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Abstract

Increasingly, high-performance computing is looking towards data-parallel computational devices to enhance computational per-
formance. Two technologies that have received significant attention are IBM’s Cell Processor and NVIDIA’s CUDA programming
model for graphics processing unit (GPU) computing. In this paper we investigate the acceleration of parallel hyperbolic partial
differential equation simulation on structured grids with explicit time integration on clusters with Cell and GPU backends. The
message passing interface (MPI) is used for communication between nodes at the coarsest level of parallelism. Optimizations of
the simulation code at the several finer levels of parallelism that the data-parallel devices provide are described in terms of data
layout, data flow and data-parallel instructions. Optimized Cell and GPU performance are compared with reference code perfor-
mance on a single x86 central processing unit (CPU) core in single and double precision. We further compare the CPU, Cell and
GPU platforms on a chip-to-chip basis, and compare performance on single cluster nodes with two CPUs, two Cell processors
or two GPUs in a shared memory configuration (without MPI). We finally compare performance on clusters with 32 CPUs, 32
Cell processors, and 32 GPUs using MPI. Our GPU cluster results use NVIDIA Tesla GPUs with GT200 architecture, but some
preliminary results on recently introduced NVIDIA GPUs with the next-generation Fermi architecture are also included. This paper
provides computational scientists and engineers who are considering porting their codes to accelerator environments with insight
into how structured grid based explicit algorithms can be optimized for clusters with Cell and GPU accelerators. It also provides

insight into the speed-up that may be gained on current and future accelerator architectures for this class of applications.
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PROGRAM SUMMARY

Program Title: SWsolver

Journal Reference:

Catalogue identifier:

Licensing provisions: GPL v3

Programming language: C, CUDA

Computer: Parallel Computing Clusters. Individual compute nodes
may consist of x86 CPU, Cell processor, or x86 CPU with attached
NVIDIA GPU accelerator.

Operating system: Linux

RAM: Tested on Problems requiring up to 4 GB per compute node.
Number of processors used: Tested on 1-128 x86 CPU cores, 1-32 Cell
Processors, and 1-32 NVIDIA GPUs.

Keywords: Parallel Computing, Cell Processor, GPU, Hyberbolic
PDEs

Classification: 12

External routines/libraries: MPI, CUDA, IBM Cell SDK
Subprograms used: numdiff (for test run)

Nature of problem:

MPI-parallel simulation of Shallow Water equations using high-
resolution 2D hyperbolic equation solver on regular Cartesian grids
for x86 CPU, Cell Processor, and NVIDIA GPU using CUDA.
Solution method:

SWsolver provides 3 implementations of a high-resolution 2D Shallow
Water equation solver on regular Cartesian grids, for CPU, Cell Pro-
cessor, and NVIDIA GPU. Each implementation uses MPI to divide
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work across a parallel computing cluster.

Running time:

The test run provided should run in a few seconds on all architectures.
In the results section of the manuscript a comprehensive analysis of
performance for different problem sizes and architectures is given.

1. Introduction

Recent microprocessor advances have focused on increas-
ing parallelism rather than frequency, resulting in the develop-
ment of highly parallel architectures such as graphics process-
ing units (GPUs) [1, 2] and IBM’s Cell processor [3, 4]. Their
potential for excellent performance on computation-intensive
scientific applications coupled with their availability as com-
modity hardware has led researchers to adapt computational
kernels to these parallel architectures, which are often referred
to as accelerator architectures.

This paper investigates mapping high-resolution finite vol-
ume methods for nonlinear hyperbolic partial differential equa-
tion (PDE) systems [5] onto two different types of accelerator
architecture, namely, IBM’s Cell processor and NVIDIA GPUs.
Performance on these architectures is then compared with per-
formance on Intel x86 central processing units (CPUs). The
accelerator architectures are investigated as both stand-alone
computational accelerators and as components of parallel clus-
ters. A high-resolution explicit numerical scheme is imple-
mented for a relatively simple but representative model problem
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in this class, namely, the shallow water equations. The numeri-
cal method is implemented on two-dimensional (2D) structured
grids, for three architectures (x86 CPU, GPU, and Cell), and in
parallel using the message passing interface (MPI).

A major goal of this paper is to compare the computational
performance that can be obtained on clusters with these three
types of architectures, for a 2D model problem that is represen-
tative of a large class of structured grid based simulation algo-
rithms. Simulations of this type are widely used in many ar-
eas of computational science and engineering. Another impor-
tant goal is to provide computational scientists and engineers
who are considering porting their codes to accelerator environ-
ments with insight into techniques for optimizing structured
grid based explicit algorithms on clusters with Cell and GPU
accelerators, and into the learning curve and programming ef-
fort involved. It was also our aim to write this paper in a way
that is accessible to computational scientists who may not have
specific background in Cell or GPU computing.

There is extensive related work in the literature on the use
of Cell processors and GPUs for scientific computing applica-
tions. Many of the papers in the literature deal with optimized
implementations for either Cell processors [6, 7, 8, 9] or GPUs
[10, 11, 12, 13, 14, 15]. Most of these papers deal with stan-
dalone or shared-memory hardware configurations, and do not
involve distributed memory communication and MPI. Related
work in the computational fluid dynamics area can be found in
[16, 17, 18, 19]. Work that directly compares Cell with GPU
performance is not widespread [20], and applications on par-
allel clusters with Cell and GPU accelerators have only more
recently started to come to the forefront [21, 22]. Our paper
goes further than existing work in comparing Cell with GPU
performance on clusters with MPI, and these are relevant ex-
tensions of existing work since large clusters with accelerators
are already being deployed and appear to be a promising direc-
tion for the future.

In our approach we have developed a unified code frame-
work for our model problem, for hardware platforms that in-
clude distributed memory clusters with x86 CPU, Cell and GPU
components. Several levels of parallelism are exploited (see
Fig. 1). At the coarsest level of parallelism, we partition the
computational domain over the distributed memory nodes of
the cluster and use MPI for communication. We carry out per-
formance tests on clusters provided by Ontario’s Shared Hi-
erarchical Academic Research Computing Network (SHARC-
NET, [23]) and the Juelich Supercomputing Centre (JSC, [24]).
These clusters have two CPUs, Cell processors or GPUs per
cluster node. At finer levels of parallelism, we exploit the par-
allel acceleration features provided by x86 CPUs, and Cell and
GPU devices. The x86 CPUs we use feature four cores per
CPU, and the cores provide single instruction, multiple data
(SIMD) vector parallelism through streaming SIMD extensions
(SSE). The Cell processors feature eight SIMD vector proces-
sor cores. The GPUs feature dozens of streaming multiproces-
sors with single instruction multiple thread (SIMT) parallelism.
We exploit these different levels of parallelism through opti-
mization of data layout, data flow and data-parallel instructions.
Our development code is available on our website [25] and via

the Computer Programs in Physics (CPiP) program library. We
report runtime performance results for the various levels of op-
timization performed, and first compare Cell and GPU perfor-
mance to performance on a single CPU core, as is customary
in the literature. We also compare CPU, Cell and GPU perfor-
mance on a chip-by-chip basis, on a node-by-node basis (i.e., on
single cluster nodes without MPI), and on clusters (with MPI).
Our GPU cluster results use NVIDIA Tesla GPUs with GT200
architecture, but we also include some results on recently in-
troduced NVIDIA GPUs with the next-generation Fermi archi-
tecture. Our Fermi results are preliminary: we did not further
optimize our code for the Fermi platform, but found it interest-
ing to include results that show how a code developed on the
GT200 architecture performs on Fermi. We conclude on the
suitability of the accelerator architectures studied for the appli-
cation class considered, and discuss the speed-up that may be
gained on current and future accelerator architectures for this
class of applications.

The rest of this paper is organized as follows. In Section
2 we briefly describe the class of scientific computing prob-
lems we target in this study, and the specific model problem we
have implemented. Section 3 gives a brief overview of the as-
pects of the CPU, Cell and GPU architectures that are important
for code optimization. Section 4 describes how our simulation
code implementation was optimized for the architectures un-
der consideration. Section 5 describes the clusters we use and
compares performance of the optimized simulation code on the
CPU, Cell and GPU platforms, and Section 6 formulates con-
clusions.

2. Hyperbolic PDE Simulation Problem

In this paper we target acceleration of a class of structured
grid simulations in which grid quantities are evolved from step
to step using information from nearby grid cells. One appli-
cation area where this type of successive short-range updates
are used is fluid and plasma simulation with explicit time inte-
gration, but there are many other use cases with this pattern in
the computational science and engineering field. The particu-
lar problems we study are nonlinear hyperbolic PDE systems,
which require storage of multiple unknowns in each grid cell,
and which involve a relatively large number of floating point
operations (FLOPS) per grid cell in each time step. (Note that,
in this paper, we will write FLOPS/s when we mean floating
point operations per second.) For ease of implementation and
experimentation, we chose a relatively simple fluid simulation
problem and a relatively simple but commonly used algorithmic
approach. However, these choices are representative of a large
class of existing simulation codes, and our approach can eas-
ily be generalized. Therefore, many of our findings carry over
to this general class of simulation problems. In particular, we
chose to investigate shallow water flow on 2D Cartesian grids,
using a high-resolution finite volume method with explicit time
integration [5].

