Block-structured grids in Lagrangian 3D edge plasma transport simulations
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Abstract

Distinct from conventional Eulerian 2D fluid solvers, applied routinely to magnetic fusion edge plasma studies, complex
3D magnetic topologies are currently treated by the geometrically more flexible Lagrangian schemes, supplemented by
Monte Carlo procedures for higher order derivatives (dissipative terms due to diffusion processes) and sources. These
particle based algorithms are combined with a field line reconstruction techniques for dealing with partially ergodic
magnetic fields, involving field aligned regular grids. A generalization to block-structured grids is carried out, which
greatly enhances the range of applicability of present 3D fusion plasma edge codes, in particular also to poloidally
magnetic diverted configurations, as envisaged currently for the largest magnetic fusion device under construction:

ITER.
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1. Introduction

Quantification of plasma flows in the domain near ex-
posed surfaces of the plasma container by computer sim-
ulations is of key importance, both for guiding interpreta-
tion of present fusion experiments and for aiding the ongo-
ing design activities for large future devices such as ITER
or the DEMO reactor. There is a large number of com-
putational issues related to the physics of hot, fully ion-
ized and magnetized plasmas near surfaces of the vacuum
chamber. In this paper we are concerned with one partic-
ular such challenge, namely the numerical quantification
of self-consistent kinetic neutral gas and plasma fluid flows
in very complex (partially ergodic) magnetic fields, in the
absence of any symmetries for plasma and neutral gas dy-
namics.

Before we discuss the computational aspects, let us
briefly introduce the physical problem: Magnetic confine-
ment of thermonuclear plasmas is achieved in toroidal con-
figurations. So called tokamaks [1, 2] are one particular
magnetic confinement scheme which is currently investi-
gated for the first prototype fusion reactors (See cartoon
figure 1 for the essential configurational aspects of the
problem). In computational models of those configura-
tions often complete toroidal symmetry is assumed, both
for magnetic field, plasma flow, and neutral particle dy-
namics. This leads to the meanwhile conventional and
routinely applied 2D plasma flow (CFD) and plasma sur-
face interaction (kinetic Monte Carlo transport) simula-
tion models (B2-EIRENE [3, 4, 5], EDGE2D-NIMBUS
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[6, 7], SOLDOR/NEUT2D [8, 9]). An alternative toroidal
magnetic confinement concept is the stellarator [10], which
may in some aspects be regarded as physically simpler (no
net plasma current, hence no instabilities related to this
non-linear self-confining action), but this is at the expense
of a much higher configurational complexity, e.g. magnetic
field and particle orbits. In particular the edge plasma re-
gion, i.e. the region influenced by plasma contact with the
vacuum chamber surfaces, requires at least 3D edge plasma
transport models, because the symmetry between plasma
transport (largely controlled by the magnetic field B) and
the neutral gas cloud formed from plasma neutralization
at surfaces, is broken.

Various computational edge plasma transport models
for both types of configurations have been developed in
the past, which work rather robustly despite the intrin-
sic complications of all magnetized edge plasma transport
models:

e Extremely strong anisotropy (transport time scales
parallel and perpendicular to B differ by 5-6 orders of
magnitude).

e High level of non-linearity in parallel transport coeffi-
cients: e.g. heat conductivity s scales as T5/2 heat
flux ¢ as T7/2,

e Wide range of Peclet and Reynolds number within one
single simulation, covering incompressible electron- to
near sonic ion flows.

e Strong volumetric sources due to plasma recycling at
target surfaces. These sources are typically non-local,
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Figure 1: Schematic view of the poloidal divertor tokamak configu-
ration. Directions of plasma and neutral gas flow in the edge plasma
region are indicated by colored arrows. The green highlighted region
marks the region of interest in edge plasma simulations.

hence require a kinetic (often Monte Carlo) treatment.

For stellarators this combination of a 3D macroscopic
(fluid plasma) solver and a 6D (3s3v) microscopic, Monte
Carlo (neutral gas) solver is provided by the EMC3-
EIRENE code package [11, 12, 13, 4]. Both codes EMC3
and EIRENE are iteratively coupled and share a common
geometry module (figure 2).

