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Abstract

Modern graphics processing units (GPUs) provide impressive computing resources, which can be accessed conveniently through the
CUDA programming interface. We describe how GPUs can be used to considerably speed up molecular dynamics (MD) simulations
for system sizes ranging up to about 1 million particles. Particular emphasis is put on the numerical long-time stability in terms of
energy and momentum conservation, and caveats on limited floating-point precision are issued. Strict energy conservation over 108

MD steps is obtained by double-single emulation of the floating-point arithmetic in accuracy-critical parts of the algorithm. For the
slow dynamics of a supercooled binary Lennard–Jones mixture, we demonstrate that the use of single-floating point precision may
result in quantitatively and even physically wrong results. For simulations of a Lennard–Jones fluid, the described implementation
shows speedup factors of up to 80 compared to a serial implementation for the CPU, and a single GPU was found to compare with
a parallelised MD simulation using 64 distributed cores.

Keywords: GPU computing, molecular dynamics simulations, dynamics of supercooled liquids
PACS: 05.10.-a, 61.20.Ja, 64.70.qj

1. Introduction

In recent years, the computational power of graphics pro-
cessing units (GPUs) has increased rapidly: the theoretical peak
performance for single precision floating-point operations on
an amateur’s GPU3 reaches nearly 1 Tflop/s. Compared to a
single core of a conventional processor, this gives rise to an ex-
pected performance jump of one or two orders of magnitude for
many demanding computational problems, fueling the desire to
exploit graphics processors for scientific applications. While
conventional high-performance computing (HPC) depends on
expensive central computing clusters, shared amongst many re-
searchers, GPU computing makes local clusters acting as small
HPC facilities conceivable for large-scale simulations at a frac-
tion of the cost.

A modern GPU works as a streaming processor implement-
ing the single-instruction-multiple-threads (SIMT) model. One
device contains several hundred scalar processor cores execut-
ing a single instruction or a small set of divergent instructions
in parallel in thousands of threads on a large data set. Parallel,
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coalesced access to the onboard device memory via a memory
interface of up to 512 bits provides a remarkably high memory
bandwidth.

Molecular dynamics (MD) simulations—a widespread tool
for particle-based simulations in biological physics, chemistry,
and material science—are ideally applicable to the GPU due to
their inherent parallelism. The release of NVIDIA’s compute
unified device architecture (CUDA) as a convenient means of
GPU programming has triggered a lot of activity in exploiting
GPUs for scientific applications. Several MD implementations
using GPUs have demonstrated significant speedups, with per-
formance measurements based on relatively short test runs [1–
5]. A critical review of current attempts to exploit GPUs in
MD simulations may be found in Ref. 6; in essence, published
results are not yet available, showing the “nascent nature” of
the field. As a notable exception, complex MD simulations tar-
geting at protein folding were accelerated by GPUs allowing
for the trajectories to reach into the millisecond regime [7, 8].
In the realm of physics, we are only aware of a Monte-Carlo
study of the critical behaviour of the Ising model that was per-
formed on the GPU, reporting speedups between 35 and 60 for
the mostly integer arithmetic-based algorithm [9]; a multi-GPU
approach to this problem shows a promising scalability [10].

In this article, we describe MD simulations that are fully im-
plemented on the GPU and that faithfully reproduce the glassy
dynamics of a supercooled binary mixture. If a glass-forming
liquid is cooled or compressed, the structural relaxation criti-
cally slows down by several orders of magnitude and a rapidly
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growing time scale emerges close to the glass transition line [11].
Small changes in the temperature may already have drastic ef-
fects on the dynamics, and a numerical study thus requires ex-
cellent long-time stability with respect to energy conservation
over long simulation runs of 108 MD integration steps and more.
The single precision floating-point arithmetic provided by re-
cent GPUs turns out to be a major obstacle to this goal. But
once this limitation is overcome, general-purpose computing
on GPUs provides a useful tool to address current questions
of the glass transition with minimal allocation of hardware and
reasonable computing time.

The substantial enhancement of computing resources due to
GPU computing facilitates the investigation of very large sys-
tems, which is desirable for studies of phenomena associated
with a divergent length scale. Only recently, evidence for a
divergent static correlation length in supercooled liquids was
found in large-scale simulations of up to 64,000 particles [12]
and 80,000 particles [13], respectively.

