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Abstract

We develop a parallel algorithm that calculates the exact partition function of a lattice polymer,

by enumerating the number of conformations for each energy level. An efficient parallelization

of the calculation is achieved by classifying the conformations according to the shape of the box

spanned by a conformation, and enumerating only those in a given box at a time. The calculation

time for each box is reduced by preventing the conformations related by symmetries from being

generated more than once. The algorithm is applied to study the collapse transition of a lattice

homopolymer on a square lattice, by calculating the specific heat for chain lengths up to 36.
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I. INTRODUCTION

Polymers on discrete lattices serve as a simple toy model of a polymer [1–6]. By in-

troducing hydrophobic inter-monomer interaction, the lattice model can be used to study

the collapse transition of a polymer [7–26]. Various quantities such as radius of gyration,

end-to-end distance, and specific heat have been calculated, both using Monte Carlo sam-

plings [8, 11, 16–22, 24–26] and exact enumeration [9, 12, 14, 23]. Although the length of

chain that can be studied using exact enumeration is much less than that of the Monte Carlo

sampling methods, the exactness of the calculation enables one to use powerful extrapolation

methods to study the behavior of the lattice polymers in the limit of infinite chain length.

In the current study, we develop a method for calculating the exact partition function

of a lattice polymer. The partition function is the most basic quantity from which all the

important thermodynamic properties can be calculated. The number of states for each

energy E, Ω(E), contains all the information needed for the calculation of the partition

function Z, which is given by

Z(β) =
∑

E

Ω(E)e−βE , (1)

where β ≡ 1/kBT with the Boltzmann constant kB and temperature T . In particular, it

can be used for studying the collapse phase transition of the lattice polymer by observing

behaviors of various quantities such as the specific heat,

C(T,N) =
∂E

∂T
= β2∂

2 lnZ

∂β2
, (2)

with increasing N .

Since the number of conformations is finite in the case of a lattice polymer, the partition

function can be made a polynomial in e−β by considering models with integer values of E.

To elaborate, we consider a polymer on regular lattice such as two-dimensional square or

three-dimensional cubic lattices. Then the Hamiltonian for a heteropolymer is given by

H = −
∑

i<j

ǫ(ai, aj)∆(ri, rj), (3)

where

∆(ri, rj) =







1 (|i− j| > 1 and |ri − rj | = 1)

0 (otherwise),
(4)
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ai is the type of the i-th monomer, and ǫ(a, b) is the interaction energy between the monomers

of type a and b. By taking ǫ(a, b) to be integer multiples of a unit energy ǫ, ǫ(a, b) = n(a, b)ǫ,

the partition function is expressed as a polynomial:

Z =
∑

{κ(a,b)}

Ω̃({κ(a, b)})z
∑

a,b n(a,b)κ(a,b) =
∑

K

Ω(K)zK , (5)

where z ≡ exp(βǫ), Ω̃({κ(a, b)}) is the number of polymer conformations with contact

numbers {κ(a, b)}, and

Ω(K) ≡
∑

∑
n(a,b)κ(a,b)=K

Ω̃({κ(a, b)}) (6)

is the number of conformations with energy E = −Kǫ. The homopolymer composed of only

one kind of monomers is a special case where n(a, b) = 1 regardless of a, b, with K now

being the number of intra-chain contacts.

In this work, we develop an efficient parallel algorithm for calculating the exact partition

function of a lattice polymer by enumerating Ω(K). The parallelization is implemented

by classifying the conformations by the shape of the box enclosing a conformation. Only

the conformations corresponding to a given box is enumerated at a time by pruning partial

conformations incompatible with the box, and the tasks of enumerating the conformations

for the boxes are distributed among computational nodes. Since no communications are

required during the calculation, the computational speed scales well with the number of

CPUs. The calculation time for each box is reduced by exploiting the symmetries of the

system. A conformation, its rotations by multiples of 90◦, and their mirror images are

considered equivalent and prevented from being generated more than once. For a generic

conformation, the discrete rotations and reflections form an 8-fold and 48-fold symmetries

in two and three dimensions, respectively. Exceptions are the cases of lower-dimensional

conformations embedded in higher dimensional spaces. In two dimensions, a straight chain

is the one-dimensional conformation, invariant with respect to reflection perpendicular to

the chain, so the discrete rotations and reflections form a 4-fold symmetry. Similarly, in three

dimensions, only 6-fold and 24-fold symmetries exist for the linear and planar conformations,

since they are invariant under transformation perpendicular to the underlying plane and

straight line.

