
Short-recurrence Krylov subspace methods for the overlap Dirac operator at
nonzero chemical potentialI

Jacques C. R. Blocha, Tobias Breua, Andreas Frommerb, Simon Heybrocka, Katrin Schäferb, Tilo Wettiga

aInstitute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
bDepartment of Mathematics, University of Wuppertal, 42097 Wuppertal, Germany

Abstract

The overlap operator in lattice QCD requires the computation of the sign function of a matrix, which is non-Hermitian
in the presence of a quark chemical potential. In previous work we introduced an Arnoldi-based Krylov subspace
approximation, which uses long recurrences. Even after the deflation of critical eigenvalues, the low efficiency of
the method restricts its application to small lattices. Here we propose new short-recurrence methods which strongly
enhance the efficiency of the computational method. Using rational approximations to the sign function we introduce
two variants, based on the restarted Arnoldi process and on the two-sided Lanczos method, respectively, which become
very efficient when combined with multishift solvers. Alternatively, in the variant based on the two-sided Lanczos
method the sign function can be evaluated directly. We present numerical results which compare the efficiencies of
a restarted Arnoldi-based method and the direct two-sided Lanczos approximation for various lattice sizes. We also
show that our new methods gain substantially when combined with deflation.

1. Introduction

While this paper discusses new numerical methods that are expected to be useful in a large number of applications,
the main motivation for these new methods comes from quantum chromodynamics (QCD) formulated on a discrete
space-time lattice. QCD is the fundamental theory of the strong interaction. Being a non-Abelian gauge theory,
it is notoriously difficult to deal with. Lattice QCD is the only systematic non-perturbative approach to compute
observables from the theory, and it is amenable to numerical simulations. The main object relevant for our discussion
is the Dirac operator, for which there exist several formulations that differ on the lattice but are supposed to give the
same continuum limit when the lattice spacing is taken to zero. We are focusing on the overlap Dirac operator Dov
[1, 2], which is the cleanest formulation in terms of lattice chiral symmetry [3, 4] but very expensive in terms of
the numerical effort it requires. Trying to improve algorithms dealing with the overlap operator is an active field of
research, and even small improvements can have an impact on the large-scale lattice simulations that are being run by
the lattice QCD collaborations worldwide.

The overlap operator is essentially given by the sign function of its kernel, which we assume is the usual Hermitian
Wilson operator HW = γ5DW (see [5] for the notation). On the lattice, this operator is represented by a sparse matrix,
and on current production lattices the dimension of this matrix can be as large as 108 ∼ 109. The main numerical effort
lies in the inversion of the overlap operator, which is done by iterative methods and requires the repeated application of
the sign function of HW on a vector. At zero chemical potential µ, HW is Hermitian, and many sophisticated methods
have been developed for this case (see, e.g., [6]). However, one can also study QCD at nonzero quark chemical
potential (or, equivalently, density), which is relevant for many physical systems such as neutron stars, relativistic
heavy ion collisions, or the physics of the early universe. The overlap operator has been generalized to this case
[5, 7]. While the result is formally similar to the one at µ = 0, it is in fact more complicated since HW becomes a
non-Hermitian matrix, of which we need to compute the sign function. This case is much less studied and the focus of

ISupported by DFG collaborative research center SFB/TR-55 “Hadron Physics from Lattice QCD”.

Preprint submitted to Elsevier October 25, 2018

ar
X

iv
:0

91
0.

10
48

v2
 [

he
p-

la
t]

 1
4

M
ay

 2
01

0

the present paper, which is a natural continuation of earlier work [8]. For simplicity we will still refer to HW = γ5DW

as the “Hermitian” Wilson operator.
In mathematical terms, we investigate the computation of f (A)b, where A ∈ Cn×n is non-Hermitian and f is a

general function defined on the spectrum of A such that the extension of f to matrix arguments is defined. For a simple
definition of matrix functions we assume that A is diagonalizable and let A = RΛR−1 be the eigendecomposition with
R ∈ Cn×n and diagonal Λ containing the eigenvalues λ1, . . . , λn ∈ C. Then the matrix evaluation of f is defined as

f (A) = R f (Λ)R−1 = R diag(f (λ1), . . . , f (λn))R−1 . (1)

Accordingly, if b = Ry ∈ Cn is a vector expressed in terms of the eigenvectors, then

f (A)b = R f (Λ)y . (2)

For a thorough treatment of matrix functions see [9]; a compact overview is given in [10]. The case f = sign will be
of particular interest. We use the standard definition sign z = sign Re(z) for z ∈ C [9], which in the physics case we
are considering was also shown to follow from the domain-wall formalism [7].

If A is large and sparse, f (A) is too costly to compute, whereas f (A)b can still be obtained in an efficient manner
via a Krylov subspace method.

The foundation for any Krylov subspace method is the computation of an appropriate basis for the Krylov subspace
Kk(A, b) = span{b, Ab, . . . , Ak−1b}. For Hermitian matrices an orthonormal basis can be built with short recurrences
using the Lanczos process. For non-Hermitian matrices the corresponding process, which again computes an or-
thonormal basis, is known as the Arnoldi process. It requires long recurrences and is usually summarized via the
Arnoldi relation

AVk = VkHk + hk+1,kvk+1eT
k . (3)

Here, Vk = [v1| · · · |vk] ∈ Cn×k is the matrix which contains the computed basis vectors (the Arnoldi vectors), Hk =

Vk
†AVk is the upper Hessenberg matrix containing the recurrence coefficients hi j, and ek denotes the k-th unit vector

of Ck. Hk being upper Hessenberg reflects the fact that the computation of the next Arnoldi vector vk+1 results in a
long recurrence since the projection of Avk on all previous vectors v1, . . . , vk has to be subtracted from Avk. Long
recurrences slow down computation and increase storage requirements, and thus become inefficient or even infeasible
if k, the dimension of the Krylov subspace, becomes large. This is the reason why in this paper we investigate two ways
to circumvent this problem for non-Hermitian matrices, i.e., restarts of the Arnoldi process and the use of the two-
sided Lanczos process. We will consider these two methods in combination with a rational function approximation to
f . In the case of two-sided Lanczos, we will also consider a direct evaluation of the function.

This paper is organized as follows. In Section 2 we describe the two alternatives just mentioned to obtain short
recurrences. In Section 3 we address several aspects of the important issue of deflation. Section 4 contains the
descriptions of four different short-recurrence algorithms to compute the sign function, all of which use the preferred
method of LR deflation. In Section 5 we discuss the choice of the rational function to approximate the sign function.
Our numerical results are presented in Section 6, and conclusions are drawn in Section 7.

2. Short recurrences for non-Hermitian matrices

For simplicity, we assume ‖b‖ = 1 from now on. The standard Krylov subspace approach, introduced in [11] (see
also [9]), to obtain approximations to the action f (A)b is to compute

f (A)b ≈ VkVk
† f (A)b = VkVk

† f (A)Vke1 ≈ Vk f (Hk)e1 (4)

for some suitable k � n. Here, e1 denotes the first unit vector. We refer to [8, 12] for a discussion in the context of
the overlap operator at nonzero chemical potential.