The article is organised as follows. We describe a high-
precision implementation for the GPU in Section 2, followed
by performance benchmarks in Section 3. A detailed analy-
sis of the long-time stability regarding momentum and energy
conservation is given in Section 4. Section 5 demonstrates the
impact of numerical accuracy on the simulation results for the
glassy dynamics of a binary mixture of soft spheres. A conclu-
sion is given in Section 6.

2. Implementation for the GPU

2.1. Architecture of the GPU hardware

An MD implementation for the GPU needs to be adapted
to its vastly different architecture. A modern GPU consists of
hundreds of scalar cores, which map to execution threads in the
CUDA architecture and require fine-grained parallelisation of
the algorithm. The scalar cores are divided into multiprocessors—
units of 8 processors for the NVIDIA G200 series GPUs—
capable of executing an atomic warp of 32 threads in four clock
cycles. Each multiprocessor is equipped with a total of 16,384
32-bit registers, and a fast, tiny shared memory of 16 kB; all
multiprocessors access a large global device memory of 1 to
4 GB, which is two orders of magnitude slower than local reg-
isters. To hide latencies when accessing the global device mem-
ory, a scheduler concurrently executes multiple warps on a mul-
tiprocessor. The equivalent of a multiprocessor in the CUDA
architecture is a block of up to 512 threads, and the only means
of communication and synchronisation is within a block. For
the execution of complex algorithms, the number of threads per
block has to be lowered due to the limited number of regis-
ters available per multiprocessor. Global device memory en-
forces a strict memory access pattern, where threads have to ad-
dress memory in a linear coalesced order. In contrast to shared
memory access, random read and write access to global device
memory entails a performance penalty of an order of magni-
tude. This impairs GPU acceleration of many common com-
putational primitives such as sorting algorithms. As a partial
remedy a texture cache of up to 8 kB per multiprocessor, which

stems from the graphics heritage of the GPU, enables read-only
random access to a small window of global device memory. A
global cache of 64 kB of constant memory provides access to
constant data at speeds comparable to register access.

2.2. The MD integration step
A soft-sphere molecular dynamics (MD) simulation solves

Newton’s equations in discretised time for N classical particles
interacting via a C2-continuous, short-ranged potential. Ev-
ery MD step, the force on each particle exerted by all inter-
acting particles is calculated, and the particles are propagated
by a symplectic integrator, the velocity-Verlet algorithm [14].
A naı̈ve implementation based on a doubly nested force loop
would yield an algorithmic complexity of O(N2). For short-
ranged interparticle forces however, a linear scaling of the per-
formance with the number of particles can be achieved with
Verlet neighbour lists. For each particle, a list of particles lo-
cated within a radius rc, the cutoff radius of the potential, is kept
in memory; the force algorithm then considers only particles in
the neighbour list. A small “skin” of a fraction of rc is added to
the neighbour sphere to reduce the necessity of rebuilding the
neighbour lists to every 10 to 100 steps. Particle binning—the
decomposition of the system into spatial cells—avoids a dou-
bly nested loop in the neighbour list algorithm by limiting the
search for neighbours of a particle to its own and the adjacent
cells. Our implementation for the GPU combines and extends
concepts described in detail in Refs. 1 and 2.

Parallelisation of the velocity-Verlet algorithm for the GPU
is straightforward and naturally respects coalesced memory ac-
cess: each CUDA thread is assigned a single particle with the
task of updating the velocities and coordinates. The imple-
mented force and neighbour list algorithms resemble the ones
proposed in Ref. 1. Specifically in the force algorithm, each
thread reads the indices of a particle’s neighbours in a coa-
lesced manner, and coordinates are then fetched using the tex-
ture cache, mitigating performance penalties due to random mem-
ory access.

For particle binning, we have implemented a cell list algo-
rithm based on a parallel radix sort [15, 16]. Each particle is as-
signed a one-dimensional integer cell index. An array contain-
ing the particle numbers is sorted according to the cell indices,
as proposed in the Particles example of the CUDA SDK [17].
A further pass determines the start index of each cell, followed
by the assembly of fixed-size cell lists for the subsequent neigh-
bour list algorithm. With this method we avoid the bottleneck of
a host to device memory copy which is needed with the CPU-
based cell list algorithm of Ref. 1. The radix sort algorithm
performs worse on the GPU than on the CPU for small systems
of considerably less than 104 particles, and further, particle bin-
ning is only necessary every 10 to 100 steps. Thus, the overall
performance of the MD step is best for systems of 105 and more
particles.