Therefore, the number of conformations with discrete rotations and reflections considered

distinct in D dimensions, Ω(D)(K), can be easily obtained from the reduced number of
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conformations ω̃(D)(K) where symmetrically related conformations are counted only once

and the lower-dimensional conformations are not counted:

Ω(1)(K) = 2ω̃(1)(K) = 2δK,0,

Ω(2)(K) = 8ω̃(2)(K) + 4ω̃(1)(K),

Ω(3)(K) = 48ω̃(3)(K) + 24ω̃(2)(K) + 6ω̃(1)(K).

(7)

On the other hand, the reduced numbers of conformations ω(D)(K) where only symmetries

are eliminated, are expressed in terms of ω̃(D)(K) as

ω(1)(K) = ω̃(1)(K) = δK,0,

ω(2)(K) = ω̃(2)(K) + ω̃(1)(K),

ω(3)(K) = ω̃(3)(K) + ω̃(2)(K) + ω̃(1)(K).

(8)

From Eqs.(7) and (8), we see that Ω(D)(K) are expressed in terms of ω(D)(K) as:

Ω(2)(K) = 8ω(2)(K)− 4δK,0,

Ω(3)(K) = 48ω(3)(K)− 24ω(2)(K)− 18δK,0.
(9)

It is to be noted that the enumeration in two dimensions must be performed before enumer-

ating those in three dimensions.

Although the current algorithm may be used for both homopolymer and heteropolymer

in any dimension, as a simple example of the application, we calculate the exact partition

function for a homopolymer on a two-dimensional square lattice, for chain lengths up to

36. By analyzing the behavior of the specific heat, we could estimate the temperature of

polymer collapse transition.

II. THE METHOD

The crucial ingredients in the current method are (1) classifying conformations according

to the boxes they span, and enumerating only those for the given box at a time by pruning

partial conformations incompatible with the box, and (2) preventing symmetrically related

conformations from being generated more than once. The arguments are almost the same

for both two and three dimensions, but more detailed illustration will be given for two

dimensions which is easier to visualize.
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A. The classification of the conformations according to the spanning boxes

For each conformation, we construct a rectangular box enclosing it, whose sides are

touched. The conformations can then be classified according to the shapes of such boxes,

since the box is uniquely determined for each conformation. The shape of a box can be

described by the width w and height h in two dimensions, and the depth d is added for

three dimensions. We use the convention that these numbers are measured in the unit of the

lattice spacing, so the number of lattice sites spanned by the box is (w+1) · (h+1) · (d+1).

For simplicity of the discussion, we keep d regardless of the dimensions, which is 0 for

two dimensions. As an illustration, conformations with box sizes 5 × 3 and 4 × 4 in two

dimensions are depicted in Figure 1. There is an intrinsic direction in the polymer chain,

and a conformation for N monomers can be considered as a self-avoiding walk of N − 1

steps, starting from the 1st monomer.

Since the area or volume of a box should be large enough to accommodate a conformation,

w, h, and d should satisfy the lower bound (w + 1) · (h + 1) · (d + 1) ≥ N for a chain with

N monomers. Also, since the perimeter of the box should be small enough so that all sides

touch the conformation, they should also satisfy the upper bound w + h+ d ≤ N − 1. Due

to discrete symmetries, it is enough to consider only the boxes with w ≥ h ≥ d. Also, the

conformations for boxes with w, h, and d that saturate the upper bound, w+h+d = N−1,

do not have to be enumerated explicitly, since they can be obtained from a simple analytic

formula. Considered as self-avoiding walks, these are the conformations where the steps

are taken in a fixed direction along each axis, without turning back, making no intra-chain

contact at all. Since there are D possible directions for each step in D dimensions, the total

number of such conformations for all possible boxes is simply DN−1/D! when rotational and

reflectional symmetries are eliminated. Therefore, the values of w, h, and d that have to be

included in the explicit enumeration are integers bounded by the following inequalities:

w ≥ h ≥ d

(w + 1)× (h + 1)× (d+ 1) ≥ N

w + h + d < N − 1

(10)

where again d is set to 0 in two dimensions. The region of w and h where explicit enumeration

is performed is shown in Figure 2 for the two-dimensional homopolymer along with the