Our code computes numerical solutions of the shallow water
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Figure 1: General overview of the different levels of parallelism exploited. At the coarsest level of parallelism (left) we partition
the computational domain over the distributed memory nodes of the cluster and use MPI for communication between neighboring
partitions. At the finest level of parallelism (right), we utilize SIMD vectors (CPU and Cell) or SIMT thread parallelism (GPU). At
intermediate levels, we use Local Store-sized blocks of data (Cell) or thread blocks (GPU). The actual details of the different levels
of parallelism depend on the platform and are represented more explicitly in Figs. 4 (CPU), 5 (Cell), and 7 (GPU).

equations, which are given by
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where £ is the height of the water, g is gravity, and u and v repre-
sent the fluid velocities. The gravitational constant g is taken to
be one in the test simulations reported in this paper. The shallow
water system is a nonlinear system of hyperbolic conservation
laws [5], and given an initial condition, a 2D domain and appro-
priate boundary conditions, it describes the evolution in time of
the unknown functions h(x, y, f), u(x, y,t) and v(x, y, t). We dis-
cretize the equations on a rectangular domain with a structured
Cartesian grid, and evolve the solution numerically in time us-
ing a finite volume numerical method with explicit time inte-
gration [5]. In what follows we write U = [h  hu hv]T. We
update the solution in each grid cell (i, j) using an explicit dif-
ference method. One approach to this problem is to use so-
called unsplit methods of the form
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Here, i, j are the spatial grid indices and n is the temporal index,
and F and G stand for numerical approximations to the fluxes
of Eq. (1) in the x and y directions, respectively. The vector
U ;‘j is the vector of three unknown function values in cell (i, j)
at time level n. Alternatively, one can consider a dimensional
splitting approach
k
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and this is the method we chose to implement. An advantage

of the dimensional splitting approach is that Eq. (3) leads to ac-
curacy that is in practice close to second-order time accuracy

(see [5], pp. 386, 388, 444) without the need for a two-stage
time integration. We use an expression for the numerical fluxes
F and G ([5], p. 121, Egs. (6.59)-(6.60)) that is second-order
accurate away from discontinuities, utilizing a Roe Riemann
solver ([5], p. 481) with flux limiter. The update formula for
any point (i, j) on the grid involves values from two neighbor-
ing grid points in each of the up, down, left and right directions,
leading to a nine-point stencil for grid cell updates. For paral-
lel implementations, this means that two layers of ghost cells
need to be communicated between blocks after each iteration
[5]. For numerical stability, the timestep size is limited by the
well-known Courant-Friedrichs-Lewy condition, which implies
that the timestep size must decrease proportional to the spatial
grid size as the grid is refined. Grid cell updates may be com-
puted in parallel and the arithmetic density per grid point is
high (see Table 1), which, along with the structured nature of
the grid data, makes this algorithm a good candidate for accel-
eration on Cell or GPU. The arithmetic density is computed by
calculating the minimum number of floating point operations
necessary to update all grid cells. That is, flux calculations are
counted once per cell interface and the calculation of interme-
diate results that may be reused is not counted multiple times in
the number of operations. This is a flat operation count: no spe-
cial consideration is given to square root or division operations.
It is useful to point out that, among the 360 FLOPS per grid
cell, there are 2 square roots and 16 divisions. This is important
since square roots and divisions may be evaluated in software
or on a restricted number of processor sub-components on Cell
and GPU devices (depending on the precision, see below), so
actual arithmetic density on those platforms may effectively be
higher than what is reported in Table 1. Note that our algorithm
has such a high effective arithmetic density for several reasons:
we have a coupled system of three PDEs (3x9=27 values en-
ter into the formula to update each grid value, instead of just
9 for uncoupled equations solved with the same accuracy), the



system is highly nonlinear and requires sophisticated numerical
flux formulas based on Riemann solvers ([5], p. 481), and the
flux formulas involve square roots and divisions. Since our al-
gorithm is implemented in two passes, the minimum number of
memory operations is each grid cell being read twice, and then
stored twice, in each timestep.

FLOPS per grid cell 360

Precision SP DP
Memory per grid cell | 48 Bytes | 96 Bytes
FLOPS/Byte 7.5 3.75

Table 1: The compute kernel requires a minimum of 7.5 and
3.75 FLOPS per Byte of data loaded or stored in single preci-
sion (SP) and double precision (DP), respectively.

The test problem used for the simulations in this paper has
initial conditions

o lyx oy
h(x,y,O) = Z(Z + W)-'- 1,
u(x,y,0) = v(x,y,0) =0,

on a square domain Q = [-L, L] X [-W, W]. Boundary condi-
tions are perfect walls [5].

As noted above, we have chosen a relatively simple set of hy-
perbolic equations for this optimization and performance study
paper. However, more complicated hyperbolic systems, includ-
ing the compressible Euler and Magnetohydrodynamics equa-
tions which are widely used for fluid and plasma simulations,
can be approximated numerically by the same or similar meth-
ods, and extension of our approach from 2D to 3D body-fitted
structured grids or to unsplit explicit methods is also not diffi-
cult. We have deliberately chosen this relatively simple model
problem for this paper because its simplicity allows us to ex-
plain the essential aspects of optimizing structured grid prob-
lems for Cell and GPU architectures, without being distracted
by non-essential details of a more complicated application.
Similarly, readers can easily investigate and comprehend the
details of our implementation in the simulation code that we
provide, without being overwhelmed by complications of the
application. However, the approach and conclusions of our pa-
per carry over directly to a broad class of important fluid and
plasma simulation problems and algorithms.

3. Hardware Description

In this section we give a brief overview of the aspects of the
x86 CPU, IBM Cell and NVIDIA GPU architectures that are
important for optimization of our algorithmic approach.

3.1. Intel Xeon CPU

The Intel Xeon E5430 processors have four cores, and the
particular features that are important in the context of this pa-
per are the cache-based architecture and the SIMD vector paral-
lelism provided through the streaming SIMD extensions (SSE)
mechanism. Each core has SIMD vector units that are 128 bits

wide and are capable of performing four single precision cal-
culations or two double precision calculations at the same time.
While compiler features are being developed that can automat-
ically exploit this functionality, we found that for good perfor-
mance it is at present still necessary to explicitly call intrinsic
library functions that access these SIMD capabilities efficiently
(see Section 4.1). The Intel Xeon E5430 quad-core processors
used in this study have a clockrate of 2.66GHz, a 12MB L2
cache, and each core has a 16KB L1 cache.

3.2. Cell Processor

The Cell Broadband Engine Architecture (CBEA), devel-
oped jointly by IBM, Sony, and Toshiba is a microproces-
sor design focused on maximizing computational throughput
and memory bandwidth while minimizing power consumption
[3, 4]. The first implementation of the CBEA is the Cell pro-
cessor and it has been used successfully in several large-scale
scientific computing clusters [26, 27], notably Los Alamos Na-
tional Laboratory’s petaflop-scale system Roadrunner [28].

The heterogeneous multi-core design of the Cell processor
may be thought of as a network on a chip, with different cores
specialized for different computational tasks (Fig. 2). Since the
Cell processor is designed for high computational throughput
applications, eight of its nine processor cores are vector proces-
sors, called synergistic processing elements (SPEs). The other
core is a more conventional (and relatively slow) CPU, called
the PowerPC processing element (PPE). The PPE has a 64-bit
processor (called the PowerPC processing unit (PPU)) as well
as a memory subsystem containing a 512KB L2 cache. The
PPU runs the operating system and is suitable for general pur-
pose computing. However, in practice its main task is to coor-
dinate the activities of the SPEs.

Communication on the chip is carried out through the ele-
ment interconnect bus. It has a high bandwidth (204.8 GB/s)
and connects the PPE, SPEs, and main memory through a four-
channel ring topology, with two channels going in each direc-
tion (Fig. 2). For main memory the Cell uses Rambus XDR
DRAM memory which delivers 25.6 GB/s maximum band-
width on two 32-bit channels of 12.8 GB/s each.

The SPE is the main computational workhorse of the Cell
Processor. It has a 3.2GHz SIMD processor (called the syn-
ergistic processing unit (SPU)) that operates on 128-bit wide
vectors which it stores in its 128 128-bit registers.

Each SPE has 256KB of on-chip memory called the Local
Store (LS). The SPU draws on the LS for both its instructions
and data: if data is not in the LS it has no automatic mechanism
to look for it in main memory. All data transfers between the LS
and main memory are controlled via software-controlled direct
memory access (DMA) commands. Each SPE has a memory
flow controller that takes care of DMAs and operates indepen-
dently of the SPU. DMAs may also transfer data directly be-
tween the local stores of different SPEs.

The SPU has only static branch predicting capabilities and
has no other registers besides the 128-bit registers. It sup-
ports both single and double precision floating point instruc-
tions. However, hardware support for transcendental functions
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Figure 2: Hardware diagram of the Cell processor. The 8 SPEs are the SIMD vector processors, the PPE is the PowerPC CPU,
and the rings illustrate the four-channel ring topology of the Element Interconnect Bus. Also shown is the XDR DRAM memory
interface to the Cell blade main memory, and the I/O interfaces which allow two Cell processors on one blade to share SPEs.

is only available in the form of reduced precision approxima-
tions of reciprocals and reciprocal square roots. Full single and
double precision transcendentals must be evaluated in software.