The neighbour list algorithm finally reads the particle in-
dices from the fixed-size cell lists to gather coordinates and ve-
locities of particles in neighbouring cells via texture fetches,
temporarily stores them in shared memory, and builds a fixed-
size neighbour list [1].
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Figure 1: Hilbert’s space-filling curve in three dimensions after 1, 2 and 3 recursions. It provides the mapping between three-dimensional space and one-dimensional
memory, which ensures texture locality of neighbouring particles. Particles at vertices with similar colour will be close in memory after the sort.

A parallel reduction scheme4 on the GPU is used to cal-
culate properties which are needed every MD step such as the
maximum absolute particle displacement and the potential en-
ergy sum as well as less frequently evaluated properties such as
temperature, centre-of-mass velocity, and the virial tensor.

In the force algorithm, we make efficient use of the tex-
ture cache by periodically sorting the particles in global device
memory according to a three-dimensional space-filling Hilbert
curve [1, 18]. Such a curve provides a mapping between 3D
space and 1D memory to optimally conserve spatial locality.
In our implementation, the mapping is recursively generated
on the GPU using 8 vertex rules [19] as depicted in Fig. 1,
based on a lattice spacing of σwith a maximum recursion depth
of 10. The subsequent particle sort employs the radix sort algo-
rithm [15, 16] to generate a permutation array; then read access
to the texture cache and coalesced write access to global mem-
ory are used to efficiently permute particle coordinates and ve-
locities.

2.3. Random number generator
A modified Andersen thermostat for pre-equilibration cool-

ing is realised by assigning Boltzmann-distributed velocities
to all particles every (µ δt)−1 steps according to a fixed heat
bath collision rate µ. Furthermore, the assigned velocities are
rescaled by means of parallel reduction to exactly match the
temperature of the heat bath. We have implemented the parallel
rand48 random number generator, which may be trivially par-
allelised by leap-frogging within the sequence [2]. The linear
recurrence xt+T = AT xt + CT mod 248 uses a leapfrog multi-
plier AT = aT mod 248 and leapfrog addend CT = c

∑T−1
n=0 an

mod 248 to jump within the sequence depending on the total
number of threads T . As an improvement compared to Ref. 2,
we seed the parallel generator using the parallel prefix sum al-
gorithm5, which yields the initial state xt for each thread t by
binary-tree summation and multiplication. Thus, initialisation
times of many seconds are avoided for large systems.

2.4. Double-single precision floating-point arithmetic
It will be demonstrated below that numerical long-time sta-

bility requires double precision arithmetic in critical parts of the

4See example “Reduction” in Ref. 17
5See example “Scan” in Ref. 17

Algorithm 1 Algorithm for the addition of two floating-point
numbers in double-single precision, based on the DSFUN90
package [25]. The subscripts 0 and 1 refer to the high and low
word of a double-single float, respectively.
{Compute a + b using Knuth’s trick.}
t0 ← a0 + b0
e← t0 − a0
t1 ← ((b0 − e) + (a0 − (t0 − e))) + a1 + b1

{The result is t0 + t1, after normalisation.}
c0 ← e← t0 + t1
c1 ← t1 − (e − t0)

MD step. Currently prevalent GPUs of the NVIDIA GT200 se-
ries feature only 1 double precision floating-point unit per every
8 single precision units, which prohibits the use of native dou-
ble precision in performance-critical algorithms.

The limited native precision is overcome by algorithms which
implement multi-precision arithmetic using two native floating-
point registers [20, 21]. On hardware supporting the IEEE 754-
1985 floating-point standard [22], proofs of numerical exact-
ness have been given for multi-precision addition and multipli-
cation [23]. For the GPU, which does not fully comply with
IEEE 754-1985 in terms of rounding and division, these proofs
have been adapted for double-single precision arithmetic using
two native single precision floats [24]. The double-single pre-
cision algorithms for addition and multiplication with NVIDIA
GPUs yield an effective precision of 44 bits.

