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Abstract

A recent paper [J. Chem. Phys. 132 134705 (2010)] illustrated the potential of the van der Waals density functional (vdW-DF)
method [Phys. Rev. Lett. 92, 246401 (2004)] for efficient first-principle accounts of structure and cohesion in molecular crystals.
Since then, modifications of the original vdW-DF version (identified as vdW-DF1) has been proposed, and there is also a new
version called vdW-DF2 [ArXiv 1003.5255], within the vdW-DF framework. Here we investigate the performance and nature of
the modifications and the new version for the binding of a set of simple molecular crystals: hexamine, dodecahedrane, C60, and
graphite. These extended systems provide benchmarks for computational methods dealing with sparse matter. We show that a
previously documented enhancement of non-local correlations of vdW-DF1 over an asymptotic atom-based account close to and a
few Å beyond binding separation persists in vdW-DF2. The calculation and analysis of the binding in molecular crystals requires
appropriate computational tools. In this paper, we also present details on our real-space parallel implementation of the vdW-DF
correlation and on the method used to generate asymptotic atom-based pair potentials based on vdW-DF.
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1. Introduction

Supramolecular interactions such as steric hindrance, van der
Waals (vdW) forces, and electrostatics play a central role in
today’s biological, nano-technology, and condensed-matter re-
search. Materials where these interactions are important can
be categorized as sparse matter [1], since they have low elec-
tronic density in regions essential for cohesion and response.
The all-pervasive vdW interactions act across such low-density
regions. The need for robust computational tools that provide
insight into supramolecular systems, have given impetus to the
development of first-principle methods that properly accounts
for the binding of sparse matter.

Density functional theory (DFT) within the local density ap-
proximation (LDA) or semi-local, generalized-gradient approx-
imations (GGA) for the exchange-correlation potential has, de-
spite its tremendous success for dense matter, failed to consis-
tently account for the binding in sparse matter. The van der
Waals density functional (vdW-DF) method — both in the orig-
inal version [2, 3], termed vdW-DF1, and in a new version,
termed vdW-DF2 [4] — go beyond these local approximations
by using a non-local functional to approximate the correlation.
Being first-principles, it deals with the vdW forces by including
non-local correlations from the electron response to the electro-
dynamical field. In the vdW-DF framework the non-local cor-
relation energy takes the form of a double-space integral:

Enl
c [n] =

1
2

∫
dr

∫
dr′n(r) φ(r, r′)n(r′) . (1)

The vdW-DF method inherits the excellent performance of
GGAs for many dense matter systems, while extending the
reach of DFT approximations to sparse matter.

Figure 1: Molecules forming simple model crystals bound by van der Waals
forces: hexamine, dodecahedrane, buckmeisterfullerene/C60, and graphene.
(from top left to bottom right).

The original version of vdW-DF1 has performed well for a
range of systems, such as binding in molecular dimers, ph-
ysisorption on surfaces, and polymer crystals [1]. Two of us
have shown that it accounts for the structure of molecular crys-
tals [5]. However, vdW-DF1 [2] overestimates binding sepa-
rations by 0.2 to 0.3 Å. This has led several authors to sug-
gest adjustments in the vdW-DF method. Using the S22 [6]
data set of molecular dimers, Klimeš et al [7] optimized several
GGA exchange flavors for use in place of the original choice of
revPBEx [8] (the x subscript indicates the exchange-part of the
exchange-correlation) to the correlation in vdW-DF1; here we
test optPBEx. Cooper developed an exchange flavor (C09x) for
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vdW-DF1, [9] which goes like the gradient-expansion approx-
imation (GEA) in the slowly-varying, high-density, limit. Very
recently, a new version vdW-DF2 was proposed [4]. It modifies
the inner functional, that vdW-DF uses to determine the local
plasmon frequency ∼ q0(r)2 and thereby the non-local correla-
tion. vdW-DF2 also uses a refitted version of the PW86x [10].
This exchange functional does not induce unphysical binding
effects in the exchange channel and is simultaneously less re-
pulsive than revPBEx [11].

Computational methods designed for sparse matter benefit
from using molecular crystals as testing grounds, because of
the wealth of accurate experimental data on crystal structures
and lattice parameters. Molecular crystals are also model sys-
tem for bulk sparse matter. We therefore find it pressing to
test vdW-DF2 and the suggested modifications of vdW-DF1 on
these systems. Here, we extend our vdW-DF1 study of hex-
amine and dodecahedrane [5] with these new modifications,
and include two important carbon allotropes: the C60 crystal
and graphite. The latter can be viewed as a molecular crys-
tal of graphene flakes. For the vdW-DF correlations (termed
vdW-DF1c and vdW-DF2c), we find that that both vdW-DF1c

and vdW-DF2c are considerably enhanced over a correspond-
ing asymptotic atom-based pair potential form at, and a few Å
beyond, typical binding separations.