Most Cell tests in this paper are performed on the cluster de-
scribed in Section 5.1.2 with PowerXCell 8i processors, but we
also include some tests on Cell processors in Sony’s PlayStation
3, which are an earlier generation of the Cell processor with less
hardware support for double precision calculations, and which
have two of their SPEs disabled.

3.3. NVIDIA GPUs and CUDA Programming Model

GPUs are not, as their name would suggest, solely used for
graphics applications: NVIDIA Tesla GPUs have evolved to be
general purpose high-throughput data-parallel computing de-
vices [1]. The GPU attaches to a host CPU system via the PCI
Express bridge as an add-on computational accelerator with its
own separate DRAM (up to 4GB), which we call GPU global
memory, and some specialized on-chip memory. Programs may
be developed to make use of the GPU by using NVIDIA’s
CUDA programming model which provides extensions to the
C programming language [29, 30]. (CUDA stands for compute
unified device architecture.) The GPU is incorporated into a
program’s execution by calling what is known as a kernel func-
tion from within the CPU host code. A kernel is defined sim-
ilarly to a normal C function but when called, a user-specified
number of threads are spawned, each of which executes the ker-
nel function on the GPU in parallel. The threads are mapped
into groups of up to 512 called thread blocks, and the threads
within a thread block are grouped into smaller groups of 32
threads called warps.

The NVIDIA GT200 architecture uses a hierarchal organiza-
tion of thread processors and memory to implement a single in-
struction multiple thread (SIMT) streaming multiprocessor de-
sign, shown schematically in Fig. 3. Threads are farmed out to
the hundreds of identical scalar processors (SPs) on the GPU.
(The Tesla T10 GPU we use has 240 SPs.) Ideally, many more

threads are spawned than the number of SPs. The SPs are or-
ganized into blocks of eight, called streaming multiprocessors
(SMs). Each SM in addition to the eight SPs has a special func-
tion unit (SFU) for computing transcendental functions and a
double precision unit (DP) which can also act as an SFU. Each
SM also has a block of local memory called shared memory vis-
ible to all threads within a thread block, and a scheduling unit
used to schedule warps. The GPU is capable of swapping warps
into and out of context without any performance overhead. This
functionality provides an important method of hiding memory
and instruction latency on the GPU hardware.

When a kernel function is called, it is initiated on the GPU by
mapping multiple thread blocks onto the SMs. Thread blocks
are divided on the SMs into groups of 32 threads called warps
and execution proceeds in a SIMT fashion within each warp.
Threads within a thread block may be synchronized if neces-
sary. However, there is no generally efficient mechanism for
synchronization across the thread blocks within a kernel func-
tion.

3.3.1. Fermi GPU

The Fermi architecture, released in the spring of 2010, is
NVIDIA’s next-generation GPU. It is the successor of the
GT200 architecture described above, and is the first in which
NVIDIA focussed on general-purpose computation perfor-
mance. The main improvements to note for this paper are the
full IEEE floating point compliance, the improved double pre-
cision performance, and the addition of a cache hierarchy. The
double precision performance on Fermi is half the speed of sin-
gle precision, bringing it in line with most CPUs. The addition
of a cache hierarchy, consisting of a global L2 cache, as well
as a per-SM L1 cache gives more flexibility in non-uniform
memory accesses. The Fermi C2050 features 448 SPs orga-
nized in 14 SMs. Each SM has 32 SPs, 16 DPs, and 4 SFUs.
The Fermi C2050 features a 1.15 GHz clock speed which is
slower than the Tesla T10’s 1.30 GHz. For the rest of the de-
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Figure 3: Hardware diagram of a Tesla T10 GPU. The GPU consists of 30 Streaming Multiprocessors (SMs), each of which has
8 Scalar Processors (SPs). The GPU has 4 GB of GPU global memory. The GPU board is connected to the CPU board (with the

node host memory) using a PCI Express bridge.

tails of the new architecture we refer to NVIDIA’s white paper
[31]. Though the underlying architecture has gone through sig-
nificant change, the CUDA programming interface remains the
same, allowing code to simply be recompiled with a different
architecture specification.

Most GPU tests in this paper are performed on the ‘angel’
S1070 GPU cluster described in Section 5.1.2 with Tesla T10
GPUs of GT200 architecture, but we also include some tests
on Tesla GPUs with the earlier generation G80 architecture,
which have no double precision unit and 128 SPs. Additionally
we have performed preliminary tests on a Fermi C2050 card
(GTX480 with 3GB GPU global memory), allowing perfor-
mance to be compared across three generations of GPU hard-
ware (G80, GT200 and Fermi).

4. Code Development and Optimization

We have developed a code framework with three hardware-
specific back-end implementations for x86 CPU, Cell, and
GPU. The framework makes use of MPI to distribute compu-
tations across cluster nodes. In this section we explain the main
code optimizations used to accelerate the CPU, Cell and GPU
implementations and also describe the MPI parallel implemen-
tation. Some additional details on our approach can be found in
[32]. See also [33] for a preliminary discussion of our Cell pro-
cessor results. The interested reader may retrieve our research
code on our website [25] or via the CPiP program library to
study the complete details of our implementation.

4.1. CPU Implementation

For the x86 CPU implementation, we optimized our CPU
code to incorporate cache optimization and SIMD vector op-
timization via SSE intrinsics. Cache optimization is obtained
via a simple cache-blocking technique [34] for updates in the
x and y directions. The global loops over the x and y direc-
tions are replaced with an outer loop over cache-sized blocks
of the computational domain. By doing this we minimize the

impact of L2 cache misses on performance. We choose cache
block size based on the size of the L2 cache and the number
of cores which will be sharing it, and then allocate a fixed per-
centage of the L2 cache to each core. SIMD optimization is im-
plemented using hand-coded SSE-vector intrinsic funtions that
access the SIMD capabilities efficiently. This is similar to the
Cell code optimizations described below in the subsection on
‘SIMD, shuffle’ (Section 4.2.2). Unaligned data must be shuf-
fled into 16-byte aligned vectors prior to computation. Also,
we eliminate branch statements for the flux limiters. Since this
is an important aspect of our Cell optimization approach, we
prefer to discuss it in detail in Section 4.2 on Cell optimization
below. The SSE-optimized and cache-optimized CPU code on
one CPU core is the baseline with which we compare Cell and
GPU code performance below. For comparison, we will also
include results for our initial unoptimized CPU implementation
in the numerical results of Section 5. All implementations are
compiled using the Intel C Compiler version 11.0 at optimiza-
tion level -O3. See Fig. 4 for an illustration of the different
levels of parallelism in our CPU code.

4.2. Cell Implementation

Each Cell processor has eight SPEs for data processing. To
divide the calculations among the eight SPEs, the computa-
tional domain assigned to a particular Cell processor is further
decomposed into blocks of grid cells (see Fig. 5) which we call
LS blocks because their size is determined by the size of the
SPE’s local store (256KB). Note also that we have, in fact, sep-
arate arrays for h, u and v (not shown in Fig. 5). The PPE
assigns workloads to SPEs by giving each SPE a collection of
these LS blocks to update. The PPE steers the SPEs through
pthreads and calls to Cell-specific library functions. SIMD vec-
tor parallelism is used to accelerate the computational kernel
that updates the cells via SPU vector intrinsics.
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Figure 5: Different levels of parallelism and actual data layout in the Cell implementation of our code. The blocks on the left-hand
side represent a logical decomposition of the domain into 4 tasks at the MPI level. Since each Cell blade server node has 2 PPUs,
we have 2 MPI processes per blade server. The blocks in the middle of the diagram display the actual data layout in the Cell blade
main memory for the part of the domain assigned to one MPI task (i.e., one Cell processor or one PPU). These blocks are sized so
that exactly two of them fit into the local store of an SPE, and we call them LS blocks. This Cell blade main memory layout allows
us to hide latency between the Cell blade main memory and the eight SPE local stores, by transferring one block of data, while at
the same time doing calculations on another block. Also illustrated on the right is the 128 bit wide SIMD vector level parallelism
of the SPEs.



PowerXCell 8i Cell processor

single precision

double precision

time (s) \ speed-up (X)

time (s) \ speed-up (X)

one Xeon core | 16250 | 1.00 [ 192.44 | 1.00 |
Cell naive 131.88 123 [ 154.12 1.25
Cell SIMD, transpose 7.30 22.26 26.66 7.22
Cell SIMD, shuffle 6.72 2418 | 2441 7.88

Table 2: The runtimes (in seconds) of the three kernel optimizations running on a PowerXCell 8i using all eight SPEs are compared
to the SSE-optimized x86 CPU implementation running on one Xeon core. This test uses a 1000 x 1000 grid with L = 10, W = 10

and 1000 timesteps.

4.2.1. Memory Layout

In Cell processors data transfers may be decoupled from
computations. A standard double-buffering approach is used to
keep the SPE working on one LS block of data, while the DMA
engine is transferring another LS block of data. We adopt a dis-
tributed memory layout (Fig. 5) for the data assigned to a given
Cell processor, which stores each LS block in a continuous sec-
tion of Cell blade main memory. This allows the total time spent
transferring data into and out of the SPE’s local store to be re-
duced, since bandwidth between the Cell blade’s main memory
and the SPE’s LS is maximized when data transfers are large
contiguous blocks. Updated ghost cell values must be commu-
nicated in between grid blocks after each x or y sweep, exactly
as in the MPI implementation. This may be implemented ef-
ficiently through the use of exchange buffers in the Cell blade
main memory associated with each LS grid block. Each SPE
performs the x or y update calculation on all of the grid cells in
the LS block, before sending updated values to the neighboring
LS grid blocks’ exchange buffers in the Cell blade main mem-
ory. This is more efficient than having the PPE update the ghost
cells for the LS blocks in the Cell blade main memory. By using
the distributed memory layout and a double-buffering approach
to transfer data into and out of the local stores, we were able to
almost completely eliminate the effect of memory latency and
bandwidth from the overall computation runtime.