Also tokamaks may show significant 3D edge plasma
effects: e.g. because of

e Resonant magnetic perturbations (RMPs), which cre-
ate an open chaotic system at the plasma edge, and
hence, brake the toroidal symmetry of the confining
magnetic field,

e Limiters (local solid apertures introduced into the
plasma), breaking the toroidal symmetry of the neu-
tral gas cloud, and hence, of the source terms in the
plasma fluid equations), or

e Field line ripple effects resulting from the toroidally
discrete set of magnetic field coils.

The EMC3-EIRENE code can be applied to both types
of magnetic confinement configurations, e.g. it is cur-
rently applied to RMP scenarios at the TEXTOR toka-
mak [14, 15, 16] and the ITER-startup-limiter configura-
tion [17] as well as the W7-AS [18, 19], W7-X [20] and
LHD [21, 22] stellarators (the latter, however, without the
divertor region due to issues with the particular field line
reconstruction method discussed below).

Because, typically, no strong electric currents flow in
the edge region of magnetic fusion devices, in all trans-
port models mentioned the magnetic field B is externally
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Figure 2: Schematic view of the EMC3-EIRENE code package.

prescribed, and kept fixed during the entire calculation.
The extremely strong anisotropy of parallel to perpen-
dicular (to B) plasma transport does, however, require
a precise knowledge of B at any point and time in the
simulation. To keep these two distinct physical processes
also separated in the simulation, a local, field aligned co-
ordinate system (with one coordinate line parallel to B)
is used. The EMC3-EIRENE code package profits from a
very flexible representation of the magnetic field structure,
which has already enabled applications to such distinct
configurations like the W7-AS stellarator and the ITER-
startup-limiter edge. A field line reconstruction technique
is used, based upon a computational grid with regular
structured toroidal blocks (figure 3), and combined with
a reversible field line mapping technique (RFLM) [23] at
block boundaries. Such a regular decomposition in the
poloidal and radial coordinate, however, is not efficiently
applicable to poloidally divertor tokamaks, such as JET,
DIII-D, ASDEX-U and ultimately ITER, nor in the com-
plete plasma edge of the LHD stellarator (i.e. including the
divertor regionr). The remoteness of the divertor plates
from the inner edge plasma boundary (figure 1) would ei-
ther result at best in a very distorted grid with low reso-
lution in the divertor region, or require the simulation of a
much larger, poloidally uniform domain and hence, largely
waste computational resources.

In this paper we therefore propose supplementing the
RFLM concept with a cell surface mapping technique,
which can be implemented in both the Lagrangian CFD
part EMC3 and in the kinetic Monte Carlo transport part
EIRENE. This allows an arbitrary - but for convenience
still block-structured - decomposition of the simulation do-
main. It is shown that a combination of (a) field line map-
ping between toroidal blocks and (b) cell surface mapping
including the transformation of the local coordinate sys-
tem at some poloidal or radial cuts allows both accurate
magnetic field representations and plasma fluid and neu-
tral gas kinetic transport simulations. This paper is orga-
nized as follows:



In the next section we briefly outline the Lagrangian
CFD method (combined with Monte Carlo treatment of
diffusion) in EMC3 by resorting to the equivalence of the
plasma transport equation and a generic Fokker-Planck
type equation, and, hence, an underlying stochastic differ-
ential equation. Because of the anisotropic transport, the
most challenging part is the correct treatment of the some-
times very complex magnetic field structure: closed mag-
netic flux-surfaces, ergodic layers, magnetic islands and
field lines ending on surface elements. In section 3 at
first the particular field line reconstruction method imple-
mented in EMC3 is introduced, basically resorting to the
work in [23]. This procedure is then generalized towards
unstructured grids in the poloidal and radial coordinate
to allow for more general grid connectivities. In section
4 numerical tests for this generalization are performed to
indicate the correct performance of the generalized code.
Finally, in section 5 a typical application of the generalized
code to a 3D tokamak edge plasma is presented. We have
chosen a model corresponding to a magnetic configuration
of the DIII-D tokamak, because this particular tokamak
has recently gained large attention due to the success of
mitigating certain edge localized instabilities (ELMs [24])
by application of external 3D magnetic perturbation [25],
superimposed to the 2D tokamak magnetic field. The main
results are summarized in the Conclusions.