For IEEE 754-1985 compatible hardware, the DSFUN90
package for Fortran [25] contains implementations of addition,
subtraction, multiplication, division, and square root in double-
single precision. We have ported these implementations from
Fortran to CUDA, extending the functionality provided by the
Mandelbrot example of the CUDA SDK [17]. As an example
the addition algorithm in double-single precision is displayed
in Table 1. To implement double-single multiplication on the
GPU, care has to be taken to avoid fused multiply-add opera-
tions, as the GPU does not round the result of the comprised
multiplication, in violation of the floating-point standard. As a
remedy, CUDA provides the intrinsic operations fmul rn and

fadd rn.
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Figure 2: Illustration of the blocking scheme for k = 4 blocks of size ` = 5.
Each square represents the system state at a given time; the numbers refer to the
finest time resolution ∆t. Dashed arrows indicate the filling of the higher block
levels with lower resolution. Solid lines indicate the correlations calculated
between the most left entry and all other entries of the same block. The thin
squares to the left have already been processed and were discarded, while those
to the right still have to be inserted into the blocks.

In double-single precision, we have implemented the up-
date of velocities and coordinates in the velocity-Verlet step
as well as the summing over force contributions from neigh-
bouring particles. These may be subject to accumulated sum-
ming errors depending on the particular time step and potential,
respectively. The evaluation of the force contributions itself,
which accounts for a large fraction of the computational cost
within the MD step, remains in single precision.

2.5. Evaluation of time-correlation functions

The dynamic properties of a molecular system are often
quantified in terms of time-correlation functions [26]. For ob-
servables A and B, one defines their correlation at different
times t and s as

CAB(t, s) =
〈
A(t)B∗(s)

〉
= lim

T→∞
1
T

∫ T

0
dτA(t + τ) B∗(s + τ). (1)

In equilibrium, time-correlation functions are stationary and de-
pend only on the difference t − s, thus CAB(t, s) = CAB(t − s).
The most important class of time-correlation functions is com-
prised by the auto-correlation functions CAA(t). If the system
is ergodic, the average may be evaluated alternatively as an en-
semble average over initial conditions, i.e., over independent
simulation runs. For tagged-particle observables, the statistical
error is decreased additionally by averaging over all particles of
the same species.

We have developed a blocking scheme which allows the on-
line evaluation of time-correlation functions during the produc-
tion run. The scheme was inspired by the “order-n algorithm”
of Ref. 27. Complex relaxation processes often comprise sev-
eral time scales and are usually discussed on a logarithmic time
axis. The blocking scheme yields the correlation functions for
fast and slow processes simultaneously and provides a time grid
already suitable for a logarithmic representation. Introducing

some short-time resolution ∆t, we assume that the state of the
system is stored at times m∆t for m = 0, 1, 2, . . . , from which
the observables Am = A(m∆t) are calculated. For a long sim-
ulation run over a time span of T = M∆t, we approximate the
integral in Eq. (1) by a sum,

C(m)
AA := CAA(m∆t) ≈ 1

M′

M′−1∑
j=0

Am+ jA∗j (2)

where M′ = M − m. The evaluation of C(m)
AA for all m would

require handling a huge number of M copies of the system state
at different times (or of the derived observables at least) and
would involve O(M2) floating-point operations. Instead, we ar-
range the time grid in k blocks of size `, where the time reso-
lution between subsequent blocks is increased by a factor of `,
see Fig. 2. Within block n, correlations are calculated for time
lags ∆tn, . . . , (` − 1)∆tn only, where ∆tn = `n∆t. The blocks are
continuously filled during the simulation. Whenever a block is
full, the first entry is correlated with all other entries and is then
discarded. Thus, each block contains a section of the trajectory,
moving forward as the simulation progresses. The memory re-
quirement to handle a trajectory of length `k∆t is merely k × `
snapshots of the system state.

