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N Abstract

— In the presented article we present an algorithm for the ctatipn of ground state spin configurations for tierandom bond
™ Ising model on planar triangular lattice graphs. Therefitie explained how the respective ground state problembeamapped
O to an auxiliary minimum-weight perfect matching problewiyable in polynomial time. Consequently, the ground spatperties
(Y) -as well as minimum-energy domain wall (MEDW) excitationsvery large 2 systems, e.g. lattice graphs with upNe- 384x384

spins, can be analyzed very fast.
"—" Here, we investigate the critical behavior of the corresiiogT =0 ferromagnet to spin-glass transition, signaled by a luteak

c— of the magnetization, using finite-size scaling analysethefmagnetization and MEDW excitation energy and we contras

1 numerical results with previous simulations and presugnekéct results.

e Keywords: Random bond Ising model, Negative-weight percolation u@dstate phase transitions

1. Introduction Ref. [8]) is based on the Kasteleyn treatment of the Isingehod
_ _ [9], which previously was also used to obtain extended gdoun

Triggered by the exchange of ideas between computer scétates for the @ ISG with fully periodic boundary conditions
ence and theoretical physics in the past decades, it waze¢al [10].
that sever“al ba?,'c pr.obllem_s in the context of disorderesys Here, we introduce a dedicated algorithm that yields exact
O relate to easy opym|z‘at|on prob!ems. Thgse are problem%S spin configurations for thed2random-bond Ising model
 where the solution time is polynomial in the size of the peobl R \1) on planar triangular lattice graphs. As the previous
description. As a result, many disordered systems can now g, o2 ches; the algorithm presented here requires to anlve
analyzed numerically exact through computer simulations b ,<cqciated MWPM problem. The corresponding mapping uses

using fast combinatorial opt.imiza'Fion algorithmsi[1., 2, E]g a relation between perfect matchings and paths on a graph
(O ground state (GS) spin configurations for the random-fietdls [11,[12]. In dfect, these paths can be used to partition the

magnet (in any dimensiad) can be obtained by computing the ; ; ; ;
E magimufn flov?//for an atf?i)liary network problgrn [2]? Angther grr?lph into domalns of ' and down spins that comprise a GS
d X ; . X spin configuration, see Figl 1. Consequently, the GS prigigert
example is the_d Ising spin glass_ (ISG), where the lattice €an as well as minimum-energy domain wall (MEDW) excitations,
_be embedd_ed ina plan_e. For th'? model,_the_ problem of findgg Fig[dL, can be analyzed very fast. The presented algorith
O nga GS spin cpnﬂguraﬂon for a given realization 9f the BSBI'  enables us to study large systems, while allowing for an@ppr
] neighbor couplings can be mapped to an appropriate MiNiMuMiate gisorder average within a reasonable amount of compu
> weight perfect-matching (MWPM) problem [2, 4]. Finallyeth g time 1n this regard, it requires to compute a MWPM for an
.— 'MWPM problem can be solved in polynomial time by meansauxiliary graph withO(N) edges only (whereil is the num-

>< of exact combinatorial optimization algorithms [5]. Thtlse o, of spins on the lattice). However, note that the algonith

L . . .
(qv] glljitneaqruﬁiLsr;ig?r;?:bféﬁée;ng'ﬁfﬁl%agozlsrr]%:ﬁgﬁﬁ;@tu:&\r’]\”th'presented here is asymptotically not faster than the dhgori

X - ) r{)resented in Refs.|[8,10], but it highlights the algorithmgla-
very large systems can be considered, giving very precide anq, petyeen the GS problem for spin glasses and the recently
reliable estimates for the observables. Actually, theeedif-

. proposed negative-weight percolation (NWP) problem [13].
ferent approaches that allow for an exact computation of GSs . . . . .
In the presented article, we investigate the critical b&rav

for the planar 8 ISG [6,.7,.8]. Albeit all of these approaches . .