One other factor in designing the Cell blade main memory
layout is that all data in the SPE local store is accessed by the
SPE in 16-byte vectors that are located at 16-byte boundaries.
In order to ensure that all matrix rows begin on 16-byte vec-
tor boundaries, we pad grid block rows in the Cell blade main
memory with enough extra data to ensure that proper align-
ment is maintained, and transfer the padded arrays between Cell
blade main memory and SPE local stores.

4.2.2. Kernel Optimization

Timing results for three different SPE kernel implementa-
tions are presented in Table 2. The first kernel is simply a naive
porting of the unoptimized x86 CPU grid cell update kernel
code to the Cell architecture. The two other kernels represent
two different ways of dealing with unaligned data in the SPE
LS, optimized for the Cell hardware.

Naive

In the naive kernel, the grid cell update compute kernel is
directly copied from the unoptimized x86 CPU version, with
minimal alterations. This does not give good performance since
itignores the SIMD nature of the SPEs and significant amounts
of branching are present inside of nested loops (the SPE has
very poor performance on branch prediction).

SIMD, Shuffle

The changes made in this version involve using the SPU vec-
tor intrinsics to SIMDize all floating point operations. Two dif-
ficulties arise while doing this. The first is that neighbouring
cell data needs to be aligned in groups at 16-byte boundaries in
LS memory. Consider update equations (3). In single precision,
for example, four adjacent cells can be updated simultaneously
by the SIMD units. For efficient execution, all values for & (and
u and v) for the horizontal and vertical neighboring cells need
to be aligned in groups of four at 16-byte boundaries before in-
voking the SIMD calculations. If the data is stored by x-rows
in LS memory, then it is properly aligned for the updates in the
y direction, but not in the x direction (see Fig. 6). In this ker-
nel implementation, the four-vectors of aligned data required
for x-updates are created by shuffling, directly before they are
needed for calculation, using efficient SPU intrinsic shuffling
instructions.

The second difficulty is that the branching statements used in
the flux limiter calculations must be eliminated by using vector
comparisons and selections (they work on four floating point
numbers for single precision, and two for double precision).
The code then executes all branches for all entries and selects
the correct result for each entry separately at the end by a mask-
ing intrinsic. This is much faster than the SPU’s native static
branch prediction.

SIMD, Transpose

This kernel implementation is similar to the previous one
except that the 16-byte alignment problem is dealt with by
transposing the entire grid block in the LS before and after
doing the x direction sweeps (by using the efficient intrinsic
shuffling instructions).

Table 2 shows timing results for the various kernel optimiza-
tions, compared to the serial CPU reference code running on



Figure 6: If data is stored by x-rows in LS memory, proper alignment in groups of four (for single precision) is automatic for
updates in the y direction: the four values in the middle diagram are updated using the aligned groups of four values in the top
and bottom diagrams. However, for updates in the x direction, the four values in the middle diagram need to be updated using the
unaligned groups of four values in the left and right diagrams. For efficiency, aligned four-vectors of data need to be created for the
left and the right four-vectors by intrinsic shuffling instructions. An alternative is to transpose all the data in the LS memory before
doing all updates in the x direction. (The cells with crosses correspond to unknowns in the vectors U, ;, U;_y ; etc. that are needed

to evaluate the updates of Eq. (3), for a certain choice of i and j.)

one Xeon core. The Cell versions are compiled using IBM’s
ppuxlc and spuxlc compilers, with optimization settings -O3
or -O5, whichever gives better performance. The higher set-
ting performs more aggressive interprocedural function call op-
timization and high level loop analysis which in our experience
did not necessarily relate to improved performance.

Comparing performance, we see that the naive Cell imple-
mentation is already faster than the reference x86 CPU imple-
mentation. In both single and double precision we see that the
fastest Cell kernel implementation is the SIMD, shuffle version.
The transpose version also performs well but in the shuffie ver-
sion the shuffle instructions are able to be interleaved with com-
putations whereas in the transpose version they are separated
from the computation so no overlap is possible. In the remain-
der of this paper only the shuffle implementation is used. Ex-
cellent speedups of approximately 22X and 7.5x are obtained
for the optimized Cell code, for single and double precision, re-
spectively. For the Cell, single precision is at least twice as fast
as double precision, because the SIMD vectors can hold four
single precision numbers or two double precision numbers. In
addition, hardware support for transcendental functions is lim-
ited to reduced precision approximations of reciprocals and re-
ciprocal square roots. Full single and double precision transcen-
dentals must be evaluated in software, with the double precision
ones requiring more operations. It is therefore no surprise that
the timing results in Table 2 show that our double precision
Cell kernel is roughly four times slower than the single preci-
sion kernel. Note that the penalty for using double precision is
much smaller on the Xeon for our application.

4.3. GPU Implementation

Our GPU cluster nodes have two x86 CPUs connected to two
GPUs. Each GPU card has a large amount of GPU global mem-
ory (4GB) on board. We choose to hold all problem data in
the GPU global memory and to perform all calculations on the
GPUs, while the CPUs are used for input/output and for MPI
communication (the GPUs cannot communicate via MPI di-
rectly). This approach minimizes the bandwidth use over the
PCI Express link between GPU global memory and server host
memory (only ghost cells need to be transfered). It also sim-
plifies code development since all calculations are done on the
GPU, but the computing power of the CPUs remains underuti-
lized. For applications in which larger arrays are to be used, if
the server host’s memory is larger than the memory of the at-
tached GPUs, or if the application algorithm features a natural
division in work that can be done partially on the CPU and par-
tially on the GPU, one may consider farming out work from the
CPU to the GPU in a double-buffered data transfer scheme as
in the Cell processor case. However, we found it simpler and
quite efficient to perform all calculations on the GPUs for the
problem we consider. Moreover, it is also not clear how much
could be gained for our application type by utilizing the CPUs
for calculations, since the calculations to be done for our appli-
cation turn out to be performed between 3 and 8 times faster on
the GPUs than on the CPUs (see the timing results in Table 5
below).

We adapt the CPU code to the GPU platform by mapping
the unoptimized CPU computational kernel performing the grid
cell updates to a CUDA kernel function. Each thread in the
CUDA kernel launch is then responsible for one or several grid
cell updates, depending on the implementation as described be-



Tesla T10 GPU (GT200 architecture)

single precision double precision
time (s) | speed-up (X) | time (s) | speed-up (X)
one Xeon core 162.50 1.00 | 192.44 1.00
GPU naive 12.87 12.63 40.01 4.81
GPU rewrite kernel 8.32 19.53 28.84 6.67
GPU single flux calculation 6.17 26.34 15.84 12.15
GPU thread coarsening 4.97 32.70 15.03 12.80

Table 3: Single and double precision performance improvements achieved on the Tesla T10 GPU. The results are compared against
the SSE-optimized CPU implementation on one Xeon core. The most highly-optimized version gives a speed-up of just over 32x
relative to the Xeon execution in single precision and over 12X in double precision. This test uses a 1000 x 1000 grid with L = 10,

W = 10 and 1000 timesteps.

C2050 GPU (Fermi architecture)

single precision double precision
time (s) | speed-up (X) | time (s) | speed-up (X)
one Xeon core 162.50 1.00 | 192.44 1.00
GPU naive 6.62 24.55 14.09 13.66
GPU rewrite kernel 6.57 24.73 14.06 13.69
GPU single flux calculation 3.44 47.24 8.10 23.76
GPU thread coarsening 3.32 48.95 10.23 18.81

Table 4: Single and double precision performance improvements achieved on the Fermi C2050 GPU. The results are compared
against the SSE-optimized CPU implementation on one Xeon core. The most highly-optimized version gives a speed-up of almost
50x relative to the Xeon execution in single precision and 23X in double precision (single flux implementation). This test uses a
1000 x 1000 grid with L = 10, W = 10 and 1000 timesteps. The GPU runs all use 128x1 thread blocks, the thread coarsening
kernel updates 6 grid cells per thread in single precision and 1 in double precision. The single flux kernel updates 6 grid cells per

thread in both single and double precision.

low. The host CPUs steer the GPUs through pthreads, with
one thread for each GPU device. Data is sent to and from the
GPU by calling CUDA memory transfer functions from the host
thread on the CPU. Similarly, calculations are executed on the
GPU by calling CUDA kernel functions from the host thread on
the CPU.

4.3.1. Memory Layout

GPU threads can efficiently load data from the GPU global
memory when the data is organized such that a load statement
in all threads in a warp accesses data in the same aligned 128-
byte block in the GPU global memory, and the same holds for
memory stores. To enhance this so-called ‘optimal coalescing’
of loads and stores, it is beneficial to align grid rows on 128-
byte boundaries by padding, even though coalescing of loads
and stores is taken care of automatically on the newer NVIDIA
hardware also for memory accesses that are not aligned per-
fectly to 128-byte boundaries [29]. This data layout adjustment
along with the data-parallel nature of the algorithm and its high
arithmetic intensity ensure that even our naive CUDA version
(see below) exhibits relatively good performance on the GPU.