boundaries.
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Only the conformations for a given box are enumerated at a time, and parallel computa-

tion is performed by distributing the boxes to the computational nodes. Since the number of

boxes Nbox is generally larger than the number of computational nodes NCPU, the simplest

method of distribution would be to assign the same number of boxes to each node. However,

this method turns out not to be so efficient since certain nodes finish jobs earlier and become

free while others keep enumerating, due to the fact that the number of conformations and

the computation time vary widely among the boxes. Therefore, the most efficient way of

job distribution is to make enumeration for each box a separate task that can be taken up

by any free node. Since a computational node that finishes the enumeration takes over a

job in the queue, there is no idle time for any of the nodes. The total number of boxes for

each chain length must be precalculated in order for this efficient distribution, which can

be performed in a practically negligible amount of time. Absolutely no communication is

needed between the nodes during the enumeration, and it is only after all the computations

are finished that the results from all the nodes are added to obtain Ω(K). The current

algorithm can be used in a single CPU as well, by requiring it to enumerate conformations

for all possible boxes.

B. Self-avoiding walk and pruning

The conformations are enumerated by generating self-avoiding walks. This is most easily

achieved by recursively calling a subroutine that makes one step into a given direction [27].

The number of sites n occupied by the current partial conformation is kept as a global

variable, which is equivalent to the number of lattice sites visited by the walk so far. From

the given position, the next step is made for each of the neighboring lattice sites not occupied

by a monomer. For each step of the walk, the current lattice site is marked as occupied,

and the contribution of the current monomer is added to the number of contacts K. When

n reaches N , the contribution of the final monomer is added to K and ω(K) is incremented

by one.

In order to ensure that the computation time is spent only for enumerating the confor-

mations spanning a given box, any partial conformation incompatible with the current box

is pruned out at an early stage. This is done by keeping the record of whether each side

of the box has already been touched by the walk generated so far. If there is a boundary
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that has not been touched as yet, whose distance from the current position is l, then the

next step in the opposite direction to this boundary is forbidden unless there are sufficient

number of remaining monomers N − n. Assuming the untouched boundary is at x = 0 and

the current position is at x = l and the next step is in the positive x direction, at least 3

monomers are needed to make a U -turn and get back to x = l, and l monomers are needed

to reach the boundary x = 0, leading to the inequality

l + 3 ≤ N − n, (11)

which should hold for any step in the opposite direction from the untouched boundary, whose

distance from the current position is l. Similarly, the next step in the direction orthogonal

to the untouched boundary is forbidden unless

l + 1 ≤ N − n. (12)

C. Elimination of discrete symmetries

The speed of enumeration is increased by generating symmetrically related conformations

only once. Since the discrete symmetries of rotation and reflection are 8-fold and 48-fold

in two and three dimensions respectively, the enumeration time is reduced by nearly the

same factor by calculating the reduced number of conformations ω(K) instead of the full

number Ω(K). For a rectangular box where w, h, and d are all different, 90◦ rotational

symmetry is removed by considering only the box with w > h > d. In order to remove the

remaining 4-(8-)fold symmetry in two (three) dimensions, we divide the rectangular box into

4 (8) equivalent quadrants (octants) containing each corner of the box, and consider only

the chain that starts inside one quadrant (octant), given by:

1 ≤ x ≤ w
2
+ 1

1 ≤ y ≤ h
2
+ 1

1 ≤ z ≤ d
2
+ 1,

(13)

where x, y, and z are integer coordinates for the lattice sites. The quadrant described by

Eq. (13) in the case of two-dimensions is shown as gray area in Figure 3(a). Since symmetries

are not completely eliminated for conformations starting at the boundaries, where any of

the conditions, Eq. (13), is satisfied as an equality, additional constraints are imposed, so
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that the first step along the axis corresponding to an equality is in the positive direction.

For example, when w is an even number and if the starting position of the chain is at

x = w
2
+ 1, we require that the first step along the x-axis should be positive. Examples in

two dimensions are shown in Figures 3(b) and (c).

When any two of the three numbers w, h, and d are equal, for example w = h, there

remains a reflection symmetry with respect to plane x = y, which is eliminated by imposing

an additional constraint that among the steps parallel to the x-y plane, the first one must

be along the x direction. Similarly, when h = d we break the symmetry by requiring that

among the steps parallel to the y-z plane, the first step must be along the y axis. Again the

two-dimensional example is given in the Figure 3(d).