2. A Lagrangian scheme for 3D edge plasma trans-
port

Transport processes in magnetized and collisional plas-
mas, such as the edge plasma in fusion devices, can be
described using a fluid approach, the so called Braginskii
equations [26]. These are the plasma counterpart to the
Navier Stokes equations of conventional fluid dynamics,
with similar balance equations for density, momentum and
energy. Sources (or sinks) due to interactions with neutral
particles are included while an ad hoc ansatz for anomalous
cross-field diffusion is applied. We are interested in steady
state solutions of these equations (see appendix (41-44))
which are of the generic form

V'[Vplj:_ppl'vj:]:sa (1)

for some plasma quantity F such as electron density n.
or temperature T,. The pattern of F is determined by a
scalar source S, convection vector Vp; and diffusion tensor
Dp1. (1) can be transformed into a steady state Fokker-
Planck type equation (FPE)

V-WVpF —V-Dyp F] =S, (2)

with corresponding Fokker-Planck drift and diffusion co-
efficients Vg, and Dy, respectively:

Vip =
Dy

Vpl + V'Dpl (3)
Dpl' (4)

2.1. Lagrangian scheme for FPFEs

In order to solver an extremely anisotropic, highly non-
linear Fokker-Planck equation, we apply a Lagrangian
scheme, supplemented by a Monte Carlo procedure for dif-
fusion processes and sources. That is, we consider fluid
parcels AF with initial distribution determined by S and
dedicated transition probability p = p(s,z;t,y) for their
dynamics. This technique is well known [13] and only a
brief description is given here for the context of the present
work.

Consider the Ito stochastic differential equation (SDE)

dX, = a(X,)dt + b(X,)dW,, (5)

with Wiener process W; and drift and diffusion coeffi-
cients a(X;) and b(X}), respectively. It can be shown that
the corresponding transition probability p of a Markov pro-
cess satisfies the Fokker-Planck equation (also known as
Kolmogorov forward equation)

1 2
% + (%(ap) - 58872(6217) =0, (6)
if a(y), b(y) are bounded and smooth enough [27]. An
approximate solution for the inhomogeneous FPE (2) can
be obtained by simulating an ensemble of sample paths,
i.e. trajectories of the stochastic process (5), with initial
distribution and weight determined by S. An elaborate
review of the relation between the probability density and
trajectory point of view is e.g. given in [28].
Trajectories are here integrated by using a time discrete
approximation Y, =Y, , 7, = n7 with timestep 7:

Yit1 = Y + a(Y) 7 + b(Y,) AW, (7)

where the initial value Yy is sampled from S and the in-
crements AW,, = W, ., — W, are independent Gaussian
random variables. This is known as the Euler-Maruyama
approximation for SDEs [29], in analogy to the Euler ap-
proximation for ordinary differential equations. More gen-
erally, it can be shown that any transition probabiliy den-

sity p with moments

(AY), = alx)7 (8)
(AY AY), = b (z)7 (9)

corresponds to a Fokker-Planck equation [30]. So, in-
stead of AW, any random variables R,, with mean and
variance

E[R,) =0, E[R}] =T (10)

can be used. In a local, field aligned coordinate system
(e, eL1, e12) this scheme can be applied independently
for each direction to separate fast parallel from slower per-
pendicular transport processes. The integration scheme
for trajectories in Euler-Maruyama approximation then
reads



v, = vl +vlr+ 2D} r¢, (11)
Yo = Yo+ VT + (/4DE by (12)
b, = cos(2mn,)ei1 + sin(27wn,) e (13)

with standard Gaussian random variables £, and unit
random variables 7,,. Because of the application of random
numbers, this Lagrangian scheme is often also referred to
as Monte Carlo method. Single trajectories of the stochas-
tic process represent sample fluid parcels which are hence
referred to as Monte Carlo particles. A track length esti-
mator

1 .
Fi = a Ewg Tjis t=1,..., Ne, (14)

is applied to provide local estimates F; in a computa-
tional grid (see figure 3) with Neey cells. C; is the volume
of cell 4, w; the weight of MC particle j and 7;; the time
it spend in cell 1.