The approximation (4) can be viewed as a projection approach. The operator A is orthogonally projected onto
Kk(A, b), the projection being represented by Hk = Vk

†AVk. We then compute f (Hk)e1, i.e., we evaluate the matrix
function of f for the projected operator, applied to the projected vector e1 = Vk

†b. This result is finally lifted back
to the larger, original space by multiplication with Vk. The matrix function f (Hk), where Hk is of small size, can be
evaluated using existing schemes for matrix functions, e.g., by computing the eigendecomposition of Hk or by using
iterative schemes like, in the case of f = sign, Roberts’ iterative scheme based on Newton’s method, see, e.g., [9].

2

2.1. Restarting the Arnoldi process

To prevent recurrences from becoming too long for (4) one could, in principle, use a restart procedure. This means
that one stops the Arnoldi process after kmax iterations. At this point we have a, possibly crude, approximation (4) to
f (A)b, and to allow for a restart one now has to express the error of this approximation anew as the action of a matrix
function, f1(A)b1, say. It turns out that this can indeed be done, see [13], at least in theory, with f1 defined as a divided
difference of f with respect to the eigenvalues of Hkmax and with b1 = vkmax , the last Arnoldi vector of the previous step.
Unfortunately, however, this may result in a numerically unstable process, so that after a few restarts the numerical
results become useless. For details, see [13].

An important exception arises when f is a rational function of the form

f (t) =

s∑
i=1

ωi

t − σi
. (5)

We then have

f (A)b =

s∑
i=1

ωix(i) , (6)

where the x(i), i = 1, . . . , s, are solutions of the s shifted systems

(A − σiIn)x(i) = b (7)

and In is the n × n unit matrix (we will frequently suppress the index on I). For A large and sparse, these shifted
systems cannot be solved efficiently by direct methods. Using the Arnoldi projection approach outlined before, the
current approximation xk for f (A)b is obtained as

xk =

s∑
i=1

ωix
(i)
k with x(i)

k = Vk(Hk − σiIk)−1e1 , i = 1, . . . , s . (8)

Note that Krylov subspaces are shift invariant, i.e., Kk(A, b) = Kk(A−σiI, b), and that the Arnoldi process applied
to A − σiI instead of A produces the same set of Arnoldi vectors, i.e., the same matrices Vk with Hk replaced by
the shifted counterpart Hk − σiI, see [14, 15]. This shows that the vectors x(i)

k in (8) are the iterates of the full
orthogonalization method FOM, see [16], for the linear systems

(A − σiI)x = b . (9)

A crucial observation is that for any k the individual residuals r(i)
k = b − (A − σiI)x(i)

k of the FOM iterates are just
scalar multiples of the Arnoldi vector vk+1, see, e.g., [17, 18], i.e.,

r(i)
k = ρ(i)

k vk+1 , i = 1, . . . , s , (10)

with collinearity factors ρ(i)
k ∈ C. The error ek = f (A)b − xk of the approximation at step k can therefore be expressed

as

ek = f1(A)vk+1 , where f1(t) =

s∑
i=1

ωiρ
(i)
k

t − σi
. (11)

This allows for a simple restart at step kmax of the Arnoldi process, with the new function f1 again being rational
with the same poles as f . For this reason, the stability problems that are usually encountered with restarts for general
functions f do not occur here.

The restart process just described can also be regarded as performing restarted FOM for each of the individual
systems (A − σiI)x = b, i = 1, . . . , s (and combining the individual iterates appropriately), the point being that,
even after a restart, we need only a single Krylov subspace for all s systems, see [18]. Restarted FOM is not the only
“multishift” solver based on a single Krylov subspace to compute approximations to f (A)b by combining approximate
solutions to (A −σiI)x = b. An important alternative to FOM is to use restarted GMRES for families of shifted linear

3

systems as presented in [19]. This method also relies on the restarted Arnoldi process, but now a difference has to
be made between the seed system, for which “true” restarted GMRES is performed, and the other systems, for which
a variant of GMRES is performed which keeps the residuals collinear to that of the seed system. The convergence
analysis in [19] shows that this approach is justified if A is positive real (i.e., Re(x†Ax) > 0 for all x , 0) and all shifts
are negative.1 Indeed then, taking as the seed system the one belonging to the shift which is smallest in modulus, σ1
say, the residuals of all the other systems — for which we do not perform “true” GMRES — are smaller in norm than
the residual for σ1. But for the first system we do perform true restarted GMRES which is known to converge under
the assumptions made.

2.2. The two-sided Lanczos process

Another way to obtain short recurrences when computing a basis for the Krylov subspaces for non-Hermitian
matrices is to replace the Arnoldi process by the two-sided Lanczos process. The two-sided Lanczos process builds
two biorthogonal bases v1, . . . , vk and w1, . . . ,wk for the two Krylov subspaces Kk(A, b) and Kk(A†, b̃), respectively.
Here, b̃ is a so-called shadow vector which can be chosen arbitrarily. We always chose b̃ = b motivated by the fact
that then for µ → 0 one recovers the standard Lanczos method for which the projection on the Krylov subspace (see
(14) below) is orthogonal. With Vk = [v1| · · · |vk] and Wk = [w1| · · · |wk] we thus have Vk

†Wk = Ik, and the resulting
recurrences can be summarized as

AVk = VkHk + hk+1,kvk+1eT
k , (12)

A†Wk = WkHk
† + h̄k,k+1wk+1eT

k , (13)

where Hk = W†k AVk is tridiagonal. Note that an iteration will now require two matrix-vector multiplications, one by
A and one by A†. In principle, the choice of b̃ can substantially influence the two-sided Lanczos process, which can
even break down prematurely or run into numerical instabilities. With our choice of b̃ = b such undesirable behavior
never occurred in our numerical experiments.

The matrix VkWk
† now represents an oblique projection, and in analogy to (4) we get the approximations

f (A)b ≈ VkWk
† f (A)b = VkWk

† f (A)Vke1 ≈ Vk f (Hk)e1. (14)

A first report on the application of (14) to the overlap operator with chemical potential can be found in [21].
If f is a rational function, see (5), the approximation (14) can be expressed as

f (A)b ≈
s∑

i=1

ωix
(i)
k with x(i)

k = Vk(Hk − σiI)−1e1 . (15)

Since, just as the Arnoldi process, the two-sided Lanczos process creates the same vectors vk,wk if one passes
from A to A − σiI with the projected matrix Hk passing to Hk − σiI, this shows that for all i the vectors x(i)

k are just
the BiCG iterates for the systems (A −σiI)x = b. In other words: If f is a rational function, the approximation (14) is
equivalent to performing “multishift” BiCG, see [17, 22] (and recombining the individual iterates x(i)

k as
∑s

i=1 ωix
(i)
k).

Although no breakdowns were observed in the numerical experiments of Ref. [20], for reasons of numerical stability
one might prefer using the BiCGStab [23] or QMR method [24] instead of BiCG. Both also rely on the two-sided
Lanczos process, and efficient multishift versions exist as well, see [17, 22, 25].

