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Multicanonical Sampling of Rare Trajectories in Chaotic Dynamical Systems
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Abstract

In chaotic dynamical systems, a number of rare trajectories with low level of chaoticity are embedded in chaotic sea,
while extraordinary unstable trajectories can exist even in weakly chaotic regions. In this study, a quantitative method
for searching these rare trajectories is developed; the method is based on multicanonical Monte Carlo and can estimate
the probability of initial conditions that lead to trajectory fragments of a given level of chaoticity. The proposed method
is successfully tested with four-dimensional coupled standard maps, where probabilities as small as 10−14 are estimated.
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1. Introduction

In chaotic dynamical systems, a number of rare trajec-
tories with low level of chaoticity are embedded in chaotic
sea, which show apparently small values of Lyapunov ex-
ponents. Also, there can be extraordinary unstable trajec-
tories with apparently large values of Lyapunov exponent
even in weakly chaotic systems.

Numerical search for such rare trajectories and quan-
titative estimation of their probabilities are important for
the understanding of these dynamical systems. Even when
Lyapunov exponent is converged to a unique value almost
everywhere in a chaotic sea, the probability of finite-length
trajectories of a given chaoticity reflects transient behav-
ior of the system and hence provides information on fine
structures in the state space [13].

In this paper, we develop a method for calculating
probabilities of initial conditions that lead to trajectory
fragments of a given level of chaoticity. This method is
based on the multicanonical Monte Carlo algorithm [1],
which is a version of dynamic Monte Carlo (Markov
chain Monte Carlo) [3, 4] and provides a powerful tool
for calculating small probabilities under a given probabil-
ity measure. The proposed method is tested with four-
dimensional coupled standard maps. It is shown that the
method can deal with rare events of very small probabili-
ties such as ∼ 10−14.

The method proposed in this paper can be regarded as
a variant of the method recently introduced in Yanagita
and Iba [5]; the proposed method uses the multicanon-
ical Monte Carlo instead of the replica exchange Monte
Carlo used in [5]. A novelty in this paper is that proba-
bilities of initial conditions that generate rare trajectories
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are successfully estimated, while no quantitative result is
obtained in the previous paper [5]. Also, the multicanon-
ical algorithm has advantages over the replica exchange
Monte Carlo; it enables direct computation of the desired
probabilities and is efficient in cases with first order tran-
sitions [1].

Our studies are partly motivated by the studies [6],
where rare structures with high or low chaoticity are ex-
plored by simulating fictitious particles that are moved,
split, and systematically erased; their method can be re-
garded as tracking rare “pseudo-orbits” in a parallel man-
ner. The method proposed in this paper samples initial
conditions and seems complementary to their approach.
There are also references [7, 9, 10, 11] that discuss sampling
of unstable periodic orbits in chaotic systems by dynamic
Monte Carlo or related methods. None of these studies,
however, seems to compute probabilities of rare trajectory
fragments using the multicanonical algorithm.

2. Algorithm

2.1. Forgetting Time as a Measure of Chaoticity

Let us consider a deterministic dynamical system
x(t+ 1) = ψ(x(t)) with discrete time t = 1, 2, . . . and as-
sume a trajectory x(t) originated from an initial condition
x(0) = x0. Specify a measure f for the chaoticity of the
trajectory x(t) and consider it as an integer-valued func-
tion f(x0) of the initial condition x0; for a real-valued f ,
appropriate discretization of its value is assumed. Then,
our interest is in estimating the probability

P (f̃) =
1

D

∫

δ(f(x0)− f̃)dx0

where δ is defined as δ(s) = 1 if s = 0; δ(s) = 0 otherwise.
dx0 is uniform measure on the space of initial conditions
and D is the volume of the entire space.
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An important point is the choice of f(x0); assuming fi-
nite precision arithmetic of computers, it should be some-
thing like “approximate Lyapunov exponent” of a finite
piece of the trajectory starting from x0.