III. RESULT

The method developed in the current work can be applied to either heteropolymer or

homopolymer in any dimension, but as a simple example of the application, we study the

homopolymer in the two-dimensional square lattice. Since a monomer cannot make a contact

with itself, as well as the nearest and next-nearest neighbors along the chain, the upper limit

of the K summation in Eq. (5), denoted as Kmax, satisfies the upper bound

Kmax ≤
N(N − 5)nmax

2
, (14)

where nmax is the maximum value of n(a, b). In the absence of an additional information, we

may take this value as the size of the array to store the values of ω(K), but for the special

case of the homopolymer in two dimensions, we have the exact formula for Kmax [28]:

Kmax =







N − 2m for m2 < N ≤ m(m+ 1),

N − 2m− 1 for m(m+ 1) < N ≤ (m+ 1)2,
(15)

where m is a positive integer.

We calculated the number of states ω(K) for N ≤ 36. The same quantities for N ≤ 28

have been calculated in earlier works [1, 28, 29]. Our calculation reproduce these results

in the appropriate ranges. The new results for 29 ≤ N ≤ 36 are presented in Table I and

II. The CPU time using Intel Xeon CPUs (2.8GHz) is plotted in logarithmic scale as the

function of N in Figure 4, for 15 ≤ N ≤ 30 where time data are available. As expected, the
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CPU time grows exponentially as N increases.

t ≃ AλN (16)

where values of A = 1.64(2) × 10−8 and λ = 2.43(2) are obtained by taking the log of

Eq. (16) and performing the least square fit. The total number of conformations as well

as the computational times of many enumeration algorithms are known to grow exponen-

tially as µN where µ = 2.638 is the connective constant for the self-avoiding walks [30], so

the computational time of the current algorithm grows at somewhat slower rate than this.

Although algorithms for enumerating the total number of conformations have been devel-

oped [31, 32] whose computation time grows at rates slower than the current one, it must be

noted that the current method not only calculates the total number but also the number of

conformations for each energy value, leading the calculation of the exact partition function

at arbitrary temperature.

By the efficient distribution of the enumeration tasks among the computational nodes,

the computational speed scales linearly with the number of computational nodes until the

saturation occurs. It is obvious that the number of nodes used, NCPU, cannot exceed the

number of boxes, but the saturation occurs at a smaller value of NCPU because the enu-

meration time varies widely among the boxes. A few nodes enumerating the box with large

number of conformations tend to keep computing even after most of the nodes have com-

pleted computations, causing the deviation from the linear scaling of computation speed

with NCPU. By recording the computation times for each boxes and assuming the most

efficient distribution of tasks between the nodes, the computation time could be calculated

as a function of NCPU. The speed of computation, the inverse of the computation time,

is plotted in Figure 5 for various values of N , where the saturated value of the speed is

normalized to one. We see that the linear scaling holds for up to NCPU = N
(max)
CPU which

increases with N .

As an example of the application of our method, we calculate the specific heat per

monomer,

C(T,N)/ǫ2N =
1

ǫ2N

∂E

∂T
=

β2

ǫ2N

∂2 lnZ

∂β2
=

(ln z)2

N





∑

k k
2Ω(k)zk

∑

pΩ(p)z
p

−

(

∑

k kΩ(k)z
k

∑

pΩ(p)z
p

)2




(17)

which is plotted in Figure 6 as a function of z for several values of N . The finite N
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approximation of the transition point, zc(N), is obtained from the condition ∂C
∂z

= 0. We

observe a peak around z ≃ 2, which becomes sharper as N increases. The point of the

collapse transition is known to follow the finite-size scaling

zc(N)− zc(∞) ∼ N−φ, (18)

where φ is the crossover exponent whose exact value is believed to be 3/7 [15]. We apply the

Bulirsch-Stoer extrapolation [33–35] to Eq. (18) and then obtain zc(∞) = 2.07(7), equivalent

to Tc/ǫ = 1.37(7), where the data for even N with 20 ≤ N ≤ 36 were used. zc(N) is displayed

in Figure 7 as the functions of 1/N , along with the extrapolated value zc(∞). The current

result is in reasonable agreement with those from the earlier works.