The vdW-DF calculations for molecular crystals require an
implementation that handle periodic systems; in particular, for
the C60 crystal, having four molecules (240 carbon atoms) per
unit cell, a moderately efficient and parallel implementation is
beneficial. In this paper, we discuss some details of our parallel
code for evaluating non-local correlations, in addition to dis-
cussing the method used to generate results in the asymptotic
approximation (’app’).

2. Computational methods

2.1. van der Waals density functional calculations
In the vdW-DF framework, the exchange-correlation of con-

sists of LDA correlation, GGA exchange, and the non-local cor-
relations:

EvdW−DF
xc = ELDA

c + EGGA
x + Enl

c [n] . (2)

The total energy, EvdW−DF, is obtained as in Refs. [5, 12, 13].
The exchange-correlation energy is evaluated non-self consis-
tently using the charge density, obtained in a self-consistent
DFT calculation with the PBE [14] flavor of GGA (sc-
GGA), utilizing the ultrasoft pseudo-potential plane-wave code
DACAPO [15].

The potential energy of the crystal is the difference between
the total energy in a configuration and the energy of isolated
molecules: E(a) = EvdW−DF(a) − EvdW−DF(a → ∞) . We use
brute force to determine the optimal value of the unit cell di-
mension (denoted a). The molecular structure, obtained in a
sc-GGA calculation, is kept constant as a is varied. The exper-
imental crystal symmetry specifies the molecular orientations
[5] for all but the C60 crystal, where we use the experimental
orientations [16].

Figure 2: Schematics of the evaluation the six-dimensional integral with (a) and
without (b) a radius cutoff. The box shows the unit cell, the arrow connect to
coordinates, the filled (dashed) circle indicates a radius cutoff.

2.2. Implementation of the non-local correlation integral

A parallel implementation of the non-local correlation within
the vdW-DF framework used in recent applications [12, 5, 17] is
described here. It evaluates the non-local correlation of Eq. (1)
by using an input charge grid provided by a software package.
Our approach shares this post-processing strategy, using code-
independent post-GGA evaluation of the vdW-DF method, with
the JuNoLo [18] code.

Figure 2.2 illustrates the evaluation of the six-dimensional
integral in real space using multiple radius cutoffs: R1 and R2
[5, 19, 20]. The inner domain defined by |r−r′| < R1 is sampled
on a dense grid, while the outer, defined by R1 < |r − r′| < R2,
is sampled on a grid with half the grid-point density. Since the
integral is six-dimensional, the cpu cost is 64 times smaller [13]
per volume in the inner domain than in the outer. For periodic
systems or systems with dimensions much larger than these ra-
diuses, the cpu cost scales linearly with number of grid points
N, but with a large prefactor ∼ R3. For tiny, non-periodic sys-
tem, the entire volume of the system falls within the domain
and the scaling remains N2. However, depending on the grid
sampling density, a small inner cutoff R1 can be used, and the
costly part of the integral usually scales with N.

In discrete form, the six-dimensional integral of Eq. (1) can
be written as a double sum: Enl

c = (∆V)2 ∑
i
∑

j n(ri)φi jn(r j) ,
where the indices i, j go over the entire grid. To evaluate a sum
in parallel, different parts of the sum are distributed on the M
processors. A balanced load is achieved by splitting the sum
according to summations in integer steps:∑

i

=
∑
Mi︸︷︷︸

proc. 1

+
∑
Mi+1︸︷︷︸
proc. 2

+
∑
Mi+2︸︷︷︸
proc. 3

+... +
∑

M(i+1)−1︸  ︷︷  ︸
proc.M

. (3)

A scheme using interpolation to express Eq. (1) in terms of
convolutions and achieves ∼ N log N scaling has recently been
reported [21]. This scheme provides a significant speedup for
medium-size systems. However, the real-space version has cer-
tain merits. First, the total cpu cost remains nearly constant for
any number of processors. Second, for large systems the linear
scaling in system size N will be important. Third, the explicit
control over the integration domain is useful both in analysis of
binding and for systems which are nonperiodic in some or all
spatial directions; for instance, the tertiary structure of biopoly-
mers are characteristically non-periodic. The explicit control
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over length scales, can also be used together with coarser ac-
counts of the vdW forces at large separations [22, 23, 20].