2.2. Non-linear transport equations

The method described above provides a solver for given
transport coeflicients Vg, Dg,. These coefficients, how-
ever, are functions of plasma parameters, and thus de-
pend on the solution F. In an abstract form, a solver
for the linearized version of (2) where Vg, = Vip(Fin),
Dty = Dip(Fin) can be written as a mapping ¢:

¢ s RNt — RN, Fp i o (15)

A self-consistent solution F of the plasma transport
equation is a fixed point F* = ¢(F*) of the mapping ¢.
Therefore we apply the transport solver ¢ in an iterative
procedure. At his point we leave the issue of convergence
of noisy fixed point iterations untouched. In practise we
consider the relative change of F between iterations (see
section 5.4).

3. Fast reconstruction of magnetic field lines

To avoid time-expensive field line tracing (integra-
tion) in the code, a computational grid constructed from
toroidal blocks of precalculated magnetic field lines is used
(figure 3), and combined with a reversible field line map-
ping technique (RFLM) at block boundaries. Distinct
from the grid for statistics (i.e. for averaging plasma
parameters F over small cells, needed for iteration and
graphical output) - which can in principle be arbitrary -
the grid for magnetic field line reconstruction requires spe-
cial attention. The increase in speed of 3-4 order of mag-
nitude with respect to direct field line integration at the
position of fluid parcels, however, justifies the additional
effort for magnetic grid generation.

Figure 3: Field aligned grid with 2 toroidal blocks of Ay = 45 deg
each. This kind of grid is used for simulations of the edge plasma at
the TEXTOR tokamak in the presence of an RMP field with 4-fold
toroidal symmetry.

A field aligned grid is constructed from a set of field lines
xi(¢) = (Ri(p), Zi(p)) for ¢ € [pa,pp] which are calcu-
lated in a preprocessing step, using a 5th order Adams-
Bashfort scheme with 4 initial Runge-Kutta-Gills back-
ward steps. Grid nodes x;; are defined as

A
Xik = Xi(@k), Pk = po + k—w, k=—Np...Ng,
2 N
(16)
with
+
wozw, Ap =pp—pa. (17)

Field lines x} are then reconstructed by a linear inter-
polation between nodes:

Xi(p) = ¢ xip + (1 =) Xips1, (18)
* Y — Pk
T = —————, Y€ [Prt1, Pkl (19)
Pr+1 — Pk

Now hexahedral grid cells are defined by a set of 4 of
these field lines. Any field line in between is approximated
by a bilinear interpolation:

x(&m9) = D> x5 () Nil&,m),

i=1

&n e [-1,1] (20)

of 4 field lines x}(y), with the shape functions N;(&,n)
of a 4-node (bilinear) quadrilateral, well-kown in finite ele-
ment methods (see e.g. [31]). This setup defines a 3D grid
with local, field aligned coordinate system, where coordi-
nates lines with &, = const are field line representations.

Multiple toroidal blocks, with a reversible field line map-
ping [23] between adjacent blocks, are used to allow an
accurate representation of partially ergodic fields: At the
interface between two adjacent blocks (e.g. between block
A and B in figure 3) the relation
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Figure 4: (a) two grid cells at the interface between toroidal blocks
and (b) schematic view of the field line mapping technique. Local
coordinates for field lines F; and F5 are mapped from the blue cell to
the grey cell with a cell mapping (22) at a reference point (black dot)
and the correcction jumps A; and Acc, respectively. In the case of
cross-cell jumps Acc, the jump is segmented into two parts, while jeo
is updated at the cell boundary and combined with a transformation
of local coordinates between cells.

X(iceu) (fAJ]A) = x(jce”) (EB,nB) (21)

provides with (20) a reversible mapping of field line co-
ordinates. ice and jee are cell indices in blocks A and B,
respectively, and hence define the set of grid nodes used
for interpolation in (20). A similar multiple local mag-
netic coordinate system approach is e.g. used in the 3D
heat transport code for edge plasmas E3D [32]. Contrary
to the cubic spline interpolation scheme used there, we
use a simpler, linear interpolation scheme, which is suffi-
ciently accurate but simple enough to allow calculations of
plasma fluid transport (in magnetic coordinates) as well as
kinetic neutral transport (in cartesian coordinates) within
one single geometry module.