4.3.2. Kernel Optimization
The effect of several different CUDA kernel optimizations is
described below, and their performance is compared in Table 3.

Naive

The naive version of the kernel is a copy of the unoptimized
CPU compute kernel with minimal alterations. The x and y
update loops over the grid cells are replaced by kernel calls
with one thread spawned for every grid cell. Note that, in this
naive version, we calculate four boundary fluxes in every grid
cell thread, and thus perform the flux calculations at every grid
cell interface twice (since fluxes between adjacent grid cells are
equal).

Rewrite Kernel

The kernel was rewritten so that divisions and square roots
involving the same numbers were never repeated within a ker-
nel calculation. This was taken care of by the compiler in the
CPU implementation but needs to be explicitly handled for the
moment when writing CUDA kernels. As expected, the perfor-
mance boosts on this kernel are significant: rewriting removed
3 divisions and performance increased markedly. This is due to
the fact that division is performed in the special function unit
(SFU) and this unit can become a computational bottleneck on
the GPU since there are only two SFUs for eight scalar proces-
sors (SPs) (in single precision).

10
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Figure 7: Different levels of parallelism and actual data layout in the GPU version of our code. The GPU implementation uses one
MPI task per server node to divide work at the coarsest level. On each server two threads are launched, one to drive each of the
GPUs, and the domain is further divided in two, with half being stored in each GPUs device memory. On the GPU device itself
work is further divided into thread blocks, warps (omitted in the diagram), and eventually down to the individual thread level.

Thread Coarsening

In this kernel implementation, each thread updates multiple
grid cells instead of just one. Empirical tests determined that it
is optimal to update four grid cells in the x direction and six grid
cells in the y direction. Thread coarsening is similar to the well
known CPU loop optimization technique called unroll and jam
[35, 36]. A similar type of "kernel unrolling’ has also been used
extensively in other GPU codes although typically in memory
bound applications [37, 2, 38]. The effect of this is twofold.
First, the total number of floating point operations is reduced
since flux calculations may be reused within one thread, rather
than being recomputed for each grid cell. Second, the num-
ber of memory operations is reduced since data may be reused,
rather than reloaded by each thread. Note that, in our naive
GPU implementation, every thread loads four neighbor cells for
the cell it updates, resulting in each cell being loaded five times
instead of once, as assumed in the ideal memory transfer count
in Table 1. The thread coarsening implementation improves on
this since data for each flux interface is reused for multiple grid
cell updates.

Single Flux Calculation

As mentioned earlier, the naive GPU kernel version is per-
forming double the work of the CPU or Cell versions since
fluxes are calculated twice. By changing the thread IDs to ref-
erence cell interfaces instead of grid cells, almost all of the du-
plicate work can be eliminated. To further reduce the dupli-
cate work, the thread coarsening technique is again employed
when computing the fluxes. However, we found that this im-
plementation increased the memory footprint due to the storing
of interface fluxes. The increased number of memory accesses
gave this implementation worse performance despite reducing
the total number of floating point operations performed. The
thread coarsening approach described above provided a better
compromise by reducing work while also reducing the num-
ber of memory accesses. In the remainder of this paper only
the thread coarsening implementation is used unless otherwise
stated.
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See Fig. 7 for an illustration of the different levels of paral-
lelism in our GPU code. Finally, Table 4 contains preliminary
results for our GPU code on the recently introduced Fermi GPU
platform. It can be seen that our code, without further opti-
mization specific to Fermi, runs between 1.5 and 2 times faster
than on the previous-generation Tesla GPU, in single and dou-
ble precision, respectively. It is also interesting to note that the
‘rewrite kernel” optimization is not necessary on Fermi (likely
due to improvements in the nvcc compiler), and that the ‘single
flux calculation’ method becomes the fastest in double preci-
sion due to Fermi’s improved memory access mechanisms.

4.4. MPI Implementation

As illustrated in Figs. 1, 4, 5, and 7, the problem is paral-
lelized by doing a standard domain decomposition that divides
the 2D grid of data into equally-sized rectangular sub-domains
of grid cells. Each MPI task is assigned one sub-domain of
the 2D grid. The MPI tasks are thus connected in a 2D Carte-
sian topology, giving each MPI task four neighboring tasks with
which it must communicate. MPI communications are done af-
ter each x and y sweep, sending updated ghost cell data to the
neighbouring tasks. The amount of data that is sent depends
on the numerical scheme being used. In this paper a nine-point
stencil is used, which requires information from the two nearest
cells in each direction. When the neighbouring cells lie across
inter-task boundaries, the two tasks must exchange two rows or
columns of grid cell data which is done using a ghost cell ap-
proach [5]. The top-level data layout employs different arrays
for each of the three grid variables, &, u, and v. This is benefi-
cial for the use of SIMD vector units, since this tends to align
groups of variables in memory that can be fed to the SIMD units
together, and it also makes alignment easier for transfer of array
parts between system components. For these reasons, separate
arrays for h, u, and v are, in fact, used on all levels of parallelism
in our implementation. Since each hardware-specific back-end
implementation makes use of a different data-storage scheme,
the MPI exchanges are done in separate exchange buffers in or-
der to maintain portability across different architectures. Each



System Time (s) | Speed-Up (X) | Speed-Up vs quad-core (X)
CPU Xeon (1 Core, naive) 778.46 0.48 0.12
CPU Xeon (1 Core+SSE) 372.69 1.00 0.25
CPU Xeon (4 Cores+SSE) 95.43 3.91 1.00

Cell PlayStation 3 (6 SPEs) 22.6 16.49 4.22
GPU Tesla (G80 architecture) 17.68 21.08 5.40
Cell PowerXCell 8i (8 SPEs) 16.96 21.97 5.63
GPU Tesla T10 (GT200 architecture) 11.42 32.63 8.36
GPU C2050 (Fermi architecture) 6.62 56.30 14.42

(a) single precision

System Time (s) | Speed-Up (X) | Speed-Up vs quad-core (X)
CPU Xeon (1 Core, naive) 975.06 0.48 0.12
CPU Xeon (1 Core+SSE) 464.31 1.00 0.26
CPU Xeon (4 Cores+SSE) 119.43 3.89 1.00
Cell PowerXCell 8i (8 SPEs) 614 7.56 1.95
GPU Tesla T10 (GT200 architecture) 36.15 12.84 3.30
GPU C2050 (Fermi architecture) 16.66 27.88 7.17

(b) double precision

Table 5: Single-chip performance comparisons between architectures in single and double precision. The runtime and speed-up
versus 1 and 4 Xeon CPU Cores is indicated. The Cell kernel used is the shuffle implementation of section 4.2.2 and the GPU kernel
used is the thread coarsening kernel of section 4.3.2. This test uses a 5000 x 5000 grid with L = 50, W = 50 and 100 timesteps.
Fermi results in double precision use the single flux kernel. Due to memory constraints on our Fermi card the code is executed on
a 4000x4000 grid, and the numbers are scaled up for comparison.

MPI exchange consists of three distinct stages: packing, send-
ing/receiving, and unpacking, where the packing and unpacking
stages are implemented differently for each architecture but the
sending and receiving remains the same.

e CPU: SSE-optimized, 1 MPI process per Xeon Core (8 per
Xeon Server).

e Cell: SIMD Shuffle, 1 MPI process per PPU (i.e., 2 per
blade server), 8 SPEs per PPU.

e GPU: Thread Coarsening (4 x unrolls, 6 y unrolls), 1 MPI
process per Xeon Server, 2 threads and GPUs per MPI pro-
cess.

5. Performance Comparison

In this Section, we compare the x86 CPU, Cell and GPU
performance at various levels of parallelism. We first com-
pare single Cell and GPU chips (including commodity versions)
with the reference SSE-optimized CPU implementation on one
core (as is customary in the literature), and then with the SSE-
optimized CPU code running on all four cores on the Xeon CPU

5.1.2. Cluster Details
We use the following clusters provided by SHARCNET [23]
and JSC [24].

chip (Table 5). After this performance on a chip-by-chip basis, JSC Cell Cluster . , .
we compare the Cell and GPU performance on a node-by-node Tl}e J SFJ Cell cluster system ‘JUICEnext’ has the following
basis, i.e., on single cluster nodes without MPI. Finally, we specifications:

compare performance and scaling of the CPU, Cell and GPU
codes on multi-node clusters with MPI parallelism.

e The cluster has 35 QS22 blade Cell servers mounted in
three BladeCenter H chassis.

e Each QS22 blade has two PowerXCell 8i processors @
3.2GHz in a dual-socket configuration that gives access to
eight GB of shared memory. (We call this memory shared
by the two Cell processors the Cell blade main memory.)

5.1. Comparison Setup and Cluster Information

We summarize the versions of the code used in the perfor-
mance comparisons in this section, as well as the details of the

clusters used.
e The QS22 blades have a 4x DDR Infiniband (16 GB/s)

5.1.1. Comparison Setup and MPI layout interconnect between the server nodes.

For each of the three platforms, we list below the optimiza-
tion version of the code used in the comparison tests. We also
list the MPI configuration used in the MPI scaling tests.

