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Abstract

In a previous paper we proposed a model to study the dynamics of opinion formation in human societies by a co-
evolution process involving two distinct time scales of fast transaction and slower network evolution dynamics. In the
transaction dynamics we take into account short range interactions as discussions between individuals and long range
interactions to describe the attitude to the overall mood of society. The latter is handled by a uniformly distributed
parameter a, assigned randomly to each individual, as quenched personal bias. The network evolution dynamics is
realized by rewiring the societal network due to state variable changes as a result of transaction dynamics. The main
consequence of this complex dynamics is that communities emerge in the social network for a range of values in
the ratio between time scales. In this paper we focus our attention on the attitude parameter « and its influence on
the conformation of opinion and the size of the resulting communities. We present numerical studies and extract

interesting features of the model that can be interpreted in terms of social behaviour.
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1. Introduction

Over the last decade various complex systems, from
biology to human societies, have been approached from
the perspective of network theory, with significant con-
tributions to our understanding of their structure, func-
tion, and response [1} 2 3, 4]. In the case of human
social systems, this approach was first adopted by so-
cial scientists [} 16 [7]] studying relatively small-scale
data sets collected from e.g. questionnaires and then by
physicists [8], 9] focusing on large-scale data sets col-
lected from Internet, emails etc. Both these approaches
give insight into social network structure with one-to-
one interactions. In social sciences the social network
paradigm views social life as consisting of the flow and
exchange of norms, values, ideas, and other social and
cultural resources channeled through a network [10].
This obviates an answer to the question ’why large-scale
social networks’, being that studying collective social
phenomena such as diffusion and spreading processes
(epidemics) [L1], opinion formation [12}13]], and evolu-
tion of language [[14}[15] etc. is interesting and requires
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large systems. Thus we can ask (i) how are large scale
social networks organised and (ii) whether they can be
modelled with a simple model [[16} [17].

Everyday experience and empirical findings like
those from mobile communication based social net-
work [18]] prove that society consists of communities of
different sizes. Modeling the formation of such modules
remains a focus issue in this context [[19} 20]. Recently
we posed the question: How does opinion dynamics in-
fluence and finally result in the community structure of
a society?

We built a model [21], in which individual-level mi-
croscopic opinion based mechanisms translate to form-
ing on one hand mesoscopic communities and on the
other hand the whole system at the macroscopic level.
In this model we took basic notions from sociology
to propose rules by which the social network changes
in time, as cyclic closure forming ties with one’s net-
work neighbours, i.e. *friends of friends’, and focal clo-
sure forming ties independently of the geodesic distance
through shared activities, e.g. hobbies [22]. The main
feature of our model is that we neatly separate the dy-
namics of the opinion changes of the individual agents
from the changes in network connections. Then the ap-
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pearance of distinguishable communities is driven by
the dynamics taking place at two different time scales.
A key ingredient to the model is the introduction of an
“attitude parameter” (a;) that mimics the behaviour of
an individual i facing an overall trend of opinion in the
network.

In this paper we focus our attention on the role of «;
that was found important in building communities shar-
ing the same opinion [21]], and turned out to affect the
relative size of communities. In what follows we suc-
cinctly explain the model and present numerical calcu-
lations.

2. Model

We consider opinion formation in a network of a fixed
number of individuals or agents (N) to whom a sim-
ple question is posed. A state variable x; € [—1,1] is
associated with each individual i, which measures the
agent’s instantaneous inclination concerning the ques-
tion at hand, while the elements A;; € {1,0} of the
network’s connectivity (adjacency) matrix represent the
presence or absence of discussions between individuals
related to this question.

The time scale for discussions or exchange of infor-
mation between individuals ( called “transactions”) is
dt, while the time scale for a generalised change of
connections in the network (called “generation”) is 7.
These two quantities are related by 7 = gdt, where
the parameter g defines the number of transactions per
generation. These mutually dependent processes, or co-
evolution, can be described in general with a dynamical
equation of the state variable x; of agent i as follows
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where the operator O acts discretely on the network only

at time intervals T = gdt. Then we write for the first
term of Eq.
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where @; measures the attitude of agent i towards overall
or public opinion, m.(i) means the set of £h neighbors
of i, and ¢, is the number of steps needed to reach the
most distant neighbors of i.