rely on {Ohe computatii)n of M]VVPMS on an auxiliary Fg);rr)aph, theyOf theT=0 ferrpmagnet (FM) to spin-glass (SG) transrgon_for
differ regarding the subtleties of the mapping to the respectivgfingj fﬁﬁ:al\.ﬂéizstleg;f;?i?]gb)(llzasg;e:rlfgl(;/\ggsogft?ﬁeml\/?gB\e/;[/lzggtr;-
auxiliary problem. The mostficient of these approaches (seetion energy. In this regard, we obtain a highly precise et

of the critical point for the triangular lattice geometrydawe
Email addressesoliver . melchert@uni-oldenburg.de (O. verify the critical exponents obtained earlier for the RBovi
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of ferromagnetic bondsJ( = 1) in favor of parallel aligned
spins. In general, the competitive nature of these intEnast
gives rise to frustration. A plaquette, i.e. an elementeant

gle on the lattice, is said to be frustrated if it is bordergdh
odd number of antiferromagnetic bonds. lffieet, frustration
rules out a GS (i.e. a minimizergs of Eq.[A) in which all the
bonds are satisfied. As limiting cases one can identify tingls
ferromagnet ap = 0 and the canonicatJ ISG atp = 1/2.
Hence, as a function of the disorder paramgi@re expect to
find a ferromagnetic phase (spin-glass phasepfop. (p> pc),
whereinp; denotes the critical point at which tie=0 FM-SG
transition takes place. For the ISG with a bimodal disorder d
tribution the GS is highly degenerate and the average nuaiber
such GSs increases exponentially wiH17,/18]. Apart from

the GSs, we here also aim to characterize the energeticrprope
ties of MEDW excitations. A domain wall is an interface that
spans the system in the direction with thee free BCs. Now, the
MEDW is such an interface with an excitation enefify that

is minimal among all possible domain walls. Due to the exten-

Figure 1: Samples of aJ random bond Ising spin system on a triangular gjye degeneracy of the GSs, the “lattice-path” associatddav

lattice of side length. = 32. The samples are taken at threadent values of

the disorder parametgr. (a) p=0.15 characterized by a ferromagnetic GS, (b)

p=0.2 characterized by a GS with SG order andffe)0.5, i.e. the canonical
+J ISG. In the figure, periodic BCs are indicated by the dasheticet lines.
From left to right: (Left) Transition graph that describbs tiference between
a ferromagnetic reference spin configuration and the GS amifiguration,
(center) corresponding GS, (right) MEDW excitation refatio the GS.

merical results with previous simulations and presumaxéce
results|[15].
The remainder of the presented article is organized as

MEDW is not unigue. l.e., there are many DWs with minimal
excitation energy. Albeit the geometric properties of a MED
are not unique, its excitation energy is uniqgue. MEDWs for
three diferent values of the disorder parameteare illustrated

in Fig.[1.

We now give a brief description of the algorithm that we use
to compute the GSs. Therefore, we first set a reference spin
configurationog. The most convenient choice is a maximally
polarized, i.e. ferromagnetic, configuration = (+1,..., +1).
folFhen, we construct a weighted dual of the spin lattice as show

lows. In sectioli R, we introduce the model in more detail andn Fig.[2(a). Since the spin lattice considered here hasaa-tri
we outline the algorithm used to compute the GS spin configgular geometry, the corresponding dual graph possesses a ho

urations. In sectiof]3, we present the results of our nuraker
simulations and in sectidd 4 we conclude with a summary.

2. Model and Algorithm

In the presented article we perform GS calculations for the
RBIM, where the respective model consistd\bE L x L Ising

spinso = (o1,...,0N), Whereo; = +1, located on the sites

of a planar triangular lattice graph. Therein, the energg o
given spin configuration is measured by the Edwards-Anaer
Hamiltonian

He) = - )" Jj oo, (1)
(@
where the sum runs over all pairs of nearest-neighbor spms

the triangular lattice) with periodic boundary conditiqBCs)
in the x-direction and free BCs in thgdirection. In the above

energy function, the bond3; are quenched random variables

drawn from the disorder distribution
PJ) = pds@d+1) + (1-p)s(3-1). (2)