3. Performance measurements

A central argument for the use of GPUs in high-performance
computing is their high theoretical peak performance compared
to that of a single core of a conventional Opteron or Xeon CPU.
We did extensive performance measurements of our MD im-
plementation, which we compare first to our own serial refer-
ence implementation for the host processor. The comparison
between a massively parallel implementation and a serial one is
somewhat unfair, in particular in view of the multi-core nature
of current CPUs. Thus, we secondly provide a comparison with
the LAMMPS package [28], being one of the established, par-
allelised MD packages widely used in the physics community.
The test includes the parallel use of multi-core CPUs within a
single compute node as well as distributed computing over sev-
eral nodes, which is more realistic for production use and allows
for a more reasonable comparison between a conventional clus-
ter and a single GPU; a similar approach was taken recently by
Harvey et al. [8]. LAMMPS offers some GPU acceleration as
well which we have not used by purpose and which we explic-
itly do not refer to.

Our measurements were done on Lennard–Jones liquids of
varying size and density with the conventional 12–6 interac-
tion potential, VLJ(r;σ, ε) = 4ε[(r/σ)−12 − (r/σ)−6], cut off at
rc = 2.5σ; in LAMMPS we used the potential implementation
termed lj/cut. Units of length, mass, time, and energy are σ, m,√

mσ2/ε, and ε as usual, and dimensionless quantities are indi-
cated by an asterisk. We used a step size of δt∗ = 0.001 and a
neighbour list skin of width 0.5σ for the GPU and 0.3σ for the
serial CPU and parallel LAMMPS benchmarks. To generate a
homogeneous system, an initial fcc lattice was equilibrated in
the NVT ensemble at T ∗ = kBT/ε = 1.5 for 104 steps. Then,
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Figure 3: Results of the performance benchmarks for a Lennard–Jones liquid of various densities as function of the number of particles N; temperature was kept
fixed at T ∗ = 1.5. Large panels show the total time τ per MD step, while insets test the expected linear scaling and display τ/N. Panel a: average time required for a
single MD step on the GPU (single precision); panel b: time per MD step on a serial host implementation; note the different scale of the y-axis compared to panels
a and d; panel c: relative GPU performance versus a single CPU core; panel d: time per MD step using the parallelised LAMMPS package for jobs of various
process numbers Np. For each density and particle number, the fastest result is shown, where symbols indicate the selected Np.
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the wall time spent on the MD step was measured for the next
104 steps. For the GPU and parallel CPU benchmarks, the re-
sults were averaged over 10 independent realisations. For the
LAMMPS benchmarks, only a single system was generated and
the results were averaged over two consecutive measurement
runs of 104 steps each. The investigated system sizes ranged
from N = 1,372 to 864,000 particles and the densities from
%∗ = 0.2 to 1.2.

The GPU benchmarks were run on GPUs of type NVIDIA
GeForce GTX 280, which contains 240 scalar processor cores
clocked at 1.3 GHz, with GDDR3 memory at 1.1 GHz provid-
ing a device memory bandwidth of 140 GB/s (= 2 × 1.1 GHz ×
512 bits). Its theoretical peak single precision floating-point
performance based on one fused multiply-add operation and
one concurrent multiply operation per cycle is 933 Gflop/s (=
240 × 3 flop × 1296 MHz). For comparison with our host ref-
erence implementation, we used an AMD Opteron 2216 HE
processor at 2.4 GHz with PC2-4200 CL4 dual-channel mem-
ory and a theoretical memory bandwidth of 17 GB/s (= 2 ×
2 × 533 MHz × 64 bits). The theoretical peak performance on
the assumption of a single SSE instruction execution with four
concurrent single precision floating-point operations per cycle
is 9.6 Gflop/s per CPU core. This roughly yields a factor of 100
for the theoretical limit on the speedup of a compute-bound al-
gorithm, and a factor of 8 for an algorithm limited by memory
bandwidth. The estimate does not take into account the mem-
ory latency on the GPU, which is 400 – 600 clock cycles for a
thread accessing global memory [29], and may more substan-
tially constrain the overall performance of an algorithm than
floating-point performance or memory bandwidth. Further, re-
cent CPUs contain several cores, and typical nodes in a comput-
ing centre are found to be 4- to 16-way SMP machines, and one
has to put these numbers into perspective for a parallelised im-
plementation making use of all available cores simultaneously.

