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Abstract

It is well known that the block Krylov subspace solvers work efficiently for
some cases of the solution of differential equations with multiple right-hand
sides. In lattice QCD calculation of physical quantities on a given configura-
tion demands us to solve the Dirac equation with multiple sources. We show
that a new block Krylov subspace algorithm recently proposed by the au-
thors reduces the computational cost significantly without loosing numerical
accuracy for the solution of the O(a)-improved Wilson-Dirac equation.
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1. Introduction

In the last decade one of the primary issues in lattice QCD is to reduce
the dynamical up and down quark masses toward the physical values. Most
of our efforts have been devoted to reduce the computational cost for the
configuration generation with light quark masses. Thanks to the algorithmic
improvement together with rapid increase of the computational power we are
now allowed to make a direct full QCD simulation on the physical up and
down quark masses[l, 2]. On the other hand, we have been less concerned
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with the algorithmic improvement for the calculation of physical quantities:
its computational cost was negligibly smaller than that for the configura-
tion generation until recently. At present, however, the latter is drastically
reduced to be comparable to or smaller than the former.

The characteristic feature in the calculation of physical quantities is the
solution of the Dirac equation with multiple sources: twelve in the simplest
case and O(10 — 100) for the stochastic technique. These are typical exam-
ples of the solution of differential equations with multiple right-hand sides.
For this type of equations it is known that the block Krylov subspace solvers
succeed in reducing the computational cost[4]. In this article we study the
application of the block BICGSTAB algorithm[5] and a new block Krylov
subspace method proposed in Ref. [6] to the O(a)-improved Wilson-Dirac
equation which is one of the popular fermion formulations in current lat-
tice QCD simulations. For simplicity our numerical test is restricted on the
quenched configuration with a fixed volume. We investigate the quark mass
dependence of the algorithmic efficiency in detail.

This paper is organized as follows. In Sec. 2l we give the definition of the
O(a)-improved Wilson-Dirac equation. The algorithmic details are described
in Sec. Bl In Sec. [l we present the results of the numerical tests after explain-
ing the parameter choice and the machine specifications. Our conclusions are
summarized in Sec. [Bl

2. Wilson-Dirac equation

The lattice QCD is defined on a hypercubic four-dimensional lattice of
finite extent being expressed as L, x L, x L, x L; with L,, . the three-
dimensional spatial extent and L; the temporal one. The lattice spacing is
set to unity for notational convenience. The fields are defined on the sites n
with periodic boundary conditions.

We define two types of fields on the lattice. One is the gauge field rep-
resented by U,(n,a,b) with p = 1,2,3,4 and a,b = 1,2,3 which is a 3 x 3
SU(3) matrix assigned on each link. The other is the quark field ¢(n, a, a)
which resides on each site carrying the Dirac index v = 1, 2, 3,4 and the color
index a = 1,2,3. The O(a)-improved Wilson-Dirac operator is written as
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where [i denotes the unit vector in the p direction. The coefficient cgw is a
parameter to be adjusted for the O(a) improvement. The Euclidean gamma
matrices are defined in terms of the Minkowski ones in the Bjorken-Drell
convention: y; = —ivhy (G = 1,2,3), 74 = v%p, 75 = V%p and 0, =
%[%, vy]. The explicit representations for v 5345 are given by
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where we list only nonzero elements. The field strength F},, in the last term
of Eq. () is expressed as
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F(n,a,b) = 122—< n,a,b) — Pl (n, a, b)) (7)
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with

Pi(n,a,b) = > Uu(n,a,0)U,(n+ j,c,d)US(n+ ,d,e)Uj(n,e,b), (8)

c,d,e

Py(n,a,b) = ZUy(n,a,c)U;(n—/thl?,c,d)
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The O(a)-improved Wilson-Dirac operator defined by Eq. () is a complex
non-Hermitian square matrix, where only 51 out of L, x L, X L, x L; x 3 x 4
entries in each row have nonzero values. The matrix becomes fairly sparse
in current numerical simulations with L, . ~ O(10).