Note that this configuration is different from the configura-
tion of nodes in Los Alamos National Laboratory’s Roadrun-
ner supercomputer, which was the first computer to break the



petaflop performance barrier [28]. Roadrunner nodes or ‘tri-
blades’ contain two QS22 blades coupled with a conventional
LS21 opteron blade. The opteron blades can be used for part
of the computations and for fast communication. The JSC Cell
cluster is composed of QS22 blades only, and all computations
and the communication between Cell blades is performed by
the Cell processor. In this paper, we thus report on developing
an efficient simulation code for this more affordable but also
more challenging QS22-only environment.

SHARCNET Xeon/GPU Cluster

The SHARCNET GPU cluster ‘angel’ that was used for both
CPU and GPU code development and testing has the following
specifications:

e The cluster has 22 server nodes, each consisting of two
quad-core Xeon E5430 processors @ 2.66GHz with eight
GB of shared memory. (We call this memory that is shared
between the two Xeon processors the node host memory.)

e The cluster has 11 NVIDIA S1070 GPU computing sys-
tems, each featuring four Tesla T10 GPUs with four GB
device memory per GPU. (We call this the GPU global
memory.)

e The cluster has a 4x DDR Infiniband (16 GB/s) intercon-
nect between the server nodes.

e The GPUs are attached to the server nodes via a PCI Ex-
press 2.0 bridge, with two GPUs attached to each server
node.

5.2. Single-chip Comparison

Table 5 compares our optimized Cell and GPU codes with
CPU implementations on one and four CPU cores. Note that
the problem sizes for the tests in Table 5 are chosen larger
than for the optimization comparisons described in Section 4.
In single precision, the CUDA implementation running on an
NVIDIA Tesla T10 GPU chip gives a speed-up of 32X over the
reference SSE-optimized implementation executing on a sin-
gle Xeon Core, with the Fermi results between 1.5 and 2 times
faster than that. It is worth noting that even the slowest GPU/-
Cell version, the Cell implementation executing on the PlaySta-
tion 3, still gives 16X speed-up over the reference CPU imple-
mentation. The results in Table 5 show that for single preci-
sion both the GPU and Cell provide excellent acceleration of
roughly 5-8x over a multithreaded SSE implementation run-
ning on all four cores of the Xeon processor. The Fermi GPU
improves this by a factor between 1.5 and 2.

In double precision the Cell and Tesla implementations are 2
and 3x faster than the SSE-optimized Xeon version on 4 cores,
respectively, as shown in Table 5. The Fermi GPU improves
this by a factor of more than 2. Comparing single and double
precision numbers from Table 5 one can see that the Cell ver-
sion slows down by a factor of roughly four when going from
single to double precision. This is partially due to the fact that
that SIMD vector width is four for single precision and two for
double precision. Another reason is that division, comparison
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and square root operations require more cycles in double pre-
cision. The GPU version slows down by a factor of about 3,
which is better than the 8 times slowdown one might expect
(there is only 1 double precision unit for 8 scalar thread pro-
cessors). The reason for this is that the single precision ver-
sion never comes close to the peak theoretical throughput be-
cause some operations, namely division and square root, are
performed in the special function unit (SFU) and so are done
only two at a time and not eight at a time.

5.3. Comparison with Theoretical Peak Performance Specifi-
cations

In this section we compare the compute and memory perfor-
mance measured for our CPU, Cell and GPU implementations
with the theoretical peak performance of the devices, and dis-
cuss whether our codes are compute bound or memory bound
[39, 40].

5.3.1. Algorithmic and Device FLOPS/Byte Ratios

In Table 6, we first make a comparison between the ratio of
FLOPS per Byte of data transfered for an ideal implementation
of our algorithm (with optimal data reuse and minimal num-
ber of FLOPS per grid cell), and the peak theoretical FLOP-
S/Byte ratio of the three platforms. The data in Table 6(a) are
repeated from Table 1 for convenience. The theoretical peak
FLOPS/Byte ratios for the three devices are obtained by taking
the ratio of their theoretical peak GFLOPS/s and GB/s specifi-
cations (Table 6(b)). The peak FLOPS/Byte rates give an in-
dication, in an idealized setting, of the maximum number of
FLOPS that can be performed per Byte of data transfered before
an algorithm becomes compute bound, on each of the architec-
tures. From Table 6, we don’t expect our codes to be memory
bound for most cases, since the algorithmic FLOPS/Byte ratio
is normally larger or approximately equal to the peak FLOP-
S/Byte ratio of the devices. The only exception may be the SP
GPU case, where our algorithm’s FLOPS/Byte ratio is slightly
smaller than the device’s peak theoretical FLOPS/Byte ratio.
We might thus expect our GPU code to be slightly memory
bound in the SP case. However, we want to stress that the num-
bers in Table 6 are theoretical. In reality, the number of FLOPS
executed per grid cell is larger than 360 in our GPU code, since
we do some flux calculations twice. Also, the SP peak GFLOP-
S/s rate assumes multiply-add operations, but many FLOPS in
our algorithm, such as square roots and divisions, can only be
done on the special function unit, so only two at a time in SP,
compared to eight at a time for additions and multiplications.
For these reasons, we expect the GPU algorithm to be close to
compute bound also in the SP case. Note that, in DP, the peak
GFLOPS/s value for the Tesla GPU assumes that all FLOPS
use the single available double precision unit (and not the eight
scalar processors), and it is thus more easily reachable than the
SP peak GFLOPS/s value for an application like ours, since it
assumes that all FLOPS are multiply-adds that can be executed
together.



FLOPS per grid cell 360
Memory Ops per grid cell | 48 Bytes SP, 96 Bytes DP
SP FLOPS/Byte 7.5
DP FLOPS/Byte 3.75

(a) For our algorithm, a minimum of 7.5 and 3.75 floating point operations
are computed per Byte of data loaded or stored, in SP and DP, respectively.

Architecture peak peak peak
GFLOPS/s | GB/s | FLOPS/Byte
SP | DP SP DP
CPU Xeon (4 Cores) 43 21 11 4 2
Cell PowerXCell 8i 205 | 102 26 8 4
GPU Tesla T10 1037 86 102 | 10 0.8
(GT200 architecture)
GPU C2050 1288 | 515 144 9 3.6
(Fermi architecture)

(b) Peak Theoretical Peformance for the three architectures. An estimate is also
given for the maximum number of FLOPS that can be performed per Byte of data
transfered before an algorithm becomes compute bound (peak FLOPS/Byte).

Table 6: By comparing the algorithmic FLOPS/Byte ratio with
the peak theoretical FLOPS/Byte ratio of the hardware we can
estimate if we expect the algorithm to be compute or memory
bound. Even though values in these tables are ideal lower and
upper bounds and real algorithms and implementations will be-
have in non-ideal ways, a code is likely to be memory bound
if the algorithmic FLOPS/Byte rate is significantly smaller than
the peak theoretical FLOPS/Byte rate, and compute bound oth-
erwise.

5.3.2. Estimated Compute and Memory Performance of our
Implementations

In Table 7, we investigate how close we are getting to the
theoretical peak performance on the different architectures. For
the simulations of Table 5, we compute the minimum total num-
ber of FLOPS over all cells and iterations using the FLOPS data
from Table 6(a), and divide this by the execution times from Ta-
ble 5, to obtain the estimated actual GFLOPS/s rates of our im-
plementations. We then divide by the theoretical peak GFLOP-
S/s rates from Table 6(b) to obtain the %Peak values. Simi-
larly, the estimated attained GB/s rates are obtained by dividing
the minimum total number of memory transfers by the actual
execution time. Note that the GFLOPS/s %Peak values may
actually be underestimates on some platforms. For example,
on the Cell square roots and divisions, which are only counted
once in the 360 FLOPS, may take significantly more than one
FLOP each. For the Tesla T10 and the C2050 (Fermi), we re-
port additional numbers (‘actual’), in which we also count the
FLOPS and memory transfers that are duplicated on different
threads during neighbor flux computations (that load neighbor
cells). Note, however, that we still do not account for square
roots and divisions being executed only two at a time, instead
of multiply-adds being executed eight at a time for the peak per-
formance measure. While it is clear that further optimization is
possible, the results in Table 7 show respectable performance
on all platforms. As expected, the CPU results appear com-
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pute bound, the Cell results are quite balanced, and the GPU
results appear somewhat memory bound in SP, and compute
bound in DP. In terms of attained GFLOPS/s, the Cell %Peak
performance drops when going from SP to DP. A major cause
for this is that the DP Cell operations of square root and divi-
sion are not supported in hardware. The GFLOPS/s %Peak in-
creases for the GPU when going from SP to DP, which may be
attributed to the SP code being slightly memory bound, while
the DP code is compute bound, and to the %Peak value being
more easily attainable in DP than in SP for our application type.
The Fermi results are about twice as fast as the Tesla (GT200
architecture) results.

5.4. Problem Size Analysis

The effect of increasing the problem size is investigated in
Table 8. On the CPU we see some variation but overall the
performance level remains rather stationary. On the GPU the
dominant effect in single precision is that for smaller problem
sizes, not enough threads are launched to fully saturate the GPU
device. This also occurs in DP. However, the overall perfor-
mance penalty for the problem sizes we tested is smaller in DP,
because there are eight times fewer double precision units than
single precision units, so less threads are required for saturation.
For the Cell processor in single precision there is also degrada-
tion for small problem sizes. This is because the local store
block size is large compared with the actual grid size (52 x 52-
sized blocks compared to 100x 100 or 200x 200 grid sizes) and
not enough local store blocks are generated to use all SPEs and
fully saturate the device.

