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Abstract

We report on a time-dependent Lippmann-Schwinger scattering theory that allows us to study the transport spectroscopy in a time-
modulated double quantum point contact system in the presence of a perpendicular magnetic field. Magnetotransport properties
involving inter-subband and inter-sideband transitions are tunable by adjusting the time-modulated split-gates and the applied
magnetic field. The observed magnetic field induced Fano resonance feature may be useful for the application of quantum switching.
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1. Introduction

Electron transport in mesoscale devices smaller than the
electron phase coherence length has received extensive stud-
ies [1]. Magnetotransport and time-dependent transport in gate-
controlled semiconducting systems are essential fundamental
entities in mesoscopic physics. Recently, It was reported that
the conductance involving Aharonov-Bohm (AB) interference
as a function of magnetic field exhibits step-like structures [2].
Sigrit et al. measured the differential conductance of an AB
interferometer by varying the bias voltage [3]. Their results
indicate that varying either the magnetic field or the electro-
static confining potentials allows the interference to be tuned.
In this work, we investigate the magneto-conductance in a dou-
ble quantum point contact (DQPC) system by controlling two
pairs of split-gate (SG) voltages for the manipulation of the dy-
namical electronic transport properties in the DQPC-confined
cavity region.

2. Model

The system under investigation is supposed to be a paraboli-
cally confined quantum channel fabricated from a modulation-
doped GaAs-based heterostructure with two-pairs of spit-gates
defining the DQPC system treated as a scattering potential
Vsc(x, y, t), as depicted in Fig. 1. The Hamiltonian describing
the system can be expressed in the form

H(t) = −
~2

2m∗

(
∇2 −

2i
l2

y∂x −
y2

l4

)
+

m∗

2
Ω2

0y2 + Vsc , (1)

in which the effective mass m∗=0.067me, and the magnetic
length l=~/(eB) is related to the perpendicular magnetic field
B=Bẑ. The characteristic confining energy ~Ω0 of the parabolic
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Figure 1: Schematic illustration of the double quantum point contact system
constructed by two pairs of split-gates with gate voltages Vg described by Vsc
in our model.

confinement is modified by the applied magnetic field leading
to the effective confining energy ~Ωω = ~

(
ω2

c + Ω2
0

)1/2
where

ωc = eB/(m∗c). The scattering potential

Vsc(x, y, t) = Vs(x, y) +

2∑
i=1

Vt(x, y) cos(ωt + φi) (2)

contains a static part Vs as well as a time-dependent part with
strength Vt and driving frequency ω. The time-modulated SGs
may have an arbitrary phase φi.

We employ the mixed momentum-coordinate representa-
tion [4] to transform the total wave function Ψ(x, y, t) =∑

n φn(y, p)ψn(p, t) into the wave function Ψ(p, y, t) in terms of
the eigenfunctions φn(y, p) of the unperturbed quantum chan-
nel. Performing the expansion allows us to obtain a coupled
nonlocal time-dependent integral equation in the momentum
space:

i~∂tψn(p, t) =
[
En(0) + K(p)

]
ψn(p, t)

+
∑

n′

∫
q

2π
Vn,n′ (p, q, t)ψn′ (q, t) . (3)

This equation describes the electron propagation of an asymp-
totic state occupying subband n along the x

¯
-direction from

Preprint submitted to Computer Physics Communications October 23, 2018

ar
X

iv
:1

00
2.

15
51

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  8

 F
eb

 2
01

0



the source electrode. Here the subband threshold En(0) =

(n + 1/2) ~Ωω is determined by the lateral confinement and the
effective kinetic energy K(p) = ~2 p2(~Ω0)2/[2m∗(~Ωω)2]. The
matrix elements of the scattering potential

Vn,n′ (p, q, t) =

∫
dy dxe−i(p−q)xφ∗n(y, p)V(x, y, t)φn′ (y, q) (4)

indicates the electrons in the subband n may be making inter-
subband transitions to the intermediate subband n′.