2.3. Summary and comparison

To summarize, so far we have presented the following approaches to developing short-recurrence methods to
iteratively approximate f (A)b:

1. Methods based on restarted Arnoldi:

1In our case, A = H2
W is positive real if all the eigenvalues of HW have their angles in (− π4 ,

π
4) ∪ (3π

4 ,
5π
4), which will be true if µ is sufficiently

small. Experimentally, even for larger values of µ, we did not encounter any convergence problems in numerical experiments [20].

4

a) Approximate f by a rational function g. Then use multishift restarted FOM or multishift restarted GMRES
for g(A)b.

b) Apply the restarted Arnoldi process directly. As discussed at the beginning of Section 2.1, this is not
possible in computational practice because of stability problems.

2. Methods based on two-sided Lanczos:

a) Approximate f by a rational function g. Then use multishift BiCG/BiCGStab/QMR for g(A)b.

b) Use directly the approximation Vk f (Hk)e1 to the oblique projection VkWk
† f (A)b for any f , see (14).

The corresponding algorithms will be given in Section 4.
Note that short recurrences, in principle, result in constant work per iteration. However, for approach 2b) we will

have to evaluate f (Hk) for a k × k matrix Hk, and this work will become substantial if k is large, see Proposition 2
below.2 Also, in approach 2b) we have to store all vectors v1, v2, . . . which may become prohibitive so that a two-pass
strategy may be mandatory: The two-sided Lanczos process is run twice. In the first run, Hk is built up, but the vectors
vk,wk are discarded. Once yk = f (Hk)e1 has been computed, the Lanczos process is run again, and the vectors vk are
combined with the coefficients from yk to obtain the final approximation. Both of these drawbacks are not present in
the other approaches. These, however, rely on the fact that we must be able to replace the computation of f (A)b by
g(A)b with a sufficiently precise rational approximation g to f .

3. Deflation

In [8] two approaches to deflate eigenvectors were proposed for the Krylov subspace approximation (4). These
deflation techniques use eigenvalue information, namely Schur vectors (Schur deflation) or left and right eigenvectors
(LR deflation) corresponding to some “critical” eigenvalues. Critical eigenvalues are those which are close to a
singularity of f since, if these are not reflected very precisely in the Krylov subspace, we get a poor approximation.
In case of the sign function the critical eigenvalues are those close to the imaginary axis. In this section we describe
both deflation methods and show how they can be combined with multishifts so that they can be used in approaches
based on a rational approximation. We point out a serious disadvantage of Schur deflation, leaving LR deflation as the
method of choice. For the sake of simplicity we present the deflation techniques without taking restarts into account.
We will briefly comment on restarts after (24) below.

We start with Schur deflation. Let S m = [s1| · · · |sm] be the matrix whose columns si are the Schur vectors of m
critical eigenvalues of the matrix A. This means that we have S m

†S m = Im and

AS m = S mTm , (16)

where Tm is an upper triangular matrix with the m critical eigenvalues of A on its diagonal, see [27]. Let us note that the
Schur vectors span an invariant subspace of A, and that they can be computed via orthogonal transformations, which
is very stable numerically. The extraction of the eigenvectors themselves is a less stable process if A is non-Hermitian.

In the case of the shifted matrices A − σiI, i = 1, . . . , s, and S m, Tm computed with respect to A we have

(A − σiI)S m = AS m − σiS m = S m(Tm − σiIm) , i = 1, . . . , s . (17)

Clearly, the matrix P̃ = S mS m
† represents the orthogonal projector onto the subspace Ωm = span{s1, . . . , sm}. The

solutions to (7) are now approximated in augmented Krylov subspaces,

x(i)
k ∈ Ωm + (I − P̃)Kk(A, b) . (18)

In fact, the projected Krylov subspace (I− P̃)Kk(A, b), which is orthogonal to Ωm, is a Krylov subspace again, but now
for (I − P̃)A instead of A and (I − P̃)b instead of b: Since Ωm = range(P̃) is A-invariant, i.e., for any y there is a ỹ such
that AP̃y = P̃ỹ, we have

(I − P̃)A(I − P̃)y = (I − P̃)Ay − (I − P̃)AP̃y = (I − P̃)Ay − (I − P̃)P̃ỹ = (I − P̃)Ay (19)

2For the special case of f = sign, this problem is alleviated by a new method [26] that speeds up the evaluation of f (Hk), thereby eliminating
the O(k3) term in Proposition 2.

5

and thus

(I − P̃)Kk(A, b) = span{(I − P̃)b, (I − P̃)Ab, . . . , (I − P̃)Ak−1b}

= span{(I − P̃)b, (I − P̃)A(I − P̃)b, . . . , ((I − P̃)A)k−1(I − P̃)b}
= Kk((I − P̃)A, (I − P̃)b) . (20)

To build a basis Vk = [v1| · · · |vk] for this Krylov subspace we have to multiply by (I − P̃)A instead of A in every step,
reflecting the fact that we have to project out the Ωm-part after every multiplication by A. This may result in quite
considerable computational work: The work for one projection has cost O(nm), because each of the m Schur vectors
is usually non-sparse.

We now turn to LR deflation. The idea is essentially the same as for Schur deflation, except that we use a different
projector. As we will see below, this has a useful consequence: It removes the need to multiply by I − P̃ in every
step. Thus the O(nm) effort for the projection step has to be paid only once, instead of once per iteration (but see the
comment after Eq. (22)).

The projector we use is an oblique projector onto Ωm, defined by P = RmL†m, where Rm = [r1| · · · |rm] is the matrix
containing the right eigenvectors and L†m = [l1| · · · |lm]† is the matrix containing the left eigenvectors corresponding to
the m critical eigenvalues of A. With Λm the diagonal matrix with the m critical eigenvalues on its diagonal, the left
and right eigenvectors satisfy

ARm = RmΛm and L†mA = ΛmL†m . (21)

The left and right eigenvectors are biorthogonal and are normalized such that L†mRm = Im, thus ensuring P2 = P.
As in the Schur deflation the projected Krylov subspace (I − P)Kk(A, b) is a Krylov subspace. It is no longer

orthogonal to Ωm because the projector is oblique, but it now is a Krylov subspace for the original matrix A since both
range(P) and range(I − P) are A-invariant so that (I − P)Ay = Ay for y ∈ range(I − P). Instead of (20) we now have

(I − P)Kk(A, b) = Kk(A, (I − P)b) . (22)

Therefore, no additional projection is needed within the Arnoldi method when we build up a basis Vk = [v1| · · · |vk]
for this subspace. In computational practice, however, components outside of range(I − P) will show up gradually
due to rounding effects in floating-point arithmetic. It is thus necessary to apply (I − P) from time to time in order to
eliminate these components. We will come back to this point in Section 4.1.

The numerical accuracy of the computed eigenvectors turned out to always be sufficient in our computations.
Therefore, because of its greater efficiency, from now on we concentrate on LR rather than Schur deflation.