However, when applying the inverse of (20) to obtain
the new field line coordinates €2, n?, the cell number jeen
in the adjacent block (i.e. the set of 4 field lines to in-
terpolate from) is not a priori known. This is because of
the discontinous cell interface between blocks (figure 4.a).
Finding the correct cell number j.; and field line coor-
dinates ¢B,nP for a given point x in a large grid can be
quite expensive, however, we can divide this task into two
steps: First, in a preprocessing step, a cell mapping C:

C: icell - (jcelb g(/)v 776) (22)

is defined for one field line (&p,7m0) per cell (e.g. for
€,mo = 0, black dot in figure 4). Once this mapping is
defined for all cells at the interface between toroidal blocks,
only the displacement

Figure 5: Poloidal cuts of two possible block-structured decomposi-
tions of the edge plasma region in a poloidal divertor tokamak con-
figuration. Boundaries of adjacent blocks (green lines) are connected
by a cell surface mapping (Myeigh, Me¢y), red lines indicate periodic
cell boundaries.

Ax = xieen) (g, o) — xicen) (§<z>, n(z)) . (23)

is needed to correct the new coordinates from (22) when-
ever relation (21) is applied (figure 4.b). Cell internal
Jumps A; can be related to a displacement (A, An) in
the new field lines coordinates by (20), so that

(jcellagBanB) = C(icell) + (07A€7A77) . (24)

This method gives the exact coordinates (¢Z,nF). In
the case of cross-cell jumps A.., the jump is segmented
into two parts, while j.en is updated at the cell boundary
and combined with a transformation of local coordinates
between cells. The details of this depend on the grid topol-

ogy.

8.1. Structured grids

In structured grids with radial, poloidal and toroidal

cell indices ¢ = 0,...,n, —1; % = 0,...,np, — 1; &4 =
0,...,ns — 1, this is the simple relation:

ip, = (ip £1) mod ny, &=¢ n'=7F1 (25

or i =i,+1, =71, n=n (26)

at poloidal (25) or radial (26) cell surfaces, respectively.

3.2. Unstructured grids

We now turn to unstructured grids, to allow more flexi-
bility in the shape of the simulation domain. This is neces-
sary for simulations of the edge plasma in poloidal divertor
tokamaks. Two examples of a block-structured decompo-
sition are shown in figure 5. The field line reconstruction
method described above is still applicable in unstructured
grids, only (25) and (26) need to be generalized.



In unstructured grids, the grid connectivity is defined by
a neighbor relation Myeign between adjacent cells icen, Jeell
(see figure 14 for the numbering convention of cell surfaces

. .
Lsurf, Zsurf)

Mneigh : (icella Z.surf) - (jcellvi;urf)7 (27)

Because of the particular field line reconstruction
method, the local field line coordinates need to be trans-
formed as well. For this we need an additional transfor-
mation matrix Mg,:

(5/777,) = MEn ' (Evn)v (28)

while ¢ is fixed in the special case when the structure
in toroidal direction remains. This transformation matrix
depends on the relative orientation of the surfaces iguf,
! ¢ (see appendix B):

Ysurf

My (st itues) = (—1)° - M (29)

w0 () w

and integer valued indices k, j:

with

ko= [(isurt + igure) /2], J = (isurt + i) mod 2.

The implementation of the cell surface mapping (Myeigh,
Mg,) into the EMC3-EIRENE code provides a general-
ization for simulation domains with arbitrary shape and
in particular for poloidal divertor tokamaks. Commonly
the simulation domain is divided in an unstructured set of
blocks that are connected by (Mnpeigh, Me¢y), while a regu-
lar structure remains within a block. The remaining part
of this paper will demonstrate the correct performance of
the generalized code and provide an example for a typical
application.

4. Performance tests of the generalized code

The correct performance of the newly implemented cell
surface mapping technique in the EMC3-EIRENE code is
now briefly demonstrated. For this we consider a well-
established simulation scenario for the TEXTOR tokamak
with 3D open chaotic system due to RMPs. We intro-
duce an arbitrary 4 x 4 block decomposition in radial and
poloidal direction and re-connect these blocks at the inter-
faces with a cell surface mapping Myeign (figure 8):

Mneigh : (ib7i7'7ip7it) - (Z;),’L;.,Z;),Z;), (31)

where 75 is the block number, and i, iy, 7; are radial,
poloidal and toroidal cell indices. Local coordinates are
transformed according to (28).