The calculation of physical quantities requires the solution of the following
linear equations:

Z Dw(n,a,a;m,ﬁ,b) ( ,8,b) = s (n,a, a), (12)
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where s represents the i-th source vector. To illustrate the situation we
consider the calculation of the hadron two-point function with the point
source at the origin as a simplest example. In this case we need twelve
source vectors expressed as

; 1 i=a+3(a-1)
(@) —
sV(1, e, 0) { 0 otherwise (13)

with a = 1,2,3 and a = 1,2,3,4. Another good example is the stochastic
technique which usually requires O(10 — 100) noise sources. Although we
can think of a lot of other interesting examples, our numerical tests, which
is explained later in Sec. [4], concentrate on the simplest one.



3. Block Krylov subspace methods

Before explaining block Krylov subspace algorithms it should be better to
reformulate the problem in a generalized form. This help the readers easily
understand the essence avoiding any complex notations specific to lattice
QCD.

Our interest exists in the solution of linear systems with the multiple
right-hand sides expressed as

AX = B, (14)

where A is an N x N complex sparse non-Hermitian matrix. X and B are
N x L complex rectangular matrices given by

X = (ac(l),...,a:(i),...,ac(L)), (15)
B=(bY,. .., p® .. b)), (16)

In the case of the Wilson-Dirac equation N = L, X L, X L, x L; x 3 x 4 and
L is the number of the source vectors.

For a preparative purpose we first write down the well-known BiCGSTAB
algorithm for solving a single right-hand side linear system, where = a(!)
and b = b in Eq. (I4):

x( is an initial guess,

Compute 7y = b — Ax,

Set po = 7o,

Choose 7 such that (%o, r) # 0,

For k =0,1,..., until ||ry|2/|b]]2 < € do:

ar = (Po,7x)/(To, APg),

t, = 7T — apApy,

G = (At ty)/(Aty, Aty),
Tpr1 = T+ opr+ G,
Thr1 = b — GALy,

Bk = (Oék/Ck) : (fm Tk+1)/(f07 rk)u
Piv1 = Tit1+ Bu(Pr — GeApr),
End for.

It is rather straightforward to extend the algorithm to the blocked version
for solving multiple right-hand sides linear system:



Xy € CVN*L is an initial guess,
Compute Ry = B — AX,,

Set P(] = Ro,
Choose R, € CNV*L, '
For k= 0,1, ..., until max;(||r{"|]/[|6?|2) < € do:
Vi. = AP,
Solve (RIV,)ou = RNR, for ay,
Ty, = Rp—Viayg,
Zy = ATy,
X1 = Xy + Pay + Gy,
Ry = Ty — Gy,
Solve (R}){Vk)ﬁk = —Ré{Zk for 5k,
Py = Rip+ (P — GVi) B,
End for,

where Ry, Py, Tr are N x L complex rectangular matrices and ay, 05 are
L x L complex square ones. At the k-th iteration in the block BICGSTAB
algorithm we find

Xy € Xo+KMA:R,y), (17)
R, € Kpwi(A; Ry), (18)

where ICM(A; Ry) is a block Krylov subspace defined by

k—1
KR(A; Ro) = {Z ARy¢; 5 & € (CLXL}.

i=0

This yields an essential difference from the consecutive application of the
BiCGSTAB algorithm to Az = b® for i = 1,..., L: The blocked version
searches the solution vectors with the enlarged Krylov subspace.

In Ref. [6] a new block Krylov subspace method is proposed. This method
improves the numerical accuracy of the block BICGSTAB method where
multiplication of the matrix a4, yields contaminations of the rounding error
on the solution[6]. The algorithm is as follows:

Xo € C™L is an initial guess,
Compute Ry = B — AX,,



Set PQZR() and%zWozARo,
Choose R, € C"*L,
For k =0,1,..., until max;(||r\”|]2/[6?|,) < € do:
Solve (}%{Vk)ak = RIOHRk for ay,
G = Tr[WER] /Tr [WEW,],

Sy = P — GV,
U = Spoy,
Y, = AU,
Xir1 = Xp+ GRr + Uy,
Ryyr = Rip— GWi — Yy,
Wit = ARpyr,
Solve (Ré{Rk)”yk = RgIR]H_l/Ck for Yk
Py = Rippr + U,
Virr = Wigr + Y,
End

This algorithm is constructed to avoid the rounding error problem ob-
served in the block BICGSTAB method.