Therein, one realization of the disorder consists of a rand
fraction p of antiferromagnetic bondsl (= —1) that prefer an
antiparallel alignment of the coupled spins, and a fragtlep)

ic eycomb geometry. Note, that we introducddektra nodes on
top and at the bottom of the dual in order to account for the
free BCs along that direction and to maintain the honeycomb
structure of the respective graph. This means, a triangpiar
lattice of sizeL x L is transformed to a honeycomb lattice with

o anover all number of [2) x (L + 1) nodes. Hence, the topolog-
ical dual graph associated to the triangular spin latticaadsli-
fied to some extend. Further note that adjacent extra nodes ar

f connected by edgesthat carry a weightu(e) = 0. All other

Soedgesa on the dual graph get an edge-weigli€) = JjorioRr .
Therein,e is assumed to cross a bodg on the spin lattice,
where J;; couples the two spinsgj,j, see Fig[R(a). Conse-
quently, the edge weight on the weighted dual is positivg{ne
ative), if the corresponding bond on the spin lattice iss$itil
(broken) with respect tog. A pivotal observation is, that there

( exists an equivalence between clusters of adjacent spitiseon

spin lattice that might be flipped in order to decrease théigon

urational energy ofr and negative-weighted loops (i.e. closed

paths) on the weighted dual graph. In this regard, if a loop

with negative weight on the dual is found, the cluster of spin

surrounded by this loop can be flipped so as to decrease the

configurational energy afg. Finally, to obtain a GS spin con-

o figuration one needs to find a minimum-weight set of negative-
weighted loops on the dual graph (see discussion belows Thi
set of loops comprises the transition graph for the giveh rea
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Figure 2: lllustration of the computation of the transitigraph that allows to determine a GS spin configuration onraplaiangular RBIM. The figure illustrates

a sample system of side lendth= 3 and periodic BCs in the horizontal direction. (a) Mappirighe original latticeG (grey edges, triangular geometry), where
a solid (dashed) line indicates a ferromagnetic (antifeergnetic) bond, to the weighted dual grapp (black edges, honeycomb geometry). Note that additional
edges (dotted lines) where introduced to account for the bpendary conditions in the respective direction. Theggedarry zero weight. (b) Minimum weight
set of loops (bold black edges) @p as obtained from a mapping to the NWP problem (not shown BeeeRef.[[13]). (c) Loop on the dual surrounding a cluster of
spins on the spin lattice. If the orientation of the spinshigsen as explained in the text, this procedure yields a G&cepifiguration. In the figure, spin orientations
are distinguished by gray filled and non-filled circles.

ization of the disorder, as illustrated in Fig. 2(b). Sinciially on the dual. These small loops correspond to local “manipu-
a ferromagnetic reference configuration was chosen, thesGS lations” of the order parameter (i.e. the magnetizatiom}y.o
obtained if the orientation of the spins on the spin latt&celio-  Hence, in the thermodynamic limit, the GS has still ferromag
sen such, that (i) spins within a cluster are aligned in tmesa netic order (see Fi§ll 1(a)). However, if the valugpaficreases
direction and (ii) spins in adjacent clusters are aligneoldpo-  and exceeds a critical valyg, large loops appear that have a
site directions. The resulting GS is indicated in Fij. 268e linear extension of the order of the system size and evdptual
also Fig[1. span the system along the direction with the periodic bognda
conditions. These loops represent global manipulatiortkef
rder parameter, that, in the thermodynamic limit, desthesy
rromagnetic order of the GS (see Figs. 1(b),(c)).