A possible way is to fix the length T of the trajecto-
ries and define f(x0) as the largest eigenvalue λT (x0) of

the product
∏T
t=1 J(x(t)) of the Jacobian matrices J(x(t))

along the piece of the trajectory x(t) starting from x0.
Here (i, j)-component of J(x(t)) is given by Jij(x(t)) =
∂ψi(x)
∂xj

∣

∣

∣

x=x(t)
, where ψi and xi are ith component of the

function ψ and its argument, respectively. This way of
choosing f(x0) is, however, not suited for numerical com-
putation when λT (x0) is strongly dependent on x0. When
λT (x0) is large we should choose small T to control the
effect of round-off error. On the other hand, larger T is
desirable in the region of small λT (x0) to filter out trajec-
tories with low chaoticity. Thus, it is difficult to choose
the value of T adequate for all values of λT (x0).

Our solution is to reverse the idea and use the min-
imum value Tǫ(x0) of T that satisfies λT (x0) ǫ > 1 as a
measure of chaoticity, where ǫ is a small constant beyond
the machine epsilon; larger value of Tǫ(x0) means larger
number of time-steps required to forget the initial con-
dition and implies lower chaoticity. The switching from
f(x0) = λT (x0) to “forgetting time” f(x0) = Tǫ(x0) pro-
vides a computationally stable criterion of chaoticity, be-
cause by definition the latter is insensitive to round-off
error.

2.2. Multicanonical Algorithm

We introduce the multicanonical algorithm to estimate
the probability P (f); the algorithm consists of two stages,
training and measurement. In the training phase, we
construct the approximate probability P̃ (f) step-by-step
through dynamic Monte Carlo simulations. At each step,
we perform Monte Carlo simulation with the weight func-
tion 1/P̃ (f(x0)) using the current estimate of P̃ (f). If
P̃ (f) is a good approximation to P (f) in a prescribed in-
terval of f , the histogram h(f) is almost flat in the interval,
because

h(f) ∝
1

D

∫

δ(f(x0)− f)
1

P̃ (f(x0))
dx0 =

P (f)

P̃ (f)
≃ 1.

If h(f) is not sufficiently flat, we modify P̃ (f) until an
almost flat histogram of f is obtained. Several methods are
proposed for efficient tuning of the weight in the training
phase; in this study, we use a method due to Wang and
Landau [12]. After we obtain a good approximation of
P (f) we enter the measurement phase and perform a long
run of simulation with a fixed weight 1/P̃ (f(x0)). Then,
the final estimate P ∗(f) of P (f) is obtained as P ∗(f) ∝
h(f)P̃ (f).

The key to the implementation of the algorithm is that
the weight 1/P̃ (f(x0)) of x0 is expressed with a compos-
ite function of a univariate function P̃ (f) and a known

function f(x0); it enables easy adaptation of the weight
using outputs of the simulations. On the other hand, the
multicanonical algorithm enjoys fast mixing of the Markov
chain; sampling in a wide range of f realizes a kind of “an-
nealing” effect and the convergence becomes much better
compared with the cases where only the tail regions are
sampled.

So far we discuss the generic algorithm. To implement
the multicanonical algorithm in the present case, where
f(x0) = Tǫ(x0), we should specify dynamic Monte Carlo
algorithm for the sampling with the weight 1/P̃ (Tǫ(x0)).
Here we use the Metropolis algorithm [3, 4], in which a
candidate xnew0 is generated using a hierarchical proposal
distribution used in [5]. The candidate xnew0 is accepted
if and only if a uniform random number r ∈ [0, 1) satis-

fies r <
P̃ (Tǫ(x

old
0

))

P̃ (Tǫ(xnew
0

))
, where xold0 is the current value of x0;

to compute Tǫ(x
new
0 ) at each step of the Metropolis algo-

rithm, we simulate the trajectory from the initial condition
xnew0 until λT (x

new
0 ) ǫ > 1.