The overall approach is thus as follows: With the oblique projector P = RmL†m we split f (A)b into the two parts

f (A)b = f (A)(Pb) + f (A)(I − P)b . (23)

Since we know the left and right eigenvectors which make up P, using (2) we directly obtain

xP ≡ f (A)(Pb) = f (A)RmL†mb = Rm f (Λm)(L†mb) . (24)

The remaining part f (A)(I−P)b can then be approximated iteratively by any of the approaches discussed in Section 2.
Since the only effect of LR deflation is the replacement of b by (I − P)b in (4), no modifications are necessary when
using one of the restarted approaches.

There is a beneficial effect of deflation on the number of poles to use when f is approximated by a rational function
g. Let y be the coefficient vector of b when represented in the basis of right eigenvectors of A, i.e., b = Ry, and assume
that we sorted them to put the critical eigenvectors first, i.e.,

R = [Rm |R¬m] , y =

[
ym

y¬m

]
, Λ =

[
Λm 0
0 Λ¬m

]
. (25)

Then f (A)Pb = Rm f (Λm)ym and f (A)(I − P)b = R¬m f (Λ¬m)y¬m. So when approximating f (A)(I − P)b via a rational
function g, we have f (A)(I − P)b ≈ g(A)(I − P)b = R¬mg(Λ¬m)y¬m. This shows that we only have to take care that
g approximates f well on the non-critical eigenvalues (those in Λ¬m). Consequently, a good approximation can be
obtained using a smaller number of poles as compared to the situation where we would have to approximate well
on the full spectrum of A. This pole-reduction phenomenon can be very substantial, even if we deflate only a small
number of eigenvalues, see Section 6.

6

4. Algorithms

In this section we present four algorithms, corresponding to the list in Section 2.3, to compute the action (23)
of the sign function of a non-Hermitian matrix on a vector, using LR deflation for the first term f (A)(Pb) and short-
recurrence Krylov subspace methods for the remaining term f (A)(I − P)b.

4.1. Restarted Arnoldi with rational functions
In this subsection we discuss methods based on restarted Arnoldi, corresponding to 1a) in Section 2.3. We assume

that the original function f is replaced by a rational function given by (5) which approximates the original function
sufficiently well. The choice of the rational function will be discussed in Section 5.

We start with LR-deflated restarted FOM. The resulting algorithm is given as Algorithm 1, where we use (8) to
obtain the iterates for all shifted systems in the current cycle, and where we give the details on how to obtain the
collinearity factors ρ(i)

k from (10) for the residuals, see also [18]. Here, the notation FOM-LR(m, k) indicates that
we LR-deflate a subspace of dimension m and that we restart FOM after a cycle of k iterations. The vector x is the
approximation to f (A)b. After the completion of each cycle we perform a projection step to eliminate numerical
contamination by components outside of range(I − P), as discussed in Section 3 after (22).

Algorithm 1. Restarted FOM-LR(m, k)
{Input m, k = kmax, A, {σ1, . . . , σs}, {ω1, . . . , ωs}, b, L = Lm, R = Rm, Λ = Λm}

x = xP = R f (Λ)L†b
r = (I − P)b
ρ(i) = 1, i = 1, . . . , s
while not all systems are converged do {loop over restart cycles}
β = ‖r‖2
v1 = r/β
compute Vk, Hk by running k steps of Arnoldi with A
for i = 1, . . . , s do

y(i)
k = βρ(i)(Hk − σiIk)−1e1

end for
x = x + Vk

∑s
i=1 ωiy

(i)
k

r = vk+1
ρ(i) = −hk+1,keT

k y(i)
k , i = 1, . . . , s

r = (I − P)r {projection step}
end while

Since Algorithm 1 will be used in our numerical experiments, we now analyze the main contributions to its
computational cost.

Proposition 1. Let Cn denote the cost for one matrix-vector multiplication by the matrix A, and let ktot be the total
number of such matrix-vector multiplications performed. The computational cost of Algorithm 1 is given as

ktot

[
Cn + n

[
O(kmax) + O(m/kmax)

]]
. (26)

To see this, let us discuss the dominating contributions to the computational cost in one sweep of the while-loop.
For simplicity we write k instead of kmax, as we also did in the algorithm. Computing Vk and Hk with the Arnoldi
process has cost kCn + O(nk2), since for j = 1, . . . , k the j-th step requires one matrix-vector multiplication and
j inner products, vector additions and scalings. Since we can solve systems with the upper Hessenberg matrices
Hk − σiIk with cost O(k2), the total cost for the computation of all the vectors y(i)

k is O(sk2), which can be neglected
compared to the O(nk2) cost contained in the Arnoldi process. Updating x with the linear combination of the columns
of Vk has cost O(ks + nk), which can again be neglected compared to the O(nk2) cost in the Arnoldi process. The

7

final projection step has cost O(mn). Multiplying these costs by the number nsweep of sweeps through the while-loop
and using ktot = nsweepkmax gives the total cost. The initial steps prior to the while loop have cost O(mn), which is
dominated by the last term of Eq. (26).

We now formulate the LR-deflated restarted GMRES algorithm. Let us first introduce the (k + 1) × k matrix

Ĥk =

[
Hk

hk+1,keT
k

]
(27)

through which the Arnoldi relation (3) can be summarized as AVk = Vk+1Ĥk. We choose the first system (with shift
σ1) to be the seed system, i.e., the system for which we run “true” restarted GMRES. This implies that we have to
solve a least squares problem involving Ĥk − σ1 Îk to get the corresponding iterate. Here the matrix Îk denotes the
k-dimensional identity matrix extended with an extra row of zeros. For the other shifts σ2, . . . , σs we impose the
collinearity constraint for the residuals. The corresponding iterates are now obtained via solutions of linear systems.
For a detailed derivation we refer to [19], and the detailed algorithmic formulation is given in Algorithm 2.

Algorithm 2. Restarted GMRES-LR(m, k)
{Input m, k = kmax, A, {σ1, . . . , σs}, {ω1, . . . , ωs}, b, L = Lm, R = Rm, Λ = Λm}

x = xP = R f (Λ)L†b
r = (I − P)b
ρ(i)

0 = 1, i = 2, . . . , s
β = ‖r‖2
while not all systems are converged do {loop over restart cycles}

v1 = r/β
compute Vk, Ĥk by running k steps of Arnoldi for A
compute y(1)

k as the minimizer of ‖βe1 − (Ĥk − σ1 Îk)y‖2
for i = 2, . . . , s do

compute y(i)
k and ρ(i)

k as the solution of the (k + 1) × (k + 1) system
[
Ĥk − σi Îk

∣∣∣V†k+1r
] [y(i)

k
ρ(i)

k

]
= ρ(i)

0 βe1

end for
x = x + Vk

∑s
i=1 ωiy

(i)
k

r = r − Vk+1(Ĥk − σ1 Îk)y(1)
k

β = ‖r‖2
ρ(i)

0 = ρ(i)
k , i = 2, . . . , s

r = (I − P)r {projection step}
end while

4.2. Two-sided Lanczos with rational functions

We now turn to methods based on two-sided Lanczos, corresponding to 2a) in Section 2.3. In this case there is
no need for restarts because the two-sided Lanczos process uses only short recurrences anyway. We summarize a
high-level view of the resulting computational method using multishift BiCG as Algorithm 3. The changes necessary
to obtain multishift BiCGStab/QMR should be obvious.