4. Numerical tests

4.1. Choice of parameters

The L dependence of the efficiency of the block Krylov algorithms, in
which we are most interested, should be investigated on single CPU avoid-
ing contaminations due to the communication overhead. The memory re-
quirement forces the lattice size to be moderate. Our numerical tests are
performed with samples of 10 statistically independent gauge field configura-
tions on a 163 x 32 lattice generated by the Iwasaki gauge action at 8 = 2.575
in quenched approximation, which was employed in Ref. [3]. We solve the
Wilson-Dirac equation with the local source at the origin choosing four hop-
ping parameters £k = 0.1359, 0.1357,0.1355, 0.1300 with the improvement co-
efficient cgw = 1.345. The bare quark mass is given by m, = (1/k — 1/k.)/2
with k. = 0.136116(8), which increases as k decreases. In Table [I] we list
the pion mass in physical unit and the m,/m, ratio at each hopping param-
eter following Ref. [3]. Although the pion mass at x = 0.1300 is extremely
large from a view point of physical interest, we employ it for a comparative
purpose. The lattice spacing estimated by m, is a = 0.1130 fm|3].



Table 1: Pion mass and m,/m, ratio at each hopping parameter.

K ke = 0.136116(8) 0.1359 0.1357 0.1355 0.1300
My [MeV] 0 221 307 375 1282
my/m, 0 028 039 046 087

4.2. Test environment

Numerical tests are carried out on single node of T2K-Tsukuba which is a
large-scale cluster system 648 compute nodes providing 95.4Tflops of comput-
ing capability. Each node consists of quad-socket, 2.3GHz Quad-Core AMD
Opteron Model 8356 processors whose on-chip cache sizes are 64KBytes/core,
512KBytes/core, 2MB/chip for L1, L2, L3, respectively. Each processor has
a direct connect memory interface to an 8 GBytes DDR2-667 memory and
three hypertransport links to connect other processors. All the nodes in
the system are connected through a full-bisectional fat-tree network consist-
ing of four interconnection links of 8 GBytes/sec aggregate bandwidth with
Infiniband.

4.3. Results

Table 2] shows the L dependence of the computational cost to solve the
Wilson-Dirac equation with the block BICGSTAB algorithm imposing rather
stringent tolerance ¢ = 107* for the relative residual. We present averaged
values over 10 configuration samples for the number of iteration and the exe-
cution time. The true residual, which is defined by max; || Az® —b@ |5 /|[6®]|2,
is evaluated after the relative residual reaches the tolerance. The maximum
and minimum values among 10 configuration samples are listed. Although
the computational cost divided by L is considerably reduced as L increases
at k = 0.1359,0.1357,0.1355, there exist two concerns: One is the discrep-
ancy between the relative residual and the true one which is enhanced as L
increases. The other is the convergence failure of the relative residual, which
is found for 4 samples out of 10 at x = 0.1359 with L = 4. This flaw is also
observed at Kk = 0.1355 and 0.1357 once we go beyond L = 4.

In order to remove the discrepancy of the relative residual and true one,
we proposed a new algorithm whose details are presented in Ref. |6]. The
effectiveness of the new method is observed in Table [B] where the deviation
between the true and the relative residuals essentially vanishes. Figure [I]
plots the number of iteration and the execution time divided L as a function
of L. We observe two important features. One is the acceleration of the
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cost reduction at the light quark masses where the physical interest exists:
At k = 0.1357 the number of iteration is almost cut in half from L = 1
to 4, which should be compared to the case of k = 0.1300. The other is
that the executional time divided by L decreases faster than the number
of iteration as L increases: The former is reduced by more than 60% from
L =1to4at x=0.1357. This fact demonstrates the efficiency of the cache-
aware implementation for the matrix multiplication on the multiple vectors.
In Fig. [2 we show a representative behavior of the relative residual as a
function of the number of iteration at each hopping parameter. We observe
little L dependence up to 700 iterations, beyond which the convergence speed
is accelerated as L increases at x = 0.1359, 0.1357,0.1355.