Once we obtained a GS spin configuration in this manner, we
compute a MEDW by means of a similar mapping, thoroughly

Here, for the 2 RBIM on a planar triangular lattice, where
the dual has a honeycomb geometry, the minimum weight s%q
of loops on the weighted dual can be obtained by means of 'y
mapping to the NWP problem, as explainedlin| [13]. In brief,
the NWP statement consists in the task to find a minimum : . . ;
weight set of nonintersecting negative-weighted loops &or explameq in Ref.[19]. In th‘? following we W'" use the prece
given weighted graph. Therefore, it considers a rninimum_dure outllned_above to obtain GSs and to investigate MEDWs
weight perfect matching problem on an associated auxiliar)];or the REIM introduced above.
graph withO(N) edges (provided that the input graph ()
edges, as it is the case here), from which the set of loops ca® Results
be deduced. Note that the mapping to the NWP problem yields
the correct transition graph only for this particular legtisetup, As pointed out above, at small values ptthere exists an
since any two-coloring of the spin lattice (i.e. assignmeit oOrdered ferromagnetic phase, while for large values aspin-
up/down spin orientations) can be composed by loops on thglass ordered phase appears. A proper order parameterrto cha
dual that do not intersect. That means, each site on the du@fterize the respective FM-SG transition is the magnédizat
is an end-node of either 0 or 2 loop segments, as e.g. in Figer Spinm. = | 3}; o7|/L* for a system of linear exterid Be-
2(b). In contrast, two-colorings of the spins on a square latlow, we perform a finite-size scaling analysis (FSS) in otder
tice might involve loops on the dual that involve figure-8dtgi  locate the critical poinpc and to estimate the critical exponents
That means, each site on the dual is end-node of either 0, 2 orthat describe the scaling behavior of the magnetizatiomén t
loop segments. For the latter problem, &atient mapping 8]
was used recently to obtain exact GSs fdi8Gs on a square
lattice with free BCs in at least one direction within polynial Table 1: Critical exponents for thel RBIM. From left to right: Problem setup

time. This mapping was further used to compute “extendedtSQ@square lattice, TRtriangular lattice), critical exponent of the correlation
GSs for the 8 1SG with fuIIy periodic BCs flO] lengthv, order parameter expongfitand exponents; andy that characterize

the scaling of the MEDW excitation energy. The figures for &&re taken from
Now, the interpretation of th& = 0 FM-SG transition in Ref. [15]. The figures for SQ-b are taken from Ref! [14].

terms of the NWP problem reads as follows: For small values

of p, there are only few bonds on the spin lattice that are not Setup v B $1 !

satisfied by the reference spin configuration. Accordirthlgre SQ-a  149(7) Q097(6) 067(3) 0Q17(2)

are only few small loops that comprise the transition gragui. SQ-b  155(1) Q09(1) Q75(5) Q12(5)

all nonzero values op, a suficiently large lattice will feature TR 147(6) Q086(5) 068(8) 015(2)

at least some small loops that surround an elementary plaque
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Figure 3: Results of the finite-size scaling analysis forliireler parameter
b, (p), considering dterent system sizds. The main plot shows the unscaled
data close to the critical point and the insets illustratedata collapse obtained
after rescaling the raw data using the scaling assumpticussed in the text
and scaling parameters as listed in Tab. 1.

vicinity of the critical point. Therefore, we first considgre
Binder parametel [20]

e
(3 B <<mEL>>2)

associated with the magnetization. It is expected to scal
asby(p) ~ fil(p — peo)LY*], wherein fi[-] signifies a size-
independent scaling function anddenotes the critical expo-
nent that describes the divergence of the correlation heagt
the critical point is approached. Here, we simulated tridag
systems of side length = 24 through 128 at various values
of the disorder parametgy. Observables are averaged over
64 000 samples for the largest systems and we used the d
collapse generated by the scaling assumption above tonobt
pc = 0.1584(3) andv = 1.47(6) with a qualityS = 0.94 of the
data collapse [21, 22], see Fig. 3. In general, the abovengcal
relation holds best near the critical point and one can ebtpat
there are corrections to scaling ariticality. As a remedy, we
restricted the latter scaling analysis to the intervdl.B, +0.3],
enclosing the critical point on the rescaled abscissa.