4.3. Direct application of the two-sided Lanczos approach

We now consider the two-sided Lanczos approach for f (A)(I − P)b as given in (14), corresponding to 2b) in
Section 2.3. The resulting computational method is summarized as Algorithm 4. Note that due to the deflation
this algorithm uses a modified shadow vector: We remove from b all critical eigenvector components belonging to
the right eigenvectors of A†, i.e., the left eigenvectors of A. With this modified shadow vector, the biorthogonality
relation enforced by the two-sided Lanczos process numerically helps keeping the computed basis for K(A, r) free of

8

Algorithm 3. BiCG-LR(m)
{Input m, A, {σ1, . . . , σs}, {ω1, . . . , ωs}, b, L = Lm, R = Rm, Λ = Λm}

xP = R f (Λ)L†b
r = (I − P)b
for k = 1, 2, . . . until all systems are converged do

compute the k-th BiCG iterates x(i)
k , i = 1, . . . , s, for the systems (A − σiI)x(i) = r

end for
x = xP +

∑s
i=1 ωix

(i)
k

Algorithm 4. Direct two-sided Lanczos-LR(m, k)
{Input m, k, A, b, L = Lm, R = Rm, Λ = Λm}

xP = R f (Λ)L†b
r = b − RL†b
r̃ = b − LR†b {the modified shadow vector}
put v1 = r, β = ‖r‖2, choose w1 = r̃ and normalize s.t. v†1w1 = 1
for j = 1, 2, . . . , k do

update H j, compute v j+1 and w j+1 from the two-sided Lanczos process (12), (13)
end for
put xk = xP + β · Vk f (Hk)e1

contributions from the right critical eigenvectors, as it should be in exact arithmetic. In Algorithm 4, the parameter m
denotes the number of deflated eigenvalues, and k is the maximum dimension of the Krylov subspace being built, a
parameter which has to be fixed a priori.

We now analyze the main contributions to the computational cost of Algorithm 4, which will also be used in our
numerical tests.

Proposition 2. Let Mn denote the cost for one matrix-vector multiplication by the matrix A, and let ktot be the total
number of iterations performed, i.e., ktot = k from Algorithm 4. The computational cost of Algorithm 4 is given as

2ktotMn + O(ktotn) + O(mn) + O(k3
tot). (28)

To see this, we discuss the dominating contributions to the computational cost as we did for Algorithm 1. The
initialization phase has cost O(mn), since R, L ∈ Cn×m. In each sweep through the for-loop, updating H j and the
Lanczos vectors has cost 2Mn +O(n), which gives a total of 2ktotMn +O(ktotn). The last line of the algorithm requires
O(k3

tot) operations to compute f (Hktot) and additional O(ktotn) operations to get xktot .

5. Choice of the rational function

In this section we address the issue of how to find good rational approximations to the sign function in the non-
Hermitian case.

In the Hermitian case, if we know intervals [−b,−a], [a, b] which contain the (deflated) spectrum of A, the sign
function of A can be approximated using the Zolotarev best rational approximation, see [28] and, e.g., [29, 6]. Using
the Zolotarev approximation on non-Hermitian matrices gives rather poor results, unless all eigenvalues are close
to the real axis (see the left plot in Figure 1). A better choice for generic non-Hermitian matrices is the rational
approximation originally suggested by Kenney and Laub [30] and used by Neuberger [31, 32] for vanishing chemical
potential,

sign(t) ≈ gs(ct) , where gs(t) =
(t + 1)2s − (t − 1)2s

(t + 1)2s + (t − 1)2s . (29)

9

Real(t)

Im
ag

(t
)

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

−16

−14

−12

−10

−8

−6

−4

−2

0

Real(t)

Im
ag

(t
)

−15 −10 −5 0 5 10 15
−10

−5

0

5

10

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 1: Error of the Zolotarev rational approximation (left) and the Neuberger rational approximation (right). Both rational approximations are
of the form gs(t) = t

∑s
i=1 ωi/(t2 − σi) with σi < 0. We took s = 10 in both cases and plotted the contours for log10(g10(t) − sign(t)). We chose

a = 1 and b = 10 for the Zolotarev approximation, and c = 1/
√

10 for the Neuberger approximation. The white spots on the imaginary axis mark
the poles t = ±i

√
−σi of the rational approximation that lie in the interval i[−10, 10].

Note that gs(t) = gs(1/t), and gs(t) = tanh (2s atanh t) for |t| < 1. The partial fraction expansion of gs is known to be

gs(t) = t
s∑

i=1

ωi

t2 − σi
with ωi =

1
s

cos−2
(
π

2s

(
i −

1
2

))
, σi = − tan2

(
π

2s

(
i −

1
2

))
, (30)

see [30, 31]. In (29), c > 0 is a parameter which one chooses to minimize the number of poles s of the partial
fraction expansion (30), see [6] and the discussion after Theorem 1 below. Whereas for the Zolotarev approximation
the regions of good approximation are concentrated along the real axis, the approximation gs(t) approaches sign(t)
well on circles to the left and right of the imaginary axis, see the right plot in Figure 1. For this reason, the Neuberger
approximation is better suited for generic non-Hermitian matrices. All we need is some a priori information on the
spectrum from which we can determine an appropriate circle C in the right half-plane, centered on the real axis,
such that C together with −C contains all the eigenvalues. We then can compute the degree s of the Neuberger
approximation such that the sign function is approximated to a given accuracy on C ∪ −C.

The following theorem gives the insight necessary for this approach to work.

Theorem 1. For given s and ε > 0 we have

|es(t)| = |gs(t) − sign(t)| ≤ ε for t ∈ Cs,ε or − t ∈ Cs,ε , (31)

where Cs,ε is the circle with radius R = 2δ(ε, s)/[δ(ε, s)2 − 1] and center M = [δ(ε, s)2 + 1]/[δ(ε, s)2 − 1], with
δ(ε, s) = (2/ε + 1)1/(2s).

Proof. Assume that t is in the right half-plane (the case of t in the left half-plane can be treated in a completely
analogous manner). With z = [(t + 1)/(t− 1)]2s we write gs(t) = (z− 1)/(z + 1) such that es(t) = gs(t)− 1 = −2/(z + 1).
Therefore |es(t)| ≤ ε if and only if |z + 1| ≥ 2/ε.