IV. DISCUSSION

We developed an efficient parallel algorithm for calculating the exact partition function of

a lattice polymer. An efficient parallelization of the calculation was achieved by classifying

the conformations according to the shape of the box spanned by a conformation. Only

the conformations corresponding to a given box were enumerated at a time, pruning partial

conformations incompatible with the box at an early stage. The calculation time was further

reduced by preventing the conformations related by symmetries from being generated more

than once. The parallel efficiency could be maximized by requiring that any node that

finishes the task of enumeration for a box takes over a new task of enumeration for another

box whose conformations have not been enumerated by any of the nodes. As an illustration of

applications, we studied the collapse transition of lattice homopolymers in square lattices, by

calculating the specific heat. The exact partition function can also be used for calculating

the partition function zeros in the complex temperature plane, which is a more sensitive

indicator of the phase transition than the specific heat [36].

As mentioned in the previous section, the linear scaling of the computation speed with the

number of CPUs NCPU breaks down well before NCPU reaches the total number of boxes, due

to the fact the computation time varies wildly depending on boxes. However, considering

the fact that NCPU cannot be made arbitrarily large in practice, the saturation effect can be

neglected in many situations, particularly when long chains are studied, since the saturation

limit N
(max)
CPU grows with the chain length N (See the Result). As can be seen from the
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Result (See Fig.5), the partition function of the two-dimensional polymer chain of length 29

can be enumerated with up to 30 CPUs without saturation of the linear scaling, and one

can employ more CPUs for studying chains of longer lengths. Since linear scaling becomes

better as the chain length increases, our method is a powerful tool for studying long polymer

chains with limited computational resources.

An idea of classifying conformations of two-dimensional homopolymers according to span-

ning boxes, similar to ours in certain aspects, has been introduced for the calculation of the

partition function of a polymer on the square lattice at infinite temperature using transfer

matrix formalism [32]. At least for such a calculation the transfer matrix was claimed to be

superior to the direct counting, and it would be interesting to see whether it can be gen-

eralized for calculating the partition function at arbitrary temperatures in two dimensions,

without introducing much additional computational costs. The current algorithm is more

general in that not only the partition function at arbitrary temperature can be calculated,

but heteropolymers and arbitrary dimensions can be treated in a straightforward manner.

The explicit applications of the algorithm to these cases are left for future works.
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[8] A. Baumgärtner, J. Physique 43, 1407 (1982).

11



[9] T. Ishinabe, J. Chem. Phys. 77, 3171 (1982); J. Chem. Phys. 80, 1318 (1984); J. Phys. A 18,

3181 (1985).

[10] A. L. Kholodenko and K. F. Freed, J. Phys. A 17, L191 (1984); J. Chem. Phys. 80, 900

(1984).

[11] T. M. Birshtein, S. V. Buldyrev, and A. M. Elyashevitch, Polymer 26, 1814 (1985).

[12] B. Derrida and H. Saleur, J. Phys. A 18, L1075 (1985).

[13] V. Privman, J. Phys. A 19, 3287 (1986).

[14] H. Saleur, J. Stat. Phys. 45, 419 (1986).

[15] B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 (1987).

[16] F. Seno and A. L. Stella, J. Phys. France 49, 739 (1988).

[17] P. H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev. B 39, 495 (1989).

[18] H. Meirovitch and H. A. Lim, Phys. Rev. Lett. 62, 2640 (1989); J. Chem. Phys. 91, 2544

(1989).

[19] I. Chang and H. Meirovitch, Phys. Rev. E 48, 3656 (1993).

[20] P. Grassberger and R. Hegger, J. Phys. I France 5, 597 (1995).

[21] G. T. Barkema, U. Bastolla, and P. Grassberger, J. Stat. Phys. 90, 1311 (1998).

[22] S. L. Narasimhan, P. S. R. Krishna, K. P. N. Murthy, and M. Ramanadham, Phys. Rev. E

65, 010801(R) (2001).

[23] C.-N. Chen and C.-Y. Lin, Physica A 350, 45 (2005).

[24] J. Zhou, Z.-C. Ou-Yang, and H. Zhou, J. Chem. Phys. 128, 124905 (2008).

[25] A. G. Cunha-Netto, R. Dickman, and A. A. Caparica, Comput. Phys. Comm. 180, 583 (2009).
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FIG. 1: Sample conformations for N = 20 on (a) 5× 3 rectangle and (b) 4× 4 rectangles. Circles

are monomers of a lattice polymer and the arrow indicates the direction of the chain.
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TABLE I: The number of conformations ω(K) on a square lattice as a function of the chain length

29 ≤ N ≤ 32 and the number of contacts K.