The GPU benchmarks were performed with HAL’s MD pack-
age [30, commit e611734] using single floating-point preci-
sion on the GPU for comparison with other work, i.e., without
the implementation of double-single precision described above.
The GPU-specific CUDA code was compiled with NVIDIA’s
CUDA compiler (version 2.2) targeting compute capability 1.0.
The host-specific code was compiled for the x86 64 architec-
ture with the GNU C/C++ compiler (version 4.3.4) with opti-
misation flag O3. The serial CPU benchmarks were done with
HAL’s MD package [30, commit a628797]; it was compiled
with single floating-point precision for x86 64 using the GNU
compiler again with optimisation flag O3, which implies auto-
matic vectorisation of loops. On the x86 64 architecture, GCC
defaults to SSE floating-point arithmetic, which ensures that
throughout a calculation, a floating-point value is stored with
the precision mandated by its data type.

The compute times per MD step obtained on the GPU and
the host are compared in Figs. 3a and b, respectively. They
are proportional to the number of particles N, and the double-
logarithmic representation nicely corroborates the linear com-
plexity of the simulation algorithm. In the GPU case, the lin-
ear scaling is only obeyed for sufficiently large N & 20,000;
for smaller N, the compute times show a constant offset of

0.2 − 0.5 ms, reflecting the overhead of parallel sorting and re-
duction. The prefactor increases for denser systems, which we
attribute to larger neighbour lists. At ρ∗ = 0.4, we measure a
GPU time per MD step per particle of 24 ns; this value dou-
bles to 53 ns for the highest density, ρ∗ = 1.2. For compari-
son, the timings reported in Refs. 1 and 2 at ρ∗ = 0.4 are 62 ns
and 200 ns per MD step and particle using the older NVIDIA
GeForce 8800 GTX hardware with only 128 CUDA cores at
1.5 GHz.

For the described double-single precision implementation,
the execution times on the GPU increase modestly by about
20%. The dependence on system size and density is similar to
the results for the single precision implementation in Fig. 3a.
Thus, the performance penalty for using single-double preci-
sion in critical parts of the algorithm results roughly in a global
factor. A significant part of the additional execution time seems
to be related to memory latency. Using double-single precision,
twice the amount of data is read and written for velocity and po-
sition vectors. For the three-dimensional velocity vectors, this
totals to 3 × 2 = 6 32-bit words per particle, requiring at least
two coalesced memory operations by using, e.g., two arrays of
float4. In contrast, the velocity vector can be accessed with a
single coalesced operation for single precision. We expect that
these considerations hold also if native double precision on the
GPU is used, dropping the additional floating-point operations
for the double-single arithmetic. CUDA devices of compute
capability 2.0 only support texture read operations of up to 128
bytes, which would entail splitting position and velocity vec-
tors into properly aligned double2 and double components, and
thus require twice the amount of memory accesses per vector.

On the host processor, the MD step time of the serially ex-
ecuted programme is proportional to N for small system sizes
too (Fig. 3b). With increasing system size, the execution times
increase slightly, probably due to a growing number of cache
misses. In particular, performance degraded substantially (by
a factor of 2) for systems of more than 105 particles if the
particles were randomly distributed in memory. Thereby, the
obtained speedups were spoiled considerably, which we have
solved by regularly sorting the particles in memory as in the
GPU implementation. The prefactor spreads by about 60%
around its average, which is somewhat larger than on the GPU
(40%). At ρ∗ = 0.4, we have measured an MD step time per
particle of 1.8 µs, which is comparable to the timings obtained
below with the LAMMPS package on a single processor core.