Since |z| − 1 ≤ |z + 1|, a sufficient condition for |es(t)| ≤ ε is |z| − 1 ≥ 2/ε, which is equivalent to∣∣∣∣∣ t + 1
t − 1

∣∣∣∣∣ ≥ (
2
ε

+ 1
)1/(2s)

= δ(ε, s) . (32)

Let t = x + iy be on the circle Cs,ε , i.e., (x − M)2 + y2 = R2. Then∣∣∣∣∣ t + 1
t − 1

∣∣∣∣∣2 =
(x + 1)2 + y2

(x − 1)2 + y2

=
(x + 1)2 + R2 − (x − M)2

(x − 1)2 + R2 − (x − M)2

=
2x(M + 1) + 1 + R2 − M2

2x(M − 1) + 1 + R2 − M2 . (33)

10

In fact we have 1 + R2 − M2 = 1 + (R − M)(R + M) = 1 − δ(ε,s)−1
δ(ε,s)+1 ·

δ(ε,s)+1
δ(ε,s)−1 = 0 and thus

∣∣∣∣∣1 + t
1 − t

∣∣∣∣∣2 =
M + 1
M − 1

=

δ(ε,s)2+1
δ(ε,s)2−1 + 1
δ(ε,s)2+1
δ(ε,s)2−1 − 1

= δ(ε, s)2 . (34)

So we have shown that |es(t)| ≤ ε on the boundary of the circle Cs,ε , and by the maximum modulus principle this also
holds for t inside the circle. �

The parameter c in (29) can now be used in order to optimize the number of poles for a given target accuracy ε if
the spectrum of the operator is known to be contained in the union of two circles C(m, r)∪C(−m, r), where C(m, r) is
the circle {|z − m| ≤ r} and m is real, 0 < r < m. For symmetry reasons it is again sufficient to discuss only the circle
in the right half-plane, C(m, r). Note that s is a positive integer. Restricting the function gs(t) to real arguments, we
see that it is positive on (0,∞), monotonically increasing on t ∈ (0, 1], and that gs(t) = gs(1/t) as well as gs(1) = 1.
The maximum error emax = maxt∈[m−r,m+r] |1 − gs(ct)| is therefore smallest if c is chosen such that the scaled interval
[c(m − r), c(m + r)] is of the form [1/d, d]. This is the case for c = ((m + r)(m − r))−1/2 with d = ((m + r)/(m − r))1/2,
see also [6].3 For this choice of c we see that t is in C(m, r) if and only if ct is in C(M,R) with M = d2+1

2d and
R = d2−1

2d . But C(M,R) is precisely of the form that was considered in Theorem 1 with δ(ε, s) = d+1
d−1 . Therefore, if

we want the error |gs(ct) − 1| to be smaller than ε for t ∈ C(m, r), Theorem 1 tells us that it is sufficient to require
d+1
d−1 = δ(ε, s) = (2/ε + 1)1/(2s). Solving for s we see that this precision is obtained if the number s of poles satisfies

s ≥
log

(
ε
ε+2

)
2 · log

(
d−1
d+1

) . (35)

6. Numerical results

This section contains the results of several numerical experiments comparing some of the methods developed in
this paper. We only present results for Algorithms 1 and 4 since the results for Algorithms 2 and 3 are very similar to
those of Algorithm 1 [20]. Algorithms 1 and 4 as described in Section 4 were applied to compute sign(HW)b, where
HW = γ5DW (µ) is the “Hermitian” Wilson Dirac operator at nonzero chemical potential and b = (1, . . . , 1) for generic
QCD gauge field configurations on lattices with sizes 44, 64, 84, and 104. The lattice parameters are β = 5.1, mW = −2,
mq = 0, and µ = 0.3, see [5] for the notation.

In Algorithm 1 one has to decide which rational approximation to use. This decision should be made depending
on the spectrum of A. Even though in lattice QCD the eigenvalues do not move far away from the real axis for
reasonable values of µ, we adopted a conservative strategy and used the Neuberger approximation in our numerical
experiments. As we discussed at the end of section 5, in order to use a Neuberger rational approximation we have
to determine circles C(m, r) and C(−m, r) which should contain all the eigenvalues (except the ones that have been
deflated). Of course, we cannot precompute the whole spectrum, so we have to rely on a reasonable heuristics. From
the deflation process we know a parameter α > 0 such that all non-deflated eigenvalues have modulus larger than α.
We also precomputed the eigenvalue which is largest in modulus with value β > 0. The heuristics, which is confirmed
by additional numerical experiments, is to assume that for reasonable values of µ all eigenvalues are contained in
the two circles centered on the real line and intersecting it at the points α, β and −α, −β, respectively. This gives
m = (α + β)/2 and r = (β − α)/2. The number of poles to use is now given by (35) together with the corresponding
(scaled) Neuberger approximation. Note that this approach is quite defensive since it allows eigenvalues to deviate
substantially from the real axis if their real parts are not close to α, β, −α or −β. For larger lattice volumes and µ
relatively small we observed that the Zolotarev approximation based on the intervals [−β,−α] and [α, β] can be an
interesting alternative, since the spectrum deviates only marginally from the real axis. Using Zolotarev instead of
Neuberger would reduce the computational cost for the restarted FOM method since the number of poles s would be

3We thank an anonymous referee for pointing out that this discussion also shows that we could reduce the error from emax to emax/(2 − emax) if
we multiplied gs(t) by α = 2/(2 − emax).

11

reduced (since this moves the smallest shifts away from the origin, it also leads to a reduction in ktot). However, as
mentioned above, we only used the more conservative Neuberger approximation.

In Algorithm 1 one also has to decide when the iteration to solve any of the linear systems is considered to
be converged. We require the norms of the residuals to be less than ε, with ε the target accuracy of the rational
approximation defined in Eq. (31). This gives an upper bound of ≈ 2ε on the total error. In our experiments we
observed that the total error (as defined in the next paragraph) was smaller (as small as 0.1ε), which is natural since
most of the eigenvalues are in the interior of the circles C(m, r) and C(−m, r), where the approximation works better
than at the boundary.

We now turn to the question of how to determine the accuracy of the approximations to the sign function in our
numerical tests. The exact error cannot be determined because the computational cost to evaluate sign(A)b exactly
by a direct method is too large if A is large. To obtain an estimate for the error, we compute sign(A)2b (by applying
sign(A) twice in succession), which should equal b if the approximation to the sign function were exact, and then take
1
2 || sign(A)2b − b||/||b|| as a measure for the error (or accuracy). Of course, in production runs one would check the
quality of the approximation only occasionally.

In Figure 2 we compare the results of the restarted FOM-LR approximation with those of the direct two-sided
Lanczos-LR method for various lattice sizes: 44 (n = 3, 072), 64 (n = 15, 552), 84 (n = 49, 152), and 104 (n =

120, 000), and for two different deflation gaps, i.e., the modulus of the smallest non-deflated eigenvalue.4,5 The accu-
racy is shown as a function of the number of matrix-vector multiplications (left) and as a function of the CPU time on
a 2.4 GHz Intel Core 2 with 8 GB of memory (right). Although the number of matrix-vector multiplications is often
used to compare the efficiency of different iterative methods, it is not the best measure of the efficiency since it only
includes the first term in Eqs. (26) and (28), respectively.6 The total run time is a better measure since it includes the
other terms as well. Depending on the parameters actually used, some of these terms can be dominant or negligible.
E.g., the O(k3) term in the two-sided-Lanczos-LR method becomes dominant when the Krylov subspace grows. An-
other example are the O(mn) terms in both algorithms, which reflect the cost of using the deflated eigenvectors and
which could be neglected in all cases we considered. Note that for the two smaller lattices a larger fraction of the
problem fits in cache, which leads to a reduction of the run time.

