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Abstract

Transport of electrons through two-dimensional semiconductor structures on the nanoscale in the presence of perpen-
dicular magnetic field depends on the interplay of geometry of the system, the leads, and the magnetic length. We use
a generalized master equation (GME) formalism to describe the transport through the system without resorting to the
Markov approximation. Coupling to the leads results in elastic and inelastic processes in the system that are described
to a high order by the integro-differential equation of the GME formalism. Geometrical details of systems and leads
leave their fingerprints on the transport of electrons through them. The GME formalism can be used to describe both
the initial transient regime immediately after the coupling of the leads to the system and the steady state achieved after
a longer time.
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Commonly, various transport formalisms have been
tried on very simple “model systems”. Here, we
show that the generalized master equation can be used
to investigate magnetotransport properties of a two-
dimensional electron system with nontrivial geometry.
Furthermore, we find that the geometrical shape of the
leads coupled to the system strongly influence the trans-
port. The GME formalism has been used by several
groups to study transport [1–4]. To derive the non-
Markovian GME we project the Liouville-von Neu-
mann equation for the density operator of the leads and
the system on the system by tracing out all operators
pertaining to the leads, obtaining the reduced density
operator (RDO) ρS(t) describing the evolution of the
system under the influence of the leads (the reservoirs).
The derivation had its origin in quantum optics [5, 6].
For technical details see [7] for a lattice model and [8]
for a continuous model. The semi-infinite leads are cou-
pled to the finite system at t = 0. Here, we will as-

Email address: vidar@raunvis.hi.is (Vidar Gudmundsson)

sume no Coulomb interaction between the electrons in
the system, but we have added the Coulomb interaction
via “exact diagonalization” in a different communica-
tion [9]. An external magnetic field with strength B
is perpendicular to the 2D electron system in the leads
and the system. The derivation of the GME is carried
out with the assumption of weak tunneling coupling be-
tween the system and the leads. In the continuous model
the coupling is described by a nonlocal overlap integral
between states in the system and the wire in the contact
area marked green in Fig. 1, (see [8]). This gives us a
complex coupling scheme between the leads and system
that depends on the geometry of the subsystems instead
of a single coupling constant often used.

The GME-formalism is a many-electron formalism
and thus we select as relevant for the transport single-
electron states (SESs) in and around the bias-window
shown in Fig. 2 to build the necessary many-electron
states (MESs). In the calculation here we use 10 SESs,
and since it is carried out at magnetic field B = 1.0 T we
have to remember that some states have the character of
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Figure 1: Schematic of the system, the leads, and the coupling be-
tween them represented by the tunneling Hamiltonian HL,R

T (t), (see
[8])

an edge state while others are bulk states. The coupling
to the states will vary with their character, and the mag-
netic field influences this coupling to the largest extent.

Figure 2: Schematic of the relevant single electron states (SESs) in
and around the bias window included in the transport calculation.

We assume that the system is a finite parabolically
confined quantum wire of length 300 nm, and use GaAs
parameters, m∗ = 0.067me. The characteristic confine-
ment energy is ~Ω0 = 1.0 meV. The ends of the system
have a hard wall for t < 0 and are for later times tun-
nel coupled to the semi-infinite parabolic leads that will
either be broad, with confinement energy scale E0 =

~Ω
L,R
0 = 1.0 meV, or more narrow with E0 = 2.0 meV.

The energy spectrum of the lowest MESs of the sys-
tem is seen in Fig. 3 together with the continuous SESs
spectra for the broad and the more narrow leads. The
chemical potential of the right lead is fixed at µR = 1.4
meV and the bias ∆µ is varied by changing µL. The total
time-dependent occupation of the system with electrons
is displayed in Fig. 4 for the two types of leads and dif-
ferent values of the bias. The largest amount of charge
is accumulated in the system for the higher bias and the
broad leads, and for the broad leads and the lower bias
the system is very close to a steady state regime after
the transient charging. Furthermore, we see in Fig. 5
how the charging for the broad leads occurs through
both leads in the transient regime, and how the steady
state value of the current through the system depends
on the bias.

Interesting is to see how the different MESs con-
tribute to the transport in Fig. 6. Not only more MESs
participate in the case of the broad leads, but more in-

Figure 3: The discrete spectra of the MESs of the system, the contin-
uous SESs spectra for a broad or narrow semi-infinite lead, and the
chemical potential in the right lead µR.

Figure 4: The total charge in the system as a function of time for
different values of the bias ∆µ and confinement of the leads E0 =

~Ω
R,L
0 .

teresting is to see their location with respect to µR. If
we analyze the structure of the MESs using the Fock
space of SESs |µ〉 = |iµ1, i

µ
2, i

µ
3, · · · , i

µ
NSES
〉 with iµa ∈ {0, 1}

we find that in case of the broad leads a large contri-
bution comes from |01.00000000〉, |01.10000000〉, and
|01.01000000〉, where we have used a dot to indicate
the location of µR. In the case of the more narrow
leads we find large contributions from |00.10000000〉,
|00.11000000〉, and |00.10100000〉. In both cases the
lowest SES is not occupied since it is a bulk state with
low coupling to the contact region. For the broad wire
we see the state just under µR is occupied, and states
in the bias window. For the narrow leads this state is
not occupied, but rather the next state just above µR.
In Fig. 3 we see that this can be explained by the lack
of low enough energy states in the narrow leads. In
the case of the broad leads we notice that initially one-
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Figure 5: Total current in the right and left leads for a narrow and
a broad confinement for µR = 0.1 meV (upper), and µR = 1.1 meV
(lower). A negative current in the right leads is a current into the
system from the right lead.

electron states are occupied, but for later times two-
electron states are favored.

We see thus that the energy spectrum of the leads
is very important when considering which states in the
system will contribute to the transport, both in the tran-
sient and the steady state regime. In addition, the char-
acter of the state in the system both with respect to en-
ergy and geometry is essential as the coupling depends
on all these details. The coupling to the leads enforces
certain correlation on the electrons in the system. To
describe these correlation effects in the weak coupling
limit for a low density of electrons we needed the GME
many-electron formalism. Elsewhere, we have shown
that the Coulomb interaction between the electrons in-
fluences the charging of the system by changing the en-
ergy scales, the spectra, and the correlation between the
electron states [9].
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