The relative performance gain of the GPU over the CPU is
displayed in Fig. 3c. It depends to some extend on the parti-
cle density such that dense systems are favoured by the GPU.
While the speedup factor is as small as 4 to 12 for small systems
of just 103 particles, it goes up to values around 40 for 104 par-
ticles, and it reaches an approximate plateau between 70 and
80 for more than 105 particles, being close to the theoretical
limit for a compute-bound algorithm. The LAMMPS bench-
marks were performed at the Leibnizrechenzentrum in Munich
on 8-way nodes containing 4 dual-core processors of type AMD
Opteron 8218 HE 2.6 GHz. The tested version of the package
was released on 9 January 2009, it was compiled with Intel’s
C++ compiler (version 10.1) using the optimisation flags O2,
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ipo, unroll, and fstrict-aliasing. The programme was run in par-
allel mode using the MPI interface, the nodes were connected
via 10 Gigabit Ethernet, and the MPI library used was from
Parastation. We have tested configurations with 8, 16, 24, 32,
48, and 64 processes. For each particle number and density, the
fastest configuration was selected, and these smallest MD step
times are shown in Fig. 3d; only configurations with 1, 2, 6, and
8 nodes are relevant for particle numbers between 103 and 106.
For system sizes 103 . N . 104, a single node (8 processes)
is favourable. Although the parallelisation overhead is signif-
icantly smaller than for the GPU, the measured times per MD
step exceed those on the GPU for more than 4,000 particles.
Restricting the configuration to a single 8-way node even for
larger systems, the execution times for 105 particles are found
to be 5 to 10 times slower than for the GPU, depending on den-
sity; for higher particle numbers, the single-node performance
goes drastically down, probably due to frequent cache misses.
For a large system of 104 . N . 105 particles, the fastest
execution is obtained with 48 processes, but the time per MD
step and particle is about 2 times slower compared to the GPU,
in particular at high densities. For huge systems, N & 105,
the absolute numbers and the spread of the execution times are
comparable for the GPU and 64 processes. In conclusion, a sin-
gle GPU outperforms a conventional cluster by a factor of 2 for
large systems and performs similarly as 8 recent 8-way nodes
for huge system sizes.

4. Numerical long-time stability

We have thoroughly tested the numerical long-time stabil-
ity of our implementation with respect to momentum and en-
ergy conservation. In Section 5, we will show how a drift in
these quantities may affect the dynamics of the simulated sys-
tem. Numerical errors will be larger if only single precision
arithmetic is used, but the pace at which numerical errors ac-
cumulate also depends on the form of the potential. We will
compare the Lennard–Jones potential and its purely repulsive
part, also known as Weeks-Chandler-Andersen (WCA) poten-
tial [31], VWCA(r; ε, σ) = VLJ(r; ε, σ) + ε which is cutoff at
rc = 21/6σ. This potential allows for smaller neighbour lists
with less particles, speeding up the simulation by up to 40%.
Further, we will discuss smoothed versions of the potentials,
which possess a continuous second derivative by multiplying
with the function g(x = (r − rc)/hσ) = x4/(1 + x4). The fol-
lowing scrutiny is based on a system of N = 10,000 particles
at ρ∗ = 0.75 and T ∗ = 1.12. For either the LJ or the WCA
potential, all results share the same initial configuration, which
was obtained by equilibrating an initial fcc lattice in the NVT
ensemble with µ∗ = 1, δt∗ = 0.001 and h = 0.005 over 105 steps
using the GPU (double-single precision) implementation.

4.1. Momentum conservation

Momentum conservation implies that the interaction between
particles does not generate additional momentum or, equiva-
lently, a drift of the centre-of-mass (c.m.) velocity or mean
particle velocity, vcm =

〈
vi
〉

N . For the summation of forces,

a standard index loop over the neighbouring cells yields first
a large force contribution to one direction, which is later can-
celled by the forces from particles on the opposite side. Such
an implementation in single precision results in a clear drift of
the c.m. velocity for the WCA potential as illustrated in Fig. 4a;
the drift is an order of magnitude smaller in the case of the LJ
potential, Fig. 4d. Using double-single precision for the sum-
mation of forces and summing opposite cells together reduces
the drift by factors of 20 and 2.7 for the WCA and LJ poten-
tials, respectively (panels b and e). The drift of the c.m. ve-
locity is suppressed by another factor of 100(!) in both cases
if the velocity-Verlet integration is done in double-single pre-
cision too (panels c and f). Modifying the time step of the in-
tegration or smoothing the potential does not have a significant
effect on the velocity drift.

4.2. Energy conservation

Faithful simulations in the microcanonical ensemble cru-
cially depend on the conservation of the total system energy,
E = Ekin + Epot = const. This condition is particularly sensi-
tive to limited floating-point precision and requires particularly
careful examination. For example, an energy drift of 2% was
found after 106 MD steps using the single precision version of
GROMACS (which is the default) [32].