Figure 8: Poloidal cut through a (low resolution) computational grid
for TEXTOR with a 4 x 4 block-structured decomposition. Block
boundaries (dark and light blue) are connected by a cell surface map-
ping for block number 4, (green), cell indices ir, ip, i+ and local
coordinates &, 1, T.

Before performing actual plasma and neutral gas trans-
port calculations, we demonstrate the correct representa-
tion of the magnetic field structure. This structure is vi-
sualized in figure 6 by means of the wall-to-wall connec-
tion length L. of magnetic field lines. Radial profiles at
Y1 = 12 deg and ¥ = 34 deg, as well as poloidal pro-
files at rmin1 = 42cm and rpin2 = 46 cm are selected.
It is shown in figure 6 that they exactly match the refer-
ence profiles from a regular structured grid (see figure 3 for
definitions of toroidal coordinates o, 1, rmin). The physics
of such an open chaotic system and its impact on plasma
transport is not part of this paper and is investigated else-
where (e.g. in [33, 34, 35]).

Transport calculation within a 4 x 4 block decompo-
sition give - as expected - the same results as obtained
from a regular grid. This is illustrated in figure 7, again
by selected radial and poloidal profiles of the electron tem-
perature T, and density n.. The same tests have also been
performed for the neutral transport part ETIRENE. Hence,
these numerical tests exemplify the correct performance of
the generalized code.

5. Application to poloidal divertor tokamaks

In this section we like to present the enhanced applica-
bility of the EMC3-EIRENE code. The DIII-D tokamak
was chosen as an example for poloidal divertor machines,
because of its recent success in ITER relevant research re-
garding the ELM control issue.

5.1. Computational domain

The selected magnetic configuration is typical for a DIII-
D plasma with ITER similar shape (ISS) and n = 3 RMP
field, i.e. a magnetic field with toroidal C'5 symmetry, and
is obtained from the EFIT code [36]. Because of this sym-
metry, the computational domain may be reduced to one
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Toroidal blocks
connected by a
RFLM technique

Figure 9: (a) Computational domain for an edge plasma in a poloidal
divertor tokamak. The C3 symmetry in n = 3 RMP scenarios allows
to reduce the toroidal circumference to Ap = 120 deg. (b) Topologi-
cal view of the block-structured decomposition in radial and poloidal
direction.

third of the toroidal circumference. A toroidal decomposi-
tion into three blocks of Ay = 40 deg is used (figure 9 a),
which is similar to the block size in simulations for TEX-
TOR, however accounting for the present C's symmetry. A
further decomposition into three sub-blocks is introduced
for each toroidal block to allow an adequate discretiza-
tion of the poloidal divertor volume. This decomposition
is guided by the shape of the unperturbed separatrix ac-
cording to figure 5 right. An overview of the grid topology
is given in figure 9 b. Dark and light blue cell surfaces are
connected by a cell surface mapping while periodic bound-
ary conditions are applied for green cell surfaces. Here we
use the following grid resolution for each toroidal block:

ln. n, m
Core (A) | 48 720 16
SOL (B) | 32 864 16
PFR (C) | 6 144 16

leading to a total cell number of Nco = 3027456.

5.2. Flield line reconstruction

The n = 3 RMP field at DIII-D introduces an open
chaotic system in the plasma edge in a similar way as in

ic topology
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Figure 10: (a,b) 2D cuts of the connection length L. of magnetic
field lines and (b) radial profiles at Z; = —90cm and Z = —110cm
comparing the reconstructed L. to the original L. from field line
integration.

TEXTOR tokamak. The magnetic field structure is de-
picted in figure 10.a,b by 2D cuts of the wall-to-wall con-
nection length L. of magnetic field lines. It is shown that
the reconstructed field structure is in good agreement with
the original one obtained from direct field line integration
(figure 10.c).