❅
❅
❅
❅❅

K

N
29 30 31 32

0 7689321701 17982126658 42108189098 98421806691

1 23540565448 56977682194 137862646874 332762640146

2 40085909835 100142920787 249700259569 620847470396

3 49071555164 126359874347 324279253784 829487165382

4 48771398860 129152420800 340420363856 894055572891

5 41585979484 113114869570 305828397226 823666234004

6 31508871807 87958369563 243684809928 672408321619

7 21617211324 61936948230 175770392578 496787988274

8 13642191086 40119932593 116592999110 337522862616

9 7980014626 24122755170 71817661842 213018321049

10 4362872816 13562820674 41372702687 125886832996

11 2226147024 7152132929 22391023650 69957624306

12 1065063681 3542639525 11397385748 36690896460

13 475157642 1646914139 5456762684 18158394435

14 194929001 716011778 2455124926 8476869526

15 72870960 286636733 1024918738 3722404274

16 24595083 104686477 393687071 1519486734

17 6751332 34676719 136943328 571834936

18 899613 9090306 41715633 194513054

19 16294 1005977 8866818 57891860

20 13498 636771 11290845

21 656376

Total 293922322781 784924528667 2092744741919 5584227078870
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TABLE II: The number of conformations ω(K) on a square lattice as a function of the chain length

33 ≤ N ≤ 36 and the number of contacts K.

❅
❅
❅
❅❅

K

N
33 34 35 36

0 230322480773 538091763166 1258493243324 2938908879305

1 802996241232 1933501499531 4654740470620 11183769131112

2 1541179904025 3815982548374 9435546145403 23276263902178

3 2115681496986 5380293120526 13648570547310 34530182956163

4 2338726472743 6097828689993 15844205741060 41046002582789

5 2206962182754 5892600481193 15663662724418 41502969876897

6 1843564131938 5035936926127 13681123644389 37041494009397

7 1393031891232 3891460627050 10798327608646 29859153057072

8 967612822630 2763594584708 7829412575160 22103175375035

9 624333988838 1823442056984 5273396514658 15198342307484

10 377300221611 1127227716216 3327749067600 9793121298664

11 214525075976 656411900406 1978790499320 5948956055099

12 115237903606 361505461087 1113409518803 3422967752173

13 58512766632 188687694809 594317169744 1870659345753

14 28078596777 93399109108 301280956584 972915151671

15 12713385376 43768480489 144908527014 481649031145

16 5394346351 19397612212 66030540012 226685149424

17 2118111650 8050408136 28387608698 101251448207

18 763529938 3106194291 11380453744 42658656267

19 244420464 1095275398 4222218392 16800266331

20 64896504 342819455 1417505104 6127509709

21 9564594 87997218 412844504 2004417664

22 306498 11551406 89824129 573845730

23 265502 8277188 118501239

24 105265 9156136

25 57337

Total 14879374739128 39675824783385 105659884331089 281566759719981
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FIG. 2: The values of the box width w and height h for which the explicit computations are

performed in two dimensions, are the points with integer coordinates inside the shaded area. The

dashed line and the intersection point denoted by the white circle is not included (see text).
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FIG. 3: (a) Because of the symmetries, only chains starting from the sites in a shaded area at

the lower left corner are considered. (b) In the special case of chains starting at the boundary

line y = h
2 + 1, an additional constraint is imposed so that the first vertical step is in the upper

direction. A similar constraint is imposed for a chain that starts at the boundaries x = w
2 + 1 so

that the first horizontal step is in the right direction. (c) For a chain starting at the center point

with x = w
2 + 1 and y = h

2 + 1 the two constraints for the horizontal and vertical boundary are

imposed simultaneously. (d) For a square box, the additional reflectional symmetry with respect

to the line y = x is eliminated by requiring that the first step is in the horizontal direction.
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FIG. 4: The CPU time in log scales, plotted as a function of the chain length N .
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FIG. 5: The computational speed as the function of the number of computational nodes. The

computational speed is defined as the inverse computational time, normalized so that its saturated

value is 1.00.
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FIG. 6: The specific heat for N = 20, 28, and 36 from bottom to top.
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FIG. 7: The finite value approximation of the transition point zc and its extrapolated value at

N = ∞.
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