When T ~ dt, the dynamics of the state variables are
irrelevant and we can concentrate on the discrete net-
work evolution defined by a set of rules for deleting and
creating links between agents. Agent i can choose to
cut an existing link with agent j, i.e. end a discussion if
their opinions are incompatible. In order to perform this
process the quantity

|xi — x|

. (5)

pij = Ajj
is calculated and all the links are put in ranking order.
Then the links with larger p;;-values are deleted, since
they correspond to opinion divergence between the pair
of agents. After the link deletion step follows the link
creation step, where an agent i can create a link with
a second neighbour by starting a discussion with the
“friend of a friend” if this new link can help the agent in
reaching a state of total conviction (|x;| = 1). In order to
determine this we calculate the quantity

X+ Xj
qij = (1 - Ai;) ©[(A%);] % ©6)
where O[x] = ZkN;]z Ok and put them to ranking order.
Then the links with larger g;;-values are created. The
link cutting and creation is performed by keeping their
numbers the same, with a procedure explained in detail
in Section 3.

The system is initialised to a random network config-
uration of N nodes with an average degree (ky), and its
evolution follows a two-step process. In the first step
the dynamics of transactions is realised according to
Eq. @). By keeping the parameters fixed the system
is driven until the specified time (T = gdt) or g time
steps to then do the second step, namely the network
rewiring described above. This two-step process is it-
erated until the system reaches its final state, where no
more changes in the state variables (all x;’s) and in the
network connections take place.

3. Numerical procedure

At a certain time £, the system is defined by a state
vector x(7) = [x1(t), x2(2), ..., x;(?), ..., xn(¢)] with entries
xi(t) € [-1,1] and a connectivity matrix A(¢) with ele-
ments A;;(t) = 0,1, where i,j = 1,..,N and N is the
size of the network.



Each numerical process comprises M + 1 steps where
M is the smallest integer such that

N
D (M) = xi(M = 1) < A )
i=1

with A = 107%, and is essentially divided in four actions:
(1) setting of initial conditions, (2) numerical integra-
tion of the dynamical equations, (3) keeping track of
agents with irrevocable opinions (+1), and (4) rewiring
of the network. Next we shall describe each one of them
in more detail.

(1) For ty = 0, the components of x(#y) are set ran-
domly according to a normal probability distribution
characterised by variance vo = 1 and mean my = 0.
Accordingly, the elements of A(#) are set randomly in
such a fashion that A;;(t) = Aji(to), A;i(to) = 0 and

1
NTrAz(to) = (ko), (8

where (kp) is the initial average degree of the network.
In all simulations presented here we used (ky) = 4.

(2) For every t + 1 such that r = 0, ..., M — 1, we find
the entries in x(¢) that fulfil the condition |x;(¢)] < 1 and
solve their corresponding dynamical equations using a
simple Euler method, that is to say, we set

xi(t+ 1) = x;(1) + dt [ fo(t) + fi(Dx(D)], 9

where dt = 107 is the time step (small enough to avoid
artefacts). Each «; € [—1, 1] is a random constant ini-
tially chosen from a uniform probability distribution,
and the short and long range interaction terms are given
by Eqs.[3|and 4]

(3) In every time step we find the entries of x(#) that
fulfil the condition |x;(¢)] > 1 and set them to x;(t + 1) =
sgn(x(1)).

(4) Forevery t+1 = ng < M+1 where g = 1000 is the
generation time parameter and n = 1,2, ..., we find those
entries of x(¢ + 1) that fulfil the condition |x;(r + 1)| < 1
and for each of them we construct the two sets §; =
{lijllij > c} with [ = p,q and a weight cut-off ¢ = 0,
where the local rewiring weights p;;, g;; are given by
Eqgs.[3] and[§

Then we get the minimum value between the cardi-
nalities of the §,,S, sets, namely n. = min {S,,,Sq},
and construct the subsets C; comprising the n. largest
elements in the sets S;. Denoting by j” the second index
in the elements p; € C, and by j” the second index in
the elements ¢g,;» € C,, we finally perform the rewiring
operations over the connectivity matrix A(z + 1), that is
to say

Ajpt+1)=0 and Ajp+1)=1 (10)

for all possible indexes j’, j”’. The rewiring of all nodes
i is performed in parallel.

These steps are repeated until the condition of Eq.
is fulfilled.
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Figure 1: Results of numerical simulation on a random network of
N =400 agents keeping g = 1000, (ko) = 4 and using a Gaussian dis-
tribution of opinion and a uniform distribution of ;. (a) A graph of
the network with a small community of 23 agents with x; = 1 (circles
of size proportional to the degree of the node) highlighted in green.
A medium size community of 37 agents in blue, and a large commu-
nity of 134 agents (squares mean x = —1) in red. (b) Histograms
normalised by the maximum value of agents in each bin for the three
communities highlighted in (a). The colour code is the same as in (a).
Observe that the corresponding values of @ within the green commu-
nity are all negative, whilst in the red community most of them are
positive. The medium size community shows an intermediate state
with most values negative and a few positive.