Table 2: L dependence of the number of iteration and the execution time to solve the
Wilson-Dirac equations with the block BICGSTAB method. True residual is evaluated
after the relative residual reaches the tolerance e = 10~14.

Kk L #iteration  time time/L true residual
[sec] [sec] max min
0.1359 1 2432.6 1439.3 1439.3 157 x 107 7.99 x 107"
2 1696.8 1316.0  658.0 291 x 107" 236 x 10713
4 _ — — — —
0.1357 1 1999.0 1162.4 11624 1.08 x 107 598 x 10~
2 1410.1 10924 5462 2.62x 10712 3.75 x 1074
4 1100.0 1633.3  408.3 1.36 x 10~'' 6.33 x 10713
0.1355 1 1518.5 884.4  884.4 1.09x 107 525 x 10~
2 1264.2  979.6  489.8 255 x 10712 1.49 x 104
4 961.7 1430.0 357.5 1.30 x 10~ 230 x 1013
0.1300 1 165.3 96.4 96.4 9.29 x 107® 3.68 x 10~
2 172.8  134.3 672 1.57 x 107 6.14 x 1071
4 181.0 272.7 68.2 3.42x 1071 7.99 x 10~1°

5. Conclusions

In this paper we present the first example for the efficiency of the block
Krylov subspace methods in lattice QCD to solve the O(a)-improved Wilson-
Dirac equation with multiple local sources. We find remarkable cost reduc-
tions for the light quark masses. Roughly speaking, the solver performance
normalized by L is doubled by increasing L from one to four at the light



Table 3: L dependence of the number of iteration and the execution time to solve the
Wilson-Dirac equations with the new method. True residual is evaluated after the relative
residual reaches the tolerance e = 10~4.

k L #iteration  time time/L true residual
[sec] [sec] max min
0.1359 1 2440.3 1398.2 1398.2 1.53 x 107 857 x 1071
2 1701.5 1308.4 654.2 2.92x 1071 6.65 x 10715
4 _ _ _ _ _
0.1357 1 1986.6 1138.1 1138.1 1.14x 107 6.81 x 107%
2 1417.0 1090.1 545.1 1.08 x 10~ 851 x 1071
4 1063.6  1556.6 389.2 1.51 x 107 6.72x 1071°
0.1355 1 1519.0  870.0 870.0 1.18 x 107 9.03 x 1071
2 1252.9  962.9 481.5 1.08 x 1071 7.68 x 10715
4 975.7 1427.1 356.8 1.29 x 1071 7.23 x 1071°
0.1300 1 165.4 95.3 95.3 9.34 x 1071 4.02 x 107
2 173.1  133.6 66.8 9.79 x 1071 5.15 x 1071°
4 181.7  266.1 66.5 9.10 x 107 6.79 x 10715

quark masses. The block Krylov subspace methods have two advantageous
points. Firstly we can easily implement the method by extending the conven-
tional solver for a single right hand side. The deviation between the relative
residual and the true one observed in the block BICGSTAB algorithm is suc-
cessfully removed by the new algorithm proposed in Ref. [6]. Although our
numerical tests are carried out on a single CPU, it is obvious that there is no
difficulty in parallelization. Secondly the multiplication of the Wilson-Dirac
matrix on the multiple vectors allow us an effective use of the cache, where
the link variables can be retained during the operation. The cost reduction is
achieved by not only the algorithmic efficiency but also the implementation
technique. One concern about the methods is that the increase of L makes
difficult the convergence of the relative residuals at light quark masses. We
are now investigating its origin and possible improvements.
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Figure 1: L dependence of the number of iteration (solid) and the execution time divided
by L (open) for the new method. All the results are averaged over 10 configuration samples.
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