Further, the order parameter of the transition is expeaed t
scale according to the scaling relatiém (p)) ~ L™/ f5[(p —
pc)LY"], where f,[-] denotes a size-independent function, and
where the order parameter expongoan be obtained after fix-
ing v and p to the values obtained from the analysis of the
Binder parameter. The best data collapSe=(1.01) was ob-
tained for the choicg=0.086(5) (not shown).
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Figure 4: Results of the finite-size scaling analysis for aherage MEDW
energy{sE). The main plot shows the data collapse after rescaling theleda
using the scaling parameters listed in Tab. 1 and the ingstriftes the unscaled
data close to the critical point.

parameter. The critical exponents and¢, are listed in Tab.

[@. Therein, we restricted the scaling analysis to the iterv

[-0.1,+0.1] and obtained a best data collapse v8th 1.63.

Right at the critical poinp; we performed additional simu-
lations for spin lattices of up to 384384 spins (and .8 x 10*
samples), i.e. weighted dual graphs of up to ¥6835 nodes.
Upon analysis of the data we obtain the estimgate 0.097(8)
from the scaling behavior of the magnetization, see [Hig). 5(a
We allowed for small deviations from a pure power-law scal-
ing using a scaling assumption of the fotm) ~ (L + AL) ™/,
whereinAL = O(1). Considering the scaling of the average
MEDW excitation energy¥dE) and using a similar scaling as-
sumption as above, we fougd = 0.15(1), see Fid.15(b). Both
] lese exponents agree within error bars with those obtaaed
ler, see Tal.J1. As pointed out above, for the ISG with bintoda
disorder, there a numerous MEDWSs thaffeli regarding their
geometric properties. However, here we also analyze the av-
erage lengti{¢) of the particular MEDWSs obtained within the
simulations, see Fid.]5(b). Therefore, we considered a scal
ing according to the forni¢) ~ (L + AL)%, whereind; signi-
fies the fractal dimension of the MEDWSs p¢. We obtained
di = 1.222(1) (andAL = O(1)), which is in agreement with
the valueds = 1.222(1) found earlier for thd = 0 FM-SG
transition for the RBIM on a@square lattice, see Ref. [15].

4. Conclusions

In the presented article we have illustrated how GSs for the

Moreover, an analysis of the average MEDW excitation en2d RBIM on planar triangular lattice graphs can be computed

ergy(sE) according to the scaling assumpti@) ~ LY f3[(p—
pc)L?%1], see Ref.|[[23], yields the critical poimt = 0.1586(2),
in agreement with the above estimate obtained using thegBind

4

by a mapping to the NWP problem. l.e., the problem of find-
ing a GS spin configuration for a planad iangular RBIM is
equivalent to the NWP problem on a properly weighted corre-
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Figure 5: Results of the finite-size scaling analysis at titeeal point, where [10]
the T =0 FM-SG transition occurs. (a) Scaling behavior of the mégaton
(m), and, (b) scaling of the average MEDW length and the MEDW excita- [11]
tion energy(sE).
[12]
[13]

sponding dual graph that exhibits a honeycomb structure. Us
ing this approach, we have investigated GSs and MEDW excil4]
tations for the respective lattice structure. Therein,sodier
parameter could be used to distinguish a ferromagnetic and a
spin-glass ordered phase. We characterized the correisgond [15]
T =0 FM-SG transition by means of a FSS analysis of the mag-
netization and the MEDW excitation energy. [

In this regard, we found that the values of the critical expo-
nents obtained here agree within errorbars with those mdxdiai  [17]
earlier for the 2 RBIM on a planar square lattice by consider-
ing a Gaussian bond distribution with ferromagnetic biggs [1
or a bimodal bond distribution [14], as listed in Tab. 1.

Hence, the results for the triangular lattice structuremiad
here highlights the universality of tie= 0 FM-SG transition. 20!
Further, note thap. andy found here agree well with the values |,
pc = 0.1583(6) andv = 1.47(9) that characterize the negative-
weight percolation of loops ond?lattice graphs with a hon-
eycomb geometry and fully periodic boundary conditiong.[13

16]

(18]

(19]

Finally, the location of the critical point obtained hera WSS 22
analysis is close to the theoretical predictim, = 0.15, that  [23]
was obtained for systems with fully periodic boundary cendi

tions using the adjoined problem approach [24, 16]. [24]
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