4. Results

In Fig. [T(a) we show the results of numerical calcu-
lations on a random network of N = 400 and (ko) = 4.
We observe the formation of at least six detectable com-
munities. The communities can be visually revealed by



the graphics software ( himmeli, developed in our labo-
ratory) because it detects the nodes with more links be-
tween them and puts them together. This is not enough
to claim the existence of communities. Therefore, we
used a fitness algorithm to calculate the optimal parti-
tion of the networks [23]]. This algorithm takes the de-
gree of the nodes to group them in well connected clus-
ters, that is, the communities are defined by their high
inner degree. We notice in the figure that the opinion of
individuals within a cluster is also uniform (circles for
positive x and squares for negative x), so one can define
communities by their common opinion. In the figure we
coloured a small community in green, a medium size
one in blue and a large community in red.

The interesting new result here is that the parameters
a; for the agents within a topological cluster, are also
similar. The initial distribution of a was flat, but the
distribution within a given community is not. In Fig,
(b) we use the same colour code as in (a) to show the
histograms made for each of the communities and each
one normalized by the maximum value of agents in one
bin to keep the height constant. The small communities
are formed by agents with negative @;. In communi-
ties of medium size the spread of the values of the atti-
tude parameters is larger with few positive ones, and in
a large cluster (red) most of them are positive. We then
conclude that the negative attitude parameter drives the
formation of small communities of individuals with the
same attitude and the same opinion (contrary to the ma-
jority). In contrast individuals that are agreeing with
the overall opinion (@ > 0) tend to group themselves in
large communities.

So far we have considered the case where «;’s are uni-
formly distributed in the interval [-1,1]. Next we investi-
gate the effect of picking @’s randomly from a narrower
and differently positioned distribution on the amount of
communities in the system. In Fig.[2] we show the num-
ber of communities n(a.) as a function of «., the cen-
ter of a uniform « distribution of width w = 0.5, for
the same realisation of random normally distributed ini-
tial opinions, for N = 400, (kp) = 4 and g = 1000.
The communities are detected using the fitness algo-
rithm [23]]. When e, > 0.5 (e.g. @; > 0.25 for all agents
i) the system reaches perfect consensus of opinion quite
rapidly and only one community is detected. When the
a’s are allowed to become smaller and even negative,
n(a.) increases until reaching a maximum of 7, a state
of the network in which communities can visually be
distinguished as well-connected clusters but with few
connections between them. When a,. grows more nega-
tive the communities start to merge until n(e,) = 3 for
a. < —1.75. As already mentioned in [21]], the fitness
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Figure 2: Number of detected communities for the final state of a
network as a function of the « distribution center. All points corre-
spond to the same realisation of initial opinions over a network with
N = 400, <ko) = 4, g = 1000 and w = 0.5. As a, shifts from large
positive to large negative value, the system presents a maximum of 7
in the number of communities between states of consensus (a. > 0.5)
and 3 detected communities (@, < —1.75).

algorithm often reveals a substructure of communities,
since for a, < —1.75 there are only two communities in
terms of opinion sharing.

5. Concluding remarks

To summarize we have conducted computer simula-
tion studies on our dynamical social network model of
opinion formation, which involves fast transaction dy-
namics between agents through short and long range
interactions and slower network rewiring dynamics.
These dynamical processes take place with two distinct
time scales but are coupled as g = T/dt being con-
sidered as a variable. For the range of intermediate
g-values the model produces co-evolving opinion and
community structure. In this the key role is played by
the uniformly distributed attitude parameter @ in the
long range term of the transaction dynamics, describ-
ing the agent’s attitude towards the overall mood of the
society. The network structure was found to consist of
small communities of agents whose attitude parameter
values are all negative, while for the intermediate size
communities there are also a few agents with positive
attitude and for large communities the attitude of agents
is predominantly positive. Hence we conclude that the
attitude parameter of agents serves as the main driving
force for opinion and community formation to minimize
the amount of overall “frustration” in the system. Inter-
preting the above in sociological terms would mean that
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people with opposing attitude towards the society would
feel less frustrated or happier staying in small commu-
nities, while people with agreeing attitude are aligning
with the society feeling comfortable in a large commu-
nity of similar people. Carrying this line of thought even
further would suggest that according to our model the
society would move more dynamically when there is a
certain portion of individuals opposing the overall soci-
etal opinion.
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