For our GPU and host implementations using both single
and double precision, we have examined the evolution of the to-
tal system energy, displayed in Fig. 5. In addition, we compare
the degree of energy conservation for WCA and LJ potentials
with and without smoothing and for two different time steps.
The single precision GPU implementation shows a clear drift
of about 0.1% per 107 MD steps for both potentials (panels a
and b). There is a contribution from the c.m. velocity drift,
which is, however, orders of magnitude smaller. Smoothing
the potentials at the cutoff does not improve energy conserva-
tion here. For the WCA potential, the time step δt∗ = 0.003 is
obviously too large; energy conservation is considerably more
degraded if the potential is smoothed. Using double-single pre-
cision for the summation of forces and in the velocity-Verlet
algorithm (panels d and e) reduces the energy drift by factors
of about 3 (LJ potential) to 7 (WCA). Additional smoothing of
the potentials, however, improves energy conservation signif-
icantly by an extra order of magnitude. Thereby, the drift is
almost eliminated in the case of δt∗ = 0.001 down to 5×10−6

and 6×10−5 per 107 steps for the WCA and the LJ potential,
respectively. Such a tiny drift, however, is dominated and ob-
scured by numerical fluctuations.

The host simulation results shown in panels c and f under-
mine that the degradation of energy conservation due to single
precision is not specific to the GPU implementation. While the
quantitative evolution of the energy in panels e and f differs due
to the implementation of floating-point arithmetic in either 44-
bit double-single precision (GPU) or native 53-bit double pre-
cision (CPU), the orders of magnitude of energy conservation
are comparable.
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4.3. Numerical energy fluctuations

The analysis of the numerical energy fluctuations yields a
sensitive test of the numerical accuracy which requires only
short simulation runs. Newton’s differential equations are dis-
cretised by the velocity-Verlet algorithm to first order in the
time step δt, introducing a discretisation error of order δt2—
provided the potential possesses a continuous second deriva-
tive. Thus, one expects that the total energy shows numerical
fluctuations around its initial value which scale as δt2. In par-
ticular, [E(t) − E(0)]/δt2 should roughly be independent of the
time step.

For time steps between δt∗ = 0.001 and 0.005, these rescaled
energy fluctuations are displayed in Fig. 6 for the LJ poten-
tial. Using double-single precision on the GPU, all five curves
nicely collapse (panel d) over the range of 200 to 1000 integra-
tion steps. Merely the largest time step, δt∗ = 0.005, is slightly
off, indicating that higher order terms become relevant in this
case. Smoothing the potential at the cutoff improves the col-
lapse, from which small time steps benefit especially (panel e).
If only single precision arithmetic is used on the GPU, the col-
lapse is poor and smoothing the potential at the cutoff has essen-
tially no effect (panels a and b). The two smallest time steps are
completely off, which we attribute to the quick accumulation of
rounding errors from the tiny increments.

For comparison, we have added the results from the host
implementation in single and double precision (panels c and f).
The almost identical behaviour as on the GPU corroborates that
the discussed effects are due to the limited precision only, and
no other numerical artifacts are introduced by the GPU. An in-

significant, but nevertheless interesting difference between the
GPU (double-single precision) and the CPU (double precision)
results are the high-frequency fluctuations visible at the small-
est time step δt∗ = 0.001 for the GPU case (panels d and e).
These tiny fluctuations are caused by the evaluation of the in-
dividual pair force contributions in single precision. We veri-
fied that the high-frequency fluctuations disappear if the entire
force algorithm on the GPU is implemented in double-single
precision at the cost of significantly reduced performance.

5. Application to glassy dynamics of a supercooled liquid

We employed the above GPU implementation of a molec-
ular dynamics simulation to reproduce the slow dynamics of a
supercooled liquid of soft spheres. We resorted to the Kob–
Andersen (KA) binary mixture [33–35], which has proven to
be a useful model system that reliably delays crystallisation.6

Specifically, we have investigated a relatively large system of
40,000 A and 10,000 B particles of equal masses m interacting
with Lennard–Jones potentials, Vαβ(r) = VLJ(r; εαβ, σαβ) with
the parameters chosen as in Ref. 33: σAA = 1, σBB = 0.88,
σAB = 0.8, εAA = 1, εBB = 0.5, and εAB = 1.5. The time step
of the Verlet integrator was taken to be δt∗ = 0.001 in units of√

mσ2
AA/εAA. Equilibration runs were done for fixed energy