2.3. Computation of the Largest Eigenvalue

To implement the proposed algorithm for high-
dimensional dynamical systems, we should compute the
largest eigenvalue λ of the matrix JT =

∏T

t=1 J(x(t)) effi-
ciently. In this study, we approximate it using the power
method as λ ≃ ||JmT ξ||, where ξ is a constant vector of unit
length ||ξ|| = 1. We found that m = 1 often gives a good
approximation.

3. Numerical Experiments

3.1. Searching Low Chaoticity

Let us consider four-dimensional coupled standard
maps

un+1 = un −
K

2π
sin(2πvn) +

b

2π
sin(2π(vn + yn)),

vn+1 = vn + un+1,

xn+1 = xn −
K

2π
sin(2πyn) +

b

2π
sin(2π(vn + yn)),

yn+1 = yn + xn+1,

(1)

which is a well-studied example of volume preserving
maps.

First, we test the efficiency of the proposed algorithm
to find tiny tori in chaotic sea. In Fig. 1, a pair of tori in
chaos found by the algorithm is plotted on the (un, vn)-
plane; values of parameters K = 7.8 and b = 0.001 are
chosen that most of the state space is covered by a chaotic
sea. The threshold ǫ is 2−43. The values of Tǫ correspond-
ing to the initial conditions that lead to these tori are
larger than 199 and the probabilities P (Tǫ) are as small
as 10−12. The number of initial conditions tested in the
proposed method is about 4× 109.
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Figure 1: A pair of tiny tori in a chaotic sea found by the proposed
method. Projections on the (un, vn)-plane are shown. Enlargement
of a tiny area in the small circle in the left panel is given in the right
panel; further enlargement is given in the lower panel. K = 7.8 and
b = 0.001.

3.2. Probabilities P (Tǫ)

An advantage of the multicanonical algorithm is that
it computes probabilities P (Tǫ) of Tǫ under uniform sam-
pling of initial conditions. The probability of trajectory
fragments that stays long time near tiny tori and/or can-
tori will reflect fine structures of phase space, which can
be quantified by P (Tǫ). In Fig. 2, P (Tǫ) for the model (1)
is plotted. The result indicates that, in this parameter
range, the volume of small regular regions decrease under
increasing K, while increase under increasing b.

The number of initial conditions tested in the proposed
algorithm is 3 × 109 ∼ 3 × 1010 for each curve including
training phase and rejected candidates; the corresponding
computational times are 17 ∼ 125 hours using a single core
of Intel Xeon X5365, which is a quad-core CPU. These re-
sults show that the proposed method can compute proba-
bilities down to ∼ 10−14 within reasonable computational
times.

For the comparisons, results of naive random sampling
are also shown in Fig. 2. For (K, b) = (6.0, 0.1), there is
an overall agreement of the outputs following from the two
sampling approaches. For (K, b) = (7.8, 0.1), both results
are also consistent, but naive random sampling with com-
parable computational efforts (1.4× 1010 initial configura-
tions) gives meaningful results only in a high probability
region, as seen in the upper panel of Fig. 2.

In these examples, we set the number m of iteration
defined in Sec. 2.3 to unity; m = 2 and 3 are also tested
and slight differences are found in some cases.

4. Summary and Discussion

A quantitative method based on multicanonical Monte
Carlo is proposed for searching rare trajectories in chaos.
The proposed method is tested with four-dimensional cou-
pled standard maps and successfully computes the proba-
bility of the forgetting time Tǫ down to ∼ 10−14.

Applications of the proposed method to dissipative
and/or multi-basin systems will be interesting, as well as
search for highly unstable trajectories in weakly chaotic
systems. Another interesting subject is to develop a way
to relate P (Tǫ) to “escape rate” and hence interpret it
in the thermodynamic formalism [13], which connects our
approach to existing studies on large deviations in chaos.
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Figure 2: The probability P (Tǫ) is plotted as a function of K(upper
panel, b = 0.1) and b(lower panel, K = 7.8), where ǫ = 2−43. The
results of naive random sampling are shown by the symbol +, only
when more than 10 samples are available. The symbols • at the right
edge of the plot indicate values of the probability P (Tǫ ≥ 200).
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