5.3. Transport verification

Now we want to verify the correct treatment of plasma
transport in a poloidal divertor configuration. For this
we examine an axisymmetric magnetic configuration, i.e.
a configuration without RMP field, with a known semi-
analytic solution. In this case a separatrix exists (remem-
ber figure 1) with closed magnetic surfaces inside. Plasma
parameters are constant on these flux surfaces due to the
fast parallel transport (e.g. T, in figure 11). Hence, the
normalized poloidal magnetic flux ¢* can be used as radial
coordinate so that n. = n.(¢*) and T, = T.(¢*). For a
preset constant plasma background the 3D transport equa-
tions then reduce to a 1D balance inside the separatrix
(v* < 1), e.g. for the electron temperature:

OT. P
00" ALV ne s
The total input power for electrons P, ., the electron

density n. and the cross-field diffusion coefficient y, are
set to the following values for our test case:

(32)

Pn. =32MW
Ne =2.109m=3
XL =12m?s7!

while the area Ay« of flux surface ¢* is determined by
the given magnetic configuration as well as the flux surface
averaged gradient
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Figure 11: (a) 2D cut of the electron temperature Te at ¢ = 0 deg and (b,c) radial T profiles extracted at the inner (High Field Side, HFS)

and outer (Low Field Side, LFS) midplane.

Ay Vo] :f dA ey - V" (33)

Ay

Outside the separatrix (* > 1), in the so called Scrape-
Off Layer (SOL), exponential decay

Te(¥7) (34)

AT, ] ’

with an e-folding length A7, is expected, because of par-
allel losses, i.e. the sink action in parallel direction due to
free streaming along B and plasma recombination at diver-

tor targets. Exponential decay is recoverd very accurately
with the EMC3-code (see figure 11.c):

e,LCFS €Xp [—

T.rcrs = (48.7£0.2) eV (35)
Ny, = (7.324£0.05) - 107® (36)

AT, is an e-foldling length with respect to ¢*, but it can
be related to an average e-folding length in real space:

— 1
A, = Np [V | ops = (3.3540.02) mm  (37)
where [Vi)*|| opg is the average gradient of the normal-
ized poloidal flux ¥* at the separatrix. An analytic esti-
mate for Az, from a corresponding flux balance is given in
[37] which reduces for constant n. to

X1 Leor
Ar, = XL Beore g9
29eCs

with sheath heat-transmission factor 7. and ion sound
speed c¢s. Leore is the length where SOL field lines are in
contact with the confined plasma. This estimate is within
5% of the calculated value, which is a good agreement
regarding the very crude approximation made here. Using
Te Lcrs from (35), T, can be integrated from the separatrix
inwards using (32). Figure 11.b shows that the EMC3
data very accurately fits this prediction. T, at the inner

(38)

simulation boundary is predicted to T, = 1.68keV, while
T, from EMC3 is T, = 1.67keV, computed on 32 CPUs
with 1000 Monte Carlo particles each.

5.4. Convergence of simulation runs

Self-consistent simulations of edge plasma transport re-
quire an iterative application of the transport solver de-
scribed in section 2. As measure for the convergence of
simulations runs, the relative change AF between itera-
tions is taken:

Ei ]:z‘(nil) _‘Fi(n) Ci

= (7 A

AFM%] = x 100.  (39)

To account for strong non-linearities in e.g. the heat
conductivity (k ~ T°/?), we apply a relaxation scheme

(n,relax)
i

= Orelax f](n_l) + (1 - arelax) f;n)a (40)

where we have chosen ayelax = 0.3 for density and mo-
mentum iterations and qyelax = 0.5 for energy iterations.
An example of a self-consistent solution for the electron
temperature is shown in fig. 12. Calculations were started
with 1000 MC particles per CPU on 32 CPUs in total
and after 15 iterations the number of MC particles was
increased to 10k per CPU (figure 13). Then the relative
changes An., AT,, AT; are reduced to a level below 3%
and stay on that level. After another 12 iterations the
level of relative changes is further reduced to below 1 % by
increasing the number of MC particles (here by increasing
the number of CPUs to 256). About 8400 CPUh were used
for the entire simulation on an IBM Power6 575 System at
Rechenzentrum Garching. Discussion of numerical results
will be published as subsequent work.

6. Summary and Conclusions

A Lagrangian scheme for 3D edge plasma transport sim-
ulations is described which is implemented in the EMC3-
EIRENE code. The code utilizes a field aligned grid for



fast reconstruction of magnetic field lines. This tech-
nique has been generalized to unstructured - but in prac-
tise still block-structured - grids in order to allow simu-

T, =40 eV - surface *‘ =225 eV - surface

for ITER relevant plasma scenarios.

