IR NR <||Q||> * IL NL L IR NR <||Q||> *
* * *
* 2 1 2 2 1 -1.142 * 2 2 2 2 1 -1.419 *
* 2 1 2 2 2 -1.419 * 2 2 2 2 2 1.142 *
* 3 1 2 3 1 -0.007 * 2 1 2 4 1 -2.353 *
* 2 2 2 4 1 0.543 * 4 1 2 4 1 -0.518 *
* 4 2 2 4 1 -1.023 * 4 3 2 4 1 -0.417 *
* 2 1 2 4 2 -0.554 * 2 2 2 4 2 -1.264 *
* 4 1 2 4 2 -1.023 * 4 2 2 4 2 -2.302 *
* 4 3 2 4 2 0.763 * 2 1 2 4 3 0.159 *
* 2 2 2 4 3 -0.831 * 4 1 2 4 3 -0.417 *
* 4 2 2 4 3 0.763 * 4 3 2 4 3 2.832 *
* 3 1 2 5 1 2.170 * 5 1 2 5 1 -0.937 *
* 5 2 2 5 1 1.296 * 3 1 2 5 2 0.381 *
* 5 1 2 5 2 1.296 * 5 2 2 5 2 0.982 *
* *
*******************************************************************************
* *
* NUMBERS OF CALLS TO SUBROUTINES *
* *
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*******************************************************************************
* *
* 26730 => INTMUL 4002 => INTSPI 4001 => INTORB 2354 => BEGINT *
* *
* 2324 => INTKIN 2162 => DENSHF 2162 => DENMAC 2000 => ROTWAV *
* *
* 1162 => MOMETS 1162 => MOMSIF 1162 => MAGMOM 1084 => COUMAT *
* *
* 1084 => BEGINC 1084 => INTCOU 546 => INTSOR 541 => DIAMAT *
* *
* 358 => INTMAS 358 => INTCEN 249 => ROTMOM 162 => AVPARI *
* *
* 162 => MOMVMU 162 => SPIMOM 162 => LINAVR 160 => DIASIG *
* *
* 160 => INTEGH 106 => SPAVER 83 => RECORD 81 => SKFILD *
* *
* 81 => SHICOE 81 => SHIMOM 81 => SHISIF 81 => SHIMAG *
* *
* 59 => DOBROY 14 => AVANGY 14 => AVOBSE 14 => AVSIMP *
* *
* 14 => NILABS 5 => RECOUL 2 => NILSON 2 => DIASIZ *
* *
* 1 => HFODD 1 => POWALL 1 => PROANG 1 => DIAPRO *
* *
* 1 => REDPRO *
* *
*******************************************************************************
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