2.3. Generating asymptotic vdW-DF pair potentials using
Bader analysis

The asymptotic atom-based pair potential approximation for
the vdW energy between two molecules takes the form

EvdW−DF
app =

∑
i

∑
j

Ci j
6

|ri − r′j|
, (4)

where i and j are labels for the atoms in of the two molecules.
To generate such a potential based on vdW-DF, we partition
the charge density of the molecule among the atoms, using the
atoms-In-Molecules (AIM) method of Bader [24], and evaluate
the Ci j

6 coefficients for the different atomic pairs [20]. This sec-
tion details the asymptotic form of vdW-DF, the AIM method,
and its implementation.

The C6 coefficient for the asymptotic vdW interaction be-
tween two fragments, A and B, takes the general form:

CAB
6 =

3
π

∫ ∞

0
duαA(iu)αB(iu) . (5)

In vdW-DF the polarizability of the fragment,

αvdW−DF
A (ω) =

∫
d3r χvdW−DF

A (ω, r) , (6)

is obtained by integrating over the local susceptibility:

χvdW−DF
A (ω, r) =

nA(r)[
9q0(r)2/8π

]2
− ω2

, (7)

This form is valid both for vdW-DF1 and for vdW-DF2, since
they only differ in how they determine the inner functional spec-
ifying the local plasmon frequency ∼ q0(r)2 [2, 3, 4].

AIM partitions the the total charge-density of a molecule
or a solid into atomic volumes Ω based solely on the topo-
logical properties of the charge-density. The surfaces separat-
ing the atomic volumes are defined by ∇n(r) · l = 0 where l
is the unit vector normal to the surface. Atomic properties,
like charge and magnetic moments [25], are obtained by in-
tegrating over the individual volumes. We use this partition
to obtain the polarizability of an atom A using Eq. (6), with
nA(r) =

∫
ΩA

d3 r′n(r′)δ(r−r′). The q0(r)2 grid is generated prior
to this partition to avoid unphysical gradients in the boundary
regions.

We use and extend a code implementation [26] of the algo-
rithm proposed by Henkelman et al [27], to generate Bader vol-
umes and determine the atoms-in-molecule polarizabilities of
Eq. (6). As the pseudo-potential calculations generate a pseudo-
electron density, the first step is to include the core-electron
density to obtain the total density. The core-electron densities
are generated upon producing the pseudopotentials. For each
grid point, a path of steepest descent is constructed. The set of
paths terminating at the same maximum of the charge density,
are assigned to the same Bader volume.

The paths are constructed as in Ref. [27]: First, the charge
density of a given grid point is compared that of all 26 adjacent
grid points. If it is larger than its neighbors, it is considered
a maximum; if not, the algorithm proceeds to the adjacent grid
point with the largest charge density. This procedure is repeated
until a local maximum is reached. It also terminates if it reaches
a grid point that belongs to a previously assigned Bader volume.
The algorithm scales linearly with N, because it only make a
single loop for each grid-point.

3. Crystal structure

The molecular crystals of this study have simple structures.
Hexamine and dodecahedrane forms respectively a body and
face-centered cubic (bcc, fcc) with a single molecule per unit
cell [5]. At low temperatures, the C60 crystal is a simple cu-
bic, with four molecule per cell. At higher temperatures, the
molecules rotate freely and the crystal becomes effectively an
fcc [16]. Graphite is a layered material, with two graphene
sheets stacked in an AB pattern.

Figure 3 shows the binding curve of the C60 crystal as a func-
tion of the lattice parameter a of the simple cubic. For this
crystal, vdW-DF1 binds stronger than vdW-DF2, but at a larger
lattice constant. The failure of DFT within GGA illustrate the
need for non-local correlations to account for the binding in
these crystals.

Figure 3: The binding curve of the C60 crystal. The lower [upper] (dashed)
curve gives the vdW-DF1 [PBE] (vdW-DF2) result. The insert shows the simple
cubic unit cell of the crystal, which becomes face-centered cubic only if internal
orientation are neglected.

Table 3 shows the lattice constants and cohesion energies ob-
tained using the vdW-DF method. The lattice constants pre-
dicted by vdW-DF1 overestimates the experimental values by
about 0.3 Å (per sheet for graphite), which is consistent with
earlier studies [1]. The cohesion energies compares well with
experimental values. The use of C09x and optPBEx as exchange
partner to the vdW-DF1c improves lattice constants. The former
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Table 1: vdW-DF predictions of lattice parameters and cohesion energy the crystals of hexamine, dodecahedrane, C60, and graphite, compared with experimental
values, for different combination of exchange and correlation. The experimental lattice parameters are based on low temperature measurements, except for dodec-
ahedrane. The cohesion energies of the cage crystals (graphite) are given per molecule (atom). The bold letters identifies the results for vdW-DF1 and vdW-DF2
versions.