5.5. Single blade/single node Comparison and Scaling

On a Cell blade or cluster node with shared memory, mul-
tiple Cell processors or GPUs can be used in parallel without
the need to communicate via MPI. This is attractive for some
applications since code complexity can be reduced by eliminat-
ing the domain decomposition and communication layer at the
top MPI-level of parallelism. To illustrate scaling in a shared-
memory environment, we show single blade/single node scaling
performance in Tables 9 and 10.

Table 9 shows scaling results on one QS22 Cell blade with
2 Cell processors and 8GB of shared Cell blade main mem-
ory. Here the optimized Cell code with ‘shuffle’ optimization
is used. The two Cell processors have a total of 16 SPEs. In
these tests, all SPEs are steered by a single PPE (on one of the
two Cell processors) using pthreads. This allows the user to
utilize the full processing power of the two Cell processors on
the QS22 blade just by using the single-Cell code with a larger
number of SPEs. Table 9 shows that excellent, nearly linear
scaling is obtained for a speed-up test on a single QS22 blade
(total problem size is kept constant throughout the test).

Multiple GPUs attached to the same host node may be used
by starting separate pthreads on the host node and associating
GPU contexts to them. In our GPU-centric implementation,
updated cell information must be communicated between the
GPU global memories of the GPUs. In current GPUs there is
no support for data transfers directly between devices so the



Time (s) | GFLOPS/s | %Peak | GB/s | %Peak
CPU Xeon (4 Cores+SSE) 92.18 9.76 23% 1.30 12%
Cell PowerXCell 8i (8 SPEs) 16.96 53.07 26% 7.08 28%
GPU Tesla T10 (GT200) 11.42 78.81 7.6% | 10.51 10%
GPU Tesla T10 (GT200) (actual) 11.42 140.85 | 13.6% | 36.78 36%
GPU C2050 (Fermi) 6.62 135.95 11% | 18.12 13%
GPU C2050 (Fermi) (actual) 6.62 242.97 19% | 63.41 44%

(a) single precision
System Time (s) | GFLOPS/s | %Peak | GB/s | %Peak
CPU Xeon (4 Cores+SSE) 119.43 7.54 35% 1.00 9%
Cell PowerXCell 8i (8 SPEs) 61.40 14.66 14% 1.95 8%
GPU Tesla T10 (GT200) 36.15 24.90 29% 3.32 3%
GPU Tesla T10 (GT200) (actual) 36.15 44.49 52% | 11.62 11%
GPU C2050 (Fermi) 16.66 54.02 10% | 14.41 10%
GPU C2050 (Fermi) (actual) 16.66 54.03 10% | 52.83 37%

(b) double precision

Table 7: Comparison of estimated real performance with peak theoretical performance for the three platforms. The values for the
‘GPU Tesla T10 (GT200) (actual)’ row take into account how many flux calculations and memory transfers the implementation
actually does, as opposed to the minimum number that is necessary for an ideal implementation of the algorithm without flux
calculation duplication and additional loads of neighbor cells, which is listed in the ‘GPU Tesla T10 (GT200)’ row for comparison.
In the Fermi double precision runs, we are using the (faster) single flux kernel instead of the thread coarsening kernel.

n Size (MB) | CPU (4 cores) Cell GPU
100 0.11 20.00 | 100.00 | 50.00
200 0.46 25.00 | 100.00 | 100.00
400 1.83 26.23 | 14545 | 145.45
800 7.32 26.78 | 145.45 | 188.24
1600 29.3 25.15 | 144.63 | 209.84
3200 117 2479 | 14798 | 215.58
6400 469 25.36 | 147.39 | 219.15
(a) single precision
n Size (MB) | CPU (4 cores) Cell | GPU
100 0.23 16.67 | 33.33 | 25.00
200 0.92 19.05 | 36.36 | 40.00
400 3.66 19.51 | 39.02 | 47.06
800 14.6 19.88 | 40.25 | 58.18
1600 58.6 19.56 | 39.88 | 67.90
3200 234 20.56 | 40.63 | 64.85
6400 938 20.39 | 40.71 | 67.87

(b) double precision

Table 8: Effect of problem size on performance for Xeon CPU (4 cores), PowerXCell 8i Cell, and Tesla T10 GPU. This test uses a
square problem domain of size n X n, with L = W = 1%”0 and 100 timesteps. Results are listed in units of 10° grid cell updates per
second. The CPU performance is not very sensitive to problem size, except for relative slowdown for the smallest problem sizes,
which is due to MPI communication overhead. For the GPU case, as the problem size increases, the overall performance rapidly
improves until thread saturation is reached. In double precision the same effect is seen but the GPU becomes saturated much earlier.
The Cell processor also shows a jump in single precision performance once the problem size becomes large enough to use all eight

SPEs.
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QS22 blade with two PowerXCell 8i Cell processors
single precision double precision

SPEs | time (s) | speed-up (X) | time (s) speed-up (X)
1 53.24 1.00 | 194.79 1.00
2 26.67 2.00 97.56 2.00
4 13.37 3.98 48.81 3.99
8 6.72 7.92 2441 7.98
16 3.33 15.99 12.21 15.95

Table 9: Scaling on one QS22 Cell blade with 2 Cell processors and 8GB of shared memory (no MPI). The two Cell processors
have a total of 16 SPEs. In these tests, all SPEs are steered by a single PPE (on one of the two Cell processors) using pthreads. This
test uses a 1000 x 1000 grid with L = 10, W = 10 and 1000 timesteps.

S1070 computing server with two Tesla T10 GPUs

single precision double precision
GPUs | time (s) | speed-up (x) | time (s) [ speed-up (x)
1 286.11 1.00 | 905.78 1.00
2 145.15 1.97 | 456.45 1.98

Table 10: Scaling test for one and two Tesla T10 GPUs on a single S1070 computing server steered from one Xeon server node (no
MPI). Linear scaling is demonstrated. This test uses a 8000 x 8000 grid with L = 80, W = 80 and 1000 timesteps.

server host is used as an intermediary. Updated ghost cell data
is passed to buffers in the server host memory and then to ghost
cells on the neighboring GPU (but MPI is not required). Perfor-
mance when using one or two GPUs on the same server node is
investigated in Table 10.

Note that, in order to get nearly linear scaling, the problem
size has to be chosen larger in the GPU case than in the Cell
case. This is because the two GPUs do not share memory, and
communication between them has to proceed via the host server
CPU and memory. The two Cell processors, on the other hand,
share memory, and the 16 SPEs can be used as if they were
located on one single Cell processor.

5.6. Cluster Comparison and Scaling

In this section, we discuss two types of parallel cluster scal-
ing tests for the three platforms. In strong scaling tests the to-
tal problem size is kept constant as the number of nodes is in-
creased, and the speedup is measured. In weak scaling tests, the
problem size increases proportional to the number of nodes (the
problem size per node is kept constant), and ideally the execu-
tion time should not change as the number of nodes increases.

In Table 11 we show MPI strong scaling results for the CPU,
Cell and GPU implementations on parallel clusters. We use as
many quad-core Xeon chips as Cell or GPU chips in this par-
allel scaling tests, and the CPU code is SSE-optimized. The
cluster results largely mirror the single-chip results. The Cell
processor cluster results do not scale as well as the CPU and
GPU cluster results. This is because we use the PPE cores to
perform the MPI communication. The advantage of this is that
we have direct MPI communication between Cell processors,
but, unfortunately, the PPE cores are slow and affect the par-
allel scaling negatively. As we said in Section 5.1.2, a QS22-
only system is a challenging environment for developing MPI-
parallel codes that scale well. In our single precision test case,
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for instance, 42% of the time (4.83 s) is spent in MPI calls on
eight nodes,and 47% (3.36 s) on 16 nodes. On the contrary, in
the GPU implementation, the amount of time spent in commu-
nication is 0.36s for eight nodes, and 0.53 for 16 nodes. This
can be remedied by employing more expensive Roadrunner-like
‘tri-blades’ with Cell processors, in which MPI communication
can be performed by faster Opteron processors, or one can re-
duce the number of times that MPI communication must occur
by adding more ghost layers and doing multiple iterations be-
tween MPI communication calls. The GPU results also do not
scale very well in this strong scaling test. This is because the
communication time begins to take a significant fraction of the
total run time as the number of nodes increases. Note that this
slowdown is not due to the problem sizes per node dropping
below the threshold at which the GPUs’ threads are fully sat-
urated. Indeed, Table 8 shows that this drop happens around
problem size 16002, but the problem sizes per cluster node in
Table 11 are greater than twice 1600% grid cells, even for the
runs with 16 nodes. See also [21] for a discussion on strong
scaling on a GPU cluster.