In Figure 3 we show how the efficiency of both methods scales with the volume. This figure should be interpreted
with care. Since we used a constant deflation gap we expect the number of iterations (ktot resp. k) to be approximately
constant.7 This would result in a contribution to the execution time which is linearly dependent on the volume, for both
methods. However, there are several effects which obscure this linear dependence. For example, in the restarted FOM
there is a dependence on kmax. In the direct two-sided Lanczos method the O(k3) cost to compute f (Hk) dominates for
small volumes. In addition, there are the cache effects already mentioned.

The restarted FOM-LR method contains three tunable parameters: the deflation gap m, the number s of poles in
the partial fraction expansion and the restart size kmax, i.e., the maximal size of the Krylov subspace before restarting.
Figure 4 shows the effect of the restart size on the CPU time used by the restarted FOM-LR method. Clearly, there is
an optimal size which should be determined before performing production runs. The number of poles in the partial
fraction expansion is chosen adequately to achieve the desired accuracy, and strongly depends on the deflation gap. In
our numerical results the number of poles varied between 8 and 70.

7. Conclusions

At nonzero chemical potential, the overlap Dirac operator contains the sign function of the Wilson operator HW =

γ5DW , which is non-Hermitian. The by far most expensive part when applying the overlap Dirac operator to a field

4The plots in Figure 2 are for a single configuration per volume. One might ask to what extent this configuration is typical. In the present
context the main difference between configurations lies in the magnitude of their smallest Dirac eigenvalues. The removal of the latter by deflation
makes the configuration typical.

5Note that the cost of deflation, i.e., the cost to compute the m critical eigenvalues and eigenvectors, is not included in these figures (and in the
figures below) because it only needs to be paid once for each A. In the case of lattice QCD, sign(A)b has to be computed for many different b in an
iterative inverter. One should then choose m such that the total run time, including the cost of deflation (which strongly depends on the details of
A), is minimized. However, this optimization issue is not the focus of the current paper.

6Note that FOM-LR applied to Eq. (30) works with A2, so we actually have Cn = 2Mn.
7This is not necessarily so for the small lattices, where the superlinear convergence of Krylov subspace methods might become noticeable.

12

0 1000 2000 3000 4000 5000 6000
#M*v

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro
r

2sL
(0.05)

2sL
(0.1)

rFOM
(0.05)

rFOM
(0.1)

44-lattice

0 1 2 3 4 5
CPU time

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro

r

2sL
(0.1)

2sL
(0.05)

rFOM
(0.05)rFOM

(0.1)

44-lattice

0 2000 4000 6000 8000
#M*v

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro
r

2sL
(0.05)

2sL
(0.1)

rFOM
(0.05)

rFOM
(0.1)

64-lattice

0 10 20 30 40 50 60
CPU time

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro

r

2sL
(0.1)

2sL
(0.05)

rFOM
(0.1)

rFOM
(0.05)

64-lattice

0 2000 4000 6000 8000 10000
#M*v

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro
r

2sL
(0.05)

2sL
(0.1)

rFOM
(0.05)

rFOM
(0.1)

84-lattice

0 20 40 60 80 100 120
CPU time

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro

r

2sL
(0.1)

2sL
(0.05)

rFOM
(0.1)

rFOM
(0.05)

84-lattice

0 2000 4000 6000 8000 10000 12000
#M*v

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro
r

2sL
(0.1)

2sL
(0.05)

rFOM
(0.1)

rFOM
(0.05)

104-lattice

double-pass

single-pass

0 50 100 150 200 250 300 350
CPU time

1x10-10

1x10-8

1x10-6

1x10-4

0.01

er
ro

r

2sL
(0.05)

2sL
(0.1)

rFOM
(0.05)

rFOM
(0.1)

104-lattice

Figure 2: Comparison of the accuracy of the restarted FOM-LR algorithm (rFOM) and the direct two-sided Lanczos-LR method (2sL) as a function
of the number of matrix-vector multiplications (left) and the CPU time in seconds (right) for a 44 (row 1), 64 (row 2), 84 (row 3), and 104 (row 4)
lattice configuration. Each plot shows data for two different deflation gaps, given in parentheses. The restart size used in the restarted FOM-LR
algorithm is kmax = 30 for the 44 lattice, kmax = 40 for the 64 and 84 lattices and kmax = 50 for the 104 lattice.

13

1000 10000 100000
dimension

1

10

100

1x103

CP
U

 ti
m

e

2sL
(0.1)

2sL
(0.05)

rFOM
(0.1)

rFOM
(0.05)

44

64
84

104

Figure 3: Run time (in seconds) for the restarted FOM-LR algorithm and the direct two-sided Lanczos-LR method as a function of the matrix size
to achieve an accuracy of 10−8. The run time does not include the cost of deflation. The deflation gaps are given in parentheses, and the restart
sizes are the same as in Figure 2. The data point for 2sL(0.05) on a 104 lattice (open circle) was computed in double-pass for memory reasons.

20 40 60 80 100 120 140
restart size

0

500

1000

1500

2000

ite
ra

tio
ns

0

10

20

30

40

50

CP
U

 ti
m

e

iterations

CPU

20 40 60 80 100 120 140
restart size

0

500

1000

1500

2000
ite

ra
tio

ns

0

50

100

150

200

250

CP
U

 ti
m

e

iterations

CPU

Figure 4: Dependence of the number of iterations and run time (in seconds) on the restart size for the restarted FOM-LR method to achieve an
accuracy of 10−8 for an 84 configuration (left) and a 104 configuration (right). The deflation gap is 0.1 in both cases.

vector b — the standard step in any iterative solver for the overlap Dirac operator — is the computation of the action
of sign(HW) on b. As a step towards developing computationally feasible methods for the dynamical simulation of
overlap fermions at nonzero chemical potential, we proposed in this paper several short-recurrence Krylov subspace
methods to efficiently compute sign(HW)b.

One class of methods is based on restarts of the Arnoldi process and requires a precise rational approximation for
the sign function on the (complex) spectrum of the Wilson operator. This means that we need to have information
on the location of the spectrum in the complex plane and that we have to adapt the number of poles in the rational
approximation accordingly. The storage requirements for these methods depend on the restart value, a parameter
which has to be tuned to be optimal, and the number of poles in the rational approximation. Storage does not depend
on the number of iterations to be performed.

The other class of methods relies on the two-sided Lanczos process. We can use a rational function approximation,
in which case the comments made in the previous paragraph apply as well, except that there is no restart. Alternatively,
the sign function can be evaluated directly. In that case, if a two-pass strategy is used, the storage requirements are
minimal; otherwise storage increases linearly with the number of iterations. No a priori knowledge on the spectrum
is required. If the number of iterations to be performed gets large, the work spent in evaluating the sign function
of the projected operator, which is represented by a tridiagonal matrix, becomes decisive in terms of computational
cost. Therefore, the methods based on a rational function approximation were faster in the numerical experiments
that we performed on lattices with sizes ranging from 44 to 104. However, fast methods are currently being developed
to compute the sign of the projected tridiagonal matrix, which will speed up the direct two-sided Lanczos method
substantially [26].

For both classes of methods the deflation of critical eigenvalues is an important ingredient towards efficiency. We
showed that LR deflation is to be preferred to Schur deflation.