To proceed, it is convenient to transform the time-dependent
wave function from the time domain to the frequency domain

ψn(p, t) =

∞∑
m=−∞

e−iEmt/~ψm
n (p) , (5)

where the quasi-energy Em = E0 + m~ω. Similarly, we have
Vn,n′ (p, q, t) =

∑∞
m′=−∞ e−im′ωtVm′

nn′ (p, q) with m′ indicating the
photon sideband index. Defining the wave number of an elec-
tron occupying the subband n and the sideband m intermediate
state

1
2

(
km

n

β

)2 (~Ω0)2

~Ωω
= Em − En(0) (6)

and

Ṽm−m′
n,n′ (q, p) ≡ 2

(~Ωω)2

(~Ω0)2

β

~Ωω
Vm−m′

n,n′ (q, p) (7)

allows us to obtain the multiple scattering identity

ψm
n (q) =

(km
n

β

)2

−

(
q
β

)2−1 ∑
m′n′

∫
dp
2π

Ṽm−m′
n,n′ (q, p)ψm′

n′ (p). (8)

Taking all the intermediate states (n′,m′) into account, we can
obtain the Lippmann-Schwinger equation in the momentum
space

ψm
n (q) = ψm,0

n (q) + Gm
n (q)

×
1

2π

∑
n′,m′

∫
d
(

p
β

)
Ṽm−m′

n,n′ (q, p)ψm′
n′ (p) (9)

in terms of the unperturbed Green function Gm
n (q). Since the

incident wave ψm,0
n (q) is of the delta-function type, to achieve

exact numerical computation one has to define the T matrix

T m′,m
n′,n (q, p) = Vm′−m

n′,n (q, p) (10)

+
∑
r,s

∫
dk
2π

Vm′−s
n′,r (q, k)Gs

r(k)T s,m
r,n (k, p)

that couples all the intermediate states (r, s). The potential is
expanded in the Fourier series yields a connection between the
sidebands for constructing the T matrix

T m′,m
n′,n (q, p) = Vs,n′n(q, p)δm′−m,0

+
1
2

Vt,n′n(q, p)(δm′−m,−1 + δm′−m,1)

+
∑

r

∫
dk
2π

Vs,n′r(q, k)Gm′
r (k)T m′,m

r,n (k, p)

+
1
2

∑
r

∫
dk
2π

V+
t,n′r(q, k)Gm′+1

r (k)T (m′+1),m
r,n (k, p)

+
1
2

∑
r

∫
dk
2π

V−t,n′r(q, k)Gm′−1
r (k)T (m′−1),m

r,n (k, p) (11)

where V±t,n′r(q, k) =
∑

i Vt,n′r(q, k)e±iφi coupling the adjacent
sidebands. In terms of the T matrix, we can obtain the
momentum-space wave function

ψm′
n′ (q) = ψm′,0

n′ (q) + Gm′
n′ (q)

×
∑
n,m

∫
dk
2π

T m′,m
n′,n (q, k)ψm,0

n (k) . (12)

Performing the inverse Fourier transform to the real space and
the residue integration allows us to obtain the transmission am-
plitude of the electron wave along the x

¯
-direction

t
¯
m′,0
n′,n = δn′,nδm′,0 −

i
2km′

n′
T m′,0

n′,n

(
km′

n′ , k
0
n

)
. (13)

The time-average conductance can be obtained based on the
Landauer-Büttiker framework [5, 6]

G = G0

∞∑
m′=−∞

Tr
[

t
¯
m′,0
n′,n

(
t
¯
m′,0
n′,n

)∗]
(14)

with G0 = 2e2/h. This indicates that the transmission matrix
connecting the contribution from all the photon sideband m′ of
propagating modes has to be taken into account for the electrons
occupying arbitrary subbands below the Fermi energy.

3. Numerical Results

We assume that the system is fabricated in a high-mobility
GaAs-based heterostructure such that the effective Rydberg en-
ergy ERyd ≈ 5.9 meV and the Bohr radius aB ≈ 9.8 nm. The
confining parameter of the quantum channel is ~Ω0 = 1 meV,
the length is scaled by β−1

0 ≈ 33.7 nm, and the energy is either
in meV or in units of ~Ωω. The ~Ωω = 1.0148 meV for the
magnetic field B = 0.1 T.