Appendix

A. Plasma transport equations

respectively:

. . . e Particle balance:
Figure 12: Self-consistent solution of the 3D electron temperature

Te in the X-point region (compare figure 10.b): R = 100...160cm, -
Z = —140... — 80cm, ¢ = —20...100 deg. Blue shaded surfaces V- (eH g Ug) — 1, 'Dlvni) =5
indicate T = const surfaces.

e Momentum balance:
V¢ [ml n; uiﬁ — e -Vuz-“}

= —e”~Vni (’Tl =+ T(:) + S

e Energy balance ions:

100 .
Ane 5
1k MC particles ATe
\ x32 OPUS N — V-e [2 ni Tiug| — Kij e 'VTi]
g \/ J{ 10k MC particles 5
g 00 ~VL - |STiDL Vg + X m VT
% ! 10k MC particles 2
) & | xas6CPUS
2 A \ = — k(Ty — T.) + Ses
= \ ] e et
E 1 ‘\/\/\/ E—
[
o
|
e Energy balance electrons:
0.1 5
0 5 10 15 20 25 30 35 V¢ §niTe ui| — Keje)-VTe

Number of Iterations

_V'lj_ ' |:5T6DJ_ Vn; + XeJ_niVTe]
Figure 13: Convergence of a simulation run with the EMC3-EIRENE 2
code. The calculations were started with 1000 MC particles on 32
CPUs each. After 15 iterations the number of MC particles was =k (Ti — Te) + See
increased to 10k per CPU and after another 12 iterations the number
of CPUs was increased to 256.

lations for fusion devices with complex shape of the edge
plasma region. The correct performance of the general-
ized code was demonstrated by numerical tests and com-
parisons to reduced transport models. These tests doc-
ument the enhanced applicability of the EMC3-EIRENE
code for present fusion devices, in particular for tokamaks
with poloidal divertor. This allows for the first time 3D
self-consistent calculations of particle, parallel momentum
and energy transport as well as kinetic recycling neutrals

The EMC3-EIRENE code solves a time-independent set
of plasma transport equations for density n., parallel mo-
mentum u;| and electron and ion temperature T, and T3,

(41)

where e is the unit vector along magnetic field lines,
I, =1- e e with I beeing the unit tensor, n; the ion
and electron density, u;|| the parallel ion velocity, T, and T;
the electron and ion temperatures, respectively, D, x. |,

10
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Figure 14: Orientation of local coordinate system, i.e. cell surfaces
Gsurfs iéurf between adjacent cells. Example: n = 1 - surface (igyrt =
3) meets &’ = —1 - surface (il =4).

x: anomalous cross-field transport coeflicients for parti-
cles, electron and ion energy, 7 the parallel ion viscosity,
Ke|, ki) parallel electron and ion heat conductivity and
Sei, See sources due to interaction with neutral

P mo

particles.

B. Coordinate transformation

The transformation of local coordinates (€, ) at the cell
boundary can be written in the compact form:

(f/ﬂ?') = Mﬁﬂ ' (fﬂ?)~

where My, depends on the relative orientation of the local
coordinate systems, i.e. the surface numbers igurf, 9L,
(figure 14). In any case there is a surface coordinate s.
which is fixed and a perpendicular coordinate p. which is
transformed to —p.. Depending on the orientation igy,¢

the coordinates (s.,p.) are

(o) = ()

and depending on the orientation 3., the new coordinates

(45)

(46)

(€') are ,
(v) =2 (5) o
Basically A and B are rotations
Ro) = (57, mme) (18)
of the coordinate system with angles
pa = (iout—3)-3 (49)
on = (cilwe+1)-3 (50)

(46) and (47) can be combined to determine the transfor-
mation matrix Mg,:

1 0
Inserting (48) gives
cos(pa —@p) sin(ps — ppB) >
M, = ( . 2
3 (sm(apA —B) —cos(pa —¢B) (52)

11

and (49), (50) and m = dgyes + @,,,¢ gives

meven

m odd

(_1)% : M07
m—1

M =
&n (_1)T 'Mla

with Mg, M; from (30).
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