14

Acknowledgements

We would like to thank Rémy Lopez, who during his internship at the University of Wuppertal worked out the C
implementation of the Arnoldi based methods.

References

[1] R. Narayanan, H. Neuberger, A construction of lattice chiral gauge theories, Nucl. Phys. B443 (1995) 305–385. arXiv:hep-th/9411108.
[2] H. Neuberger, Exactly massless quarks on the lattice, Phys. Lett. B417 (1998) 141–144. arXiv:hep-lat/9707022.
[3] P. H. Ginsparg, K. G. Wilson, A remnant of chiral symmetry on the lattice, Phys. Rev. D25 (1982) 2649.
[4] M. Lüscher, Exact chiral symmetry on the lattice and the Ginsparg-Wilson relation, Phys. Lett. B428 (1998) 342–345. arXiv:hep-lat/

9802011.
[5] J. C. R. Bloch, T. Wettig, Overlap Dirac operator at nonzero chemical potential and random matrix theory, Phys. Rev. Lett. 97 (2006) 012003.

arXiv:hep-lat/0604020.
[6] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, H. A. van der Vorst, Numerical methods for the QCD overlap operator. I: Sign-function

and error bounds, Comput. Phys. Commun. 146 (2002) 203–224. arXiv:hep-lat/0202025.
[7] J. C. R. Bloch, T. Wettig, Domain-wall and overlap fermions at nonzero quark chemical potential, Phys. Rev. D76 (2007) 114511. arXiv:

0709.4630.
[8] J. C. R. Bloch, A. Frommer, B. Lang, T. Wettig, An iterative method to compute the sign function of a non- Hermitian matrix and its

application to the overlap Dirac operator at nonzero chemical potential, Comput. Phys. Commun. 177 (2007) 933–943. arXiv:0704.3486.
[9] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, 2008.

[10] A. Frommer, V. Simoncini, Matrix Functions, Vol. 13 of Mathematics in Industry, Springer, Heidelberg, 2008, Ch. 3, pp. 275–303.
[11] H. van der Vorst, An iterative solution method for solving f (A)x = b, using Krylov subspace information obtained for the symmetric positive

definite matrix A., J. Comput. Appl. Math. 18 (1987) 249–263.
[12] J. C. R. Bloch, T. Wettig, A. Frommer, B. Lang, An iterative method to compute the overlap Dirac operator at nonzero chemical potential,

PoS LAT2007 (2007) 169. arXiv:0710.0341.
[13] M. Eiermann, O. Ernst, A restarted Krylov subspace method for the evaluation of matrix functions, SIAM J. Numer. Anal. 44 (2006) 2481–

2504.
[14] B. N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear equations, Linear Algebra Appl. 29 (1980)

323–346.
[15] C. C. Paige, B. N. Parlett, H. A. van der Vorst, Approximate solutions and eigenvalue bounds from Krylov subspaces, Numer. Linear Algebra

Appl. 2 (2) (1995) 115–134.
[16] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, 2003.
[17] A. Frommer, BiCGStab(l) for families of shifted linear systems, Computing 70 (2) (2003) 87–109.
[18] V. Simoncini, Restarted full orthogonalization method for shifted linear systems, BIT Numerical Mathematics 43 (2003) 459–466.
[19] A. Frommer, U. Glässner, Restarted GMRES for shifted linear systems, SIAM J. Sci. Comput. 19 (1998) 15–26.
[20] K. Schäfer, Krylov subspace methods for shifted unitary matrices and eigenvalue deflation applied to the Neuberger Operator and the matrix

sign function, Ph.D. thesis, University of Wuppertal (2008).
[21] J. C. R. Bloch, T. Breu, T. Wettig, Comparing iterative methods to compute the overlap Dirac operator at nonzero chemical potential, PoS

LATTICE2008 (2008) 027. arXiv:0810.4228.
[22] B. Jegerlehner, Krylov space solvers for shifted linear systems (1996). arXiv:hep-lat/9612014.
[23] H. A. van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM

J. Sci. Stat. Comput. 13 (2) (1992) 631–644.
[24] R. W. Freund, N. M. Nachtigal, QMR: a Quasi-Minimal Residual Method for Non-Hermitian Linear Systems, Numer. Math. 60 (1991)

315–339.
[25] R. W. Freund, Solution of Shifted Linear Systems by Quasi-Minimal Residual Iterations, in: L. Reichel, A. Ruttan, R. S. Varga (Eds.),

Numerical Linear Algebra, W. de Gruyter, 1993, pp. 101–121.
[26] J. C. R. Bloch, S. Heybrock, A nested Krylov subspace method to compute the sign function of large complex matrices (2009). arXiv:

0912.4457.
[27] G. H. Golub, C. F. van Loan, Matrix Computations, 3rd Edition, Johns Hopkins University Press, 1996.
[28] E. I. Zolotarev, Application of elliptic functions to the question of functions deviating least and most from zero, Zap. Imp. Akad. Nauk. St.

Petersburg 30 (1877).
[29] D. Ingerman, V. Druskin, L. Knizhnerman, Optimal finite difference grids and rational approximations of the square root. I. Elliptic problems,

Comm. Pure Appl. Math. 53 (8) (2000) 1039–1066.
[30] C. Kenney, A. Laub, A hyperbolic tangent identity and the geometry of Padé sign function iterations, Numer. Algorithms 7 (2-4) (1994)

111–128.
[31] H. Neuberger, A practical implementation of the overlap Dirac operator, Phys. Rev. Lett. 81 (1998) 4060–4062. arXiv:hep-lat/9806025.
[32] H. Neuberger, The overlap Dirac operator, in: A. Frommer, T. Lippert, B. Medeke, K. Schilling (Eds.), Numerical challenges in Lattice

Quantum Chromodynamics, Springer Berlin, 2000, pp. 1–17. arXiv:hep-lat/9910040.

15

http://arxiv.org/abs/hep-th/9411108
http://arxiv.org/abs/hep-lat/9707022
http://arxiv.org/abs/hep-lat/9802011
http://arxiv.org/abs/hep-lat/9802011
http://arxiv.org/abs/hep-lat/0604020
http://arxiv.org/abs/hep-lat/0202025
http://arxiv.org/abs/0709.4630
http://arxiv.org/abs/0709.4630
http://arxiv.org/abs/0704.3486
http://arxiv.org/abs/0710.0341
http://arxiv.org/abs/0810.4228
http://arxiv.org/abs/hep-lat/9612014
http://arxiv.org/abs/0912.4457
http://arxiv.org/abs/0912.4457
http://arxiv.org/abs/hep-lat/9806025
http://arxiv.org/abs/hep-lat/9910040

	1 Introduction
	2 Short recurrences for non-Hermitian matrices
	2.1 Restarting the Arnoldi process
	2.2 The two-sided Lanczos process
	2.3 Summary and comparison

	3 Deflation
	4 Algorithms
	4.1 Restarted Arnoldi with rational functions
	4.2 Two-sided Lanczos with rational functions
	4.3 Direct application of the two-sided Lanczos approach

	5 Choice of the rational function
	6 Numerical results
	7 Conclusions