The time-modulated DQPC system is described by the scat-
tering potential

Vsc(r
¯
, t) = VSG1(r

¯
, t) + VSG2(r

¯
, t) , (15)

where

VSG1 = V1(t)
[
e−αx(x+x0)2

+ e−αx(x+x0)2]
e−αy(y+y0)2

(16)

and

VSG2 = V2(t)
[
e−αx(x−x0)2

+ e−αx(x−x0)2]
e−αy(y+y0)2

(17)

with Vi(t) = Vs + Vt cos(ωt + φi) and i=1, 2. Moreover, we
select (αx, αy) = (0.5, 0.3)β2

0, and (x0, y0) = (8, 3)β0 such that
the gate-width ∼ 80 nm and the SG-confined cavity area ∼
540 × 200 nm2.

In Fig. 2, we show the conductance as a function of incident
energy for the time-modulated DQPC with applied magnetic
field B = 0.1 T (blue solid) in comparison with the zero mag-
netic field situation (red dashed). The DQPC system is con-
fined by Vs = 6.0 meV, and the time-modulation with strength
Vt = 1.5 meV and frequency ω = 0.17Ωω. In addition, we have
assumed that the phase difference between the two split-gates
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Figure 2: Conductance as a function of incident energy for the cases of B =

0.0 T (red dashed) and B = 0.1 T (blue solid). The other parameters are Vs =

6.0 meV, Vt = 1.5 meV, φ = π, and ω = 0.17Ωω.

Figure 3: Probability density with magnetic field B = 0.1 T at the Fano peak
with electronic energy E/~Ωω = 1.918 for the electron incident from the sub-
band n = 0 (left) and n = 1 (right).

SG1 and SG2 is φ = φ1−φ2 = π. In general, the electron kinetic
energy turns out to play a role of suppressing the quasibound
state feature, namely suppressing the side-peak structures be-
neath a main resonance peak in conductance. However, in the
high kinetic energy regime, an appropriate magnetic field may
induce the time-modulated Fano antiresonance features at ener-
gies E/~Ωω ≈ 1.75, 1.92, 2.16 as well as the time-modulated
Breit-Winger dip feature at E/~Ωω ≈ 2.38. Below, we fo-
cus on the robust Fano line-shape feature: The Fano-peak is
at E/~Ωω = 1.918 and the Fano-dip is at E/~Ωω = 1.920, as
depicted in Fig. 2.

In order to get better understanding of the magnetic-field in-
duced time-nodulated Fano antiresonance feature, we explore
the electronic probability density with energies around the Fano
line-shape. It is clearly shown in Fig. 3 that the electron occupy-
ing the first subband with higher kinetic energy favors to form
a long-lived (4,2) localized bound state in the cavity formed by
the DQPC system. However, the electron occupying the second
subband with lower kinetic energy is not fitting to the charac-
teristic energies in the cavity and hence forming a short-lived
(4,1) extended state. The interference of the n = 0 localized
state and the n = 1 extended state induces the Fano peak at the
energy E/~Ωω = 1.918.

The probability density features for the electron with inci-
dent energy at E/~Ωω = 1.920 are demonstrated in Fig. 4.
The electrons occupying the lowest subband (n = 0) can also
form a long-lived (4,2) localized state, but with higher coupling

Figure 4: Probability density with magnetic field B = 0.1 T at the Fano dip with
electronic energy E/~Ωω = 1.920 for the electron incident from the subband
n = 0 (left) and n = 1 (right).

to source-lead thus forming the Fano-dip line-shape. For the
electron occupying the second subband (n = 1) at E/~Ωω =

1.920, the extended (4,1) state is weaker than the electron with
E/~Ωω = 1.918. The energy difference δEFano ≈ 2.03 µeV be-
tween the Fano-peak and the Fano-dip should be within the ob-
servable resolution via the current transport measurement tech-
nique.

4. Summary

In summary, we have presented coherent magnetotransport
numerical calculation on a time-modulated double QPC sys-
tem and demonstrated dynamical control of the magnetic-field
induced Fano interference by manipulating the applied mag-
netic field. It was reported that the anti-symmetric ac split-gate
voltage can be utilized to induce the Fano resonance [7]. Dif-
ferently, we have reported here by tuning an appropriate mag-
netic field in the DQPC system with symmetric ac split-gates
to induce the Fano resonance that becomes non-resonant by
switching off the applied magnetic field. This robust magnetic
field induced dynamic Fano resonance feature may be useful
for the magneto-control of quantum switching in arbitrary time-
modulated mesoscopic systems.
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