Functional / molecule: Hexamine Dodecahedrane Buckyball (C60) Graphite
Correlation Exchange

vdW-DF1c revPBEx
C09x
optPBEx

vdW-DF2c PW86x
Exp.

a (Å) Ecoh(eV)

7.16 1.01
6.92 1.42
6.96 1.21

6.96 0.93
6.91 1 0.83 2

a (Å) Ecoh(eV)

10.92 1.46
10.44 1.65
10.64 1.75

10.64 1.35
10.603 -

a (Å) Ecoh(eV)

14.38 1.70
14.10 1.98
14.22 2.02

14.30 1.30
14.04 4 1.6-1.9 5

c (Å) Ecoh(eV)

7.24 0.053
6.44 0.073
6.88 0.064

6.96 0.053
6.676 0.0527

1Ref. [28], 2Ref. [29], 3Ref. [30], 5Ref. [31], 4Ref. [16], 6Ref. [32], 7Ref. [33],
.

is almost spot-on, but slightly underestimates them, while the
latter overestimates them. Since the experimental value for Do-
decaherane is based on room-temperature results, C09x com-
pares well with experiments also for this molecule. In both
these modifications of vdW-DF1, the predicted cohesion ener-
gies are quite large compared to the experimental ones. vdW-
DF2 improves the lattice constants over vdW-DF1, giving an
overestimation similar to optPBEx, while the cohesion energies
are somewhat reduced.

vdW-DF2 has the the best overall performance. The calcu-
lated vdW-DF2 cohesion energy for the C60 crystal is lower
than experimental observations. For this crystal, internal ori-
entations are not optimized and this might contribute to the in-
creased difference with the experimental data for all the mod-
ifications. The C60 molecule also differs from the others by
having a low surface to volume ratio.

4. Enhancement over asymptotic pair-potential form

Previous studies [5, 23, 22] have shown that the non-local
correlation of vdW-DF1 is enhanced compared to an atomic-
based asymptotic pair-potential (’app’) account (Eq. 4) at bind-
ing separation and a few Å beyond. By construction ’app’ does
not include the image-plane and multi-pole effects inherent in
the density-functional framework of vdW-DF. The importance
of image planes were also discussed in the seminal work of
Zaremba and Kohn in a surface-physics context [34]. Asymp-
totic atom-based approximations are often used in force-field
methods and in semi-empirical methods that add these interac-
tions on top of GGA based DFT calculations (DFT-D). Since
vdW-DF2 modifies the account of non-local correlation, we
here investigate how this affects the enhancement over ’app’.

Figure 4 shows the ratio between the non-local correlation
and its corresponding ’app’, ∆Enl

c /Eapp, for both vdW-DF1 and
vdW-DF2. Because of residual noise in our determination of
the C6 coefficients, we have (< 10 %) adjusted the curves to
reach unity at d > 16Å. The full (dashed) line gives the result
for vdW-DF1 (vdW-DF2). Both version exhibit a significant
enhancement, with the vdW-DF2 result being somewhat larger
and shifted to smaller separations. The less than unity ratio at
separations about 1Å shorter than the binding separations re-
flects the built-in damping of the vdW forces in the vdW-DF

framework; no ad hoc damping parameter needs to be intro-
duced in the vdW-DF method.

Figure 4: Role of of image-plane and multi-pole effects in the binding of a
dodecahedrane dimer: The enhancement of non-local correlation of vdW-DF (1
and 2) over the corresponding asymptotic atom-based pair-potential form. The
full (dashed) line give the result for vdW-DF1 (vdW-DF2). The vertical lines
indicate the nearest-neighbor binding separation in the dodecahedrane crystal.

5. Discussion and summary

The performance of variations of the vdW-DF method has
been investigated for several molecular crystals. The modifi-
cations of vdW-DF1, involving only the exchange functional
(C09x, optPBEx), improves the lattice constants, but cohesion
energies seem to worsen for molecular crystals. That optPBEx
did not outperform the other vdW-DF1 combinations indicate
that fitting to S22, by itself, does not guarantee high precision
for other types of systems. C09x gives excellent lattice parame-
ters. The good performance of vdW-DF2 is encouraging, point-
ing to higher accuracy for the vdW-DF method.

The enhancement of non-local correlation over ’app’ shows
that the nature of binding both for vdW-DF1 and vdW-DF2 dif-
fers from the asymptotic ’app’ description. This result further
questions the often used 1/r6 atom-based approximation for van
der Waals forces when used within a few Å of the binding sep-
arations [5, 22].
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