We also carried out weak scaling tests using the same con-
figurations, and the results are shown in Table 12. In the weak
scaling table the GPU performs better, since the computation
time remains relatively large compared with the communica-
tion time. The CPU MPI runs display some variability, which
may be due to system load variability, over which we did not
have explicit control. Also, since the CPU implementation
starts eight MPI processes per Xeon server, there is increased
messaging and synchronization overhead between server nodes,
whereas in the GPU case there is only a single MPI process per
server node. For the Cell processor implementation, the SPE
compute time is remarkably uniform, likely owing to the sim-
plicity of the individual SPE cores themselves, but the overall



2 x Xeon CPU 2 x Tesla T10 GPU 2 x PowerXCell 8i
N | Ex(s) | Wk(s) T(@) | S(X) | Ex(s) | Wk(s) | T(s) | S(x) | Ex(s) | Wk(s) | T(s) | S(X)
1 246 | 315.8 | 318.26 1.00 0.02 | 35.79 | 35.81 1.00 429 | 5340 | 57.69 | 1.00
2 1.94 | 155.53 | 15747 | 2.02 0.26 17.97 | 18.23 1.96 4.48 26.72 | 31.20 | 1.85
4 3.00 | 77.49 80.49 | 3.95 0.37 9.08 9.45 3.79 6.13 13.44 | 19.57 | 2.95
8 1.34 | 38.77 | 40.11 7.93 0.36 466 | 502 | 713 4.83 6.74 | 11.57 | 4.99
16 0.75 19.38 20.13 | 15.81 0.53 2.39 2.92 | 12.26 3.36 379 | 7.15 | 8.07

(a) Single Precision

2 x Xeon CPU 2 x Tesla T10 GPU 2 x PowerXCell 8i
N | Ex(s) | Wk(s) T@) | S(X) | Ex(s) | Wk(s) T(s) | S(X) | Ex(s) | Wk(s) T@) | S(X)
1 3.12 | 380.76 | 383.88 1.00 0.07 | 113.52 | 113.59 1.00 6.10 | 195.69 | 201.79 1.00
2 3.81 | 185.88 | 189.69 2.02 0.57 56.96 57.53 1.97 6.53 98.10 | 104.63 1.93
4 4.15 92.79 96.94 3.96 0.66 28.66 29.32 3.87 8.40 48.84 57.24 3.53
8 2.19 46.43 48.62 7.90 0.71 14.70 1541 7.37 6.39 24.44 30.83 6.55
16 1.40 23.28 24.68 | 15.55 0.83 7.59 8.42 | 13.49 7.21 12.20 19.41 | 10.40

(b) Double Precision

Table 11: Strong scaling performance comparison between architectures in single and double precision using from N=1 to N=16
cluster nodes with MPI. This test uses a 16000 x 10000 grid with L = 160, W = 100 and 100 timesteps. We give the total runtime
(T), the mpi-exchange time (Ex), the time to do the actual calculations (Wk), and the scaling of the total runtime (S). For all
platforms we use our most performant code, as listed in Section 5.1.1.

2 x Xeon CPU 2 x Tesla T10 GPU 2 x PowerXCell 8i
N | Ex(s) | Wk(s) T (s) R | Ex(s) | Wk(s) | T(s) R | Ex(s) | Wk(s) | T(s) R
1 1.51 97.19 98.70 | 1.00 0.01 11.25 | 11.26 | 1.00 2.14 16.70 | 18.84 | 1.00
2 1.96 97.46 99.42 | 0.99 0.19 11.31 | 11.50 | 0.98 3.70 16.70 | 20.40 | 0.92
4 2.11 97.10 99.21 | 0.99 0.29 11.26 | 11.55 | 0.97 3.94 16.70 | 20.64 | 0.91
8 4.07 97.22 | 101.29 | 0.97 0.43 11.30 | 11.73 | 0.96 7.33 16.70 | 24.03 | 0.78
16 3.65 97.42 | 101.07 | 0.98 0.54 11.26 | 11.80 | 0.95 7.73 16.70 | 24.43 | 0.77

(a) Single Precision

2 x Xeon CPU 2 x Tesla T10 GPU 2 x PowerXCell 8i
N | Ex(s) | Wk(s) T (s) R | Ex(s) | Wk(s) | T(s) R | Ex(s) | Wk(s) | T(s) R
1 1.92 | 121.47 | 123.39 | 1.00 0.01 35.30 | 35.31 | 1.00 3.27 61.05 | 64.32 | 1.00
2 5.75 | 122.35 | 128.10 | 0.96 0.41 35.55 | 35.96 | 0.98 5.52 61.10 | 66.62 | 0.97
4 7.15 | 121.56 | 128.71 | 0.96 0.58 35.30 | 35.88 | 0.98 8.77 61.13 | 69.90 | 0.92
8 7.17 | 121.40 | 128.57 | 0.96 0.92 35.52 | 36.44 | 0.97 | 10.93 61.12 | 72.05 | 0.89
16 | 12.77 | 123.41 | 136.18 | 0.91 1.16 35.31 | 36.47 | 097 | 11.02 61.14 | 72.16 | 0.89

(b) Double Precision

Table 12: Weak scaling performance comparison between architectures in single and double precision using from N=1 to N=16
cluster nodes with MPI. This test uses grid sizes of 10000 x 5000,10000 x 10000, 20000 x 10000, 20000 x 20000, and 40000 x 20000
with grid L = W = 800 and 100 timesteps. We give the total runtime (T), the mpi-exchange time (Ex), the time to do the actual
calculations (Wk), and the ratio of the total runtime for N=1 divided by the total runtime on N nodes (R). For all platforms we use
our most performant code, as listed in Section 5.1.1.
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performance does not scale well because of the poor PPU per-
formance on the inter-node MPI calls.

6. Conclusions and Future Directions

We have shown how a numerical simulation method for non-
linear hyperbolic PDE systems can be implemented efficiently
for the Cell processor and NVIDIA GPUs using CUDA. We
have described memory layout, communication patterns and
optimization steps that were performed to exploit the low-level
parallelism of these two platforms. A coarse-level layer of MPI
parallelism was added to obtain a hybrid parallel code that can
be executed efficiently on GPU or Cell clusters. Performance
tests were conducted on JSC’s Cell cluster system ‘JUICEnext’
[24] and SHARCNET’s GPU cluster ‘angel’ [23].

Compared to a reference CPU implementation with cache
and SSE optimization executed on one Xeon core, significant
speed-ups were obtained by both the Cell processor and GPU
implementations. In single precision the Tesla T10 GPU imple-
mentation (GT200 architecture) gave almost 32x speed-up, and
the Cell provided a 22x speed-up. In double precision the Tesla
GPU gave a 13x speed-up over a single Xeon core, while the
Cell gave just under 7.5x% better performance (Table 5).

In a chip-to-chip comparison of single precision results, the
Cell processor was 5x faster than a quad-core Xeon implemen-
tation, and the Tesla GPU was 8% faster. In double precision
the Cell achieves a 2x speed-up, and the Tesla GPU roughly 3x
(Table 5). For our CUDA code, recently released GPUs with
next-generation Fermi architecture improve on the Tesla results
(GT200 architecture) by a factor of about two (in preliminary
results without further Fermi-specific optimization).

In a cluster-to-cluster comparison, the speed-up ratios remain
roughly the same. However, the Cell implementation scales
poorly on our QS22-cluster due to slow performance of the
PPE. There are work-arounds for the slow PPE, such as the
hybrid AMD-Cell approach used in Roadrunner, or one can re-
duce the number of times that MPI communication must occur
by adding more ghost layers and doing multiple iterations be-
tween MPI communication calls.

The overall results of our study demonstrate that Cell and
GPU clusters can be used for efficiently simulating nonlin-
ear hyperbolic PDE systems on structured grids with explicit
timestepping. Our model problem is representative of a large
class of structured grid based local-interaction simulation algo-
rithms with relatively large FLOP counts per Byte of data trans-
fered, and our conclusions carry over to many simulation codes
used in broad areas of computational science and engineering.

Our discussion of Cell and GPU optimization techniques
shows that there is still a significant learning curve and opti-
mization effort involved in porting codes to Cell and GPU en-
vironments. We have found the effort required to obtain sig-
nificant speed-ups smaller on GPU platforms than on Cell plat-
forms, and find the GPU platform generally simpler and more
intuitive to program. Extensive efforts are underway to improve
automatic compiler optimization for both Cell and GPU plat-
forms: the RapidMind platform, the HONEI libraries [20] and
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the new OpenCL framework [41] are examples. However, for
the time being, automatic approaches cannot provide yet the
level of speed optimization that we were seeking in this paper.

In future work we will extend our approach to bodyfitted
adaptive multi-block codes in three dimensions (3D), which
allow for simulation of real 3D problems with more complex
geometry. Extending our work to unstructured grids or im-
plicit time integration would require different optimization ap-
proaches, since those problems require unstructured data and/or
nonlocal connectivity. Mixed-precision calculations are also an
interesting option, due to the excellent performance of Cell and
GPU on single precision calculations.

Our preliminary results on the recently introduced Fermi
GPU show that GPU calculations can be up to 14 times faster
than quad-core Xeon E5430 CPU calculations in single preci-
sion, and up to 7 times faster in double precision, for our ap-
plication. Improvements in the newest GPUs that are important
for HPC include full IEEE floating point compliance, error cor-
recting memory, and L1 and L2 caches. Direct communication
between GPUs over Infiniband networks [43] is another excit-
ing prospect.

Our results support indications that clusters with heteroge-
neous multi-core architectures may become increasingly im-
portant for scientific computing applications in the near future,
especially also if one considers their typically low power re-
quirements [26, 22] and the fact that heterogeneous multi-core
architectures may scale more easily to large numbers of on-chip
cores than homogeneous chips with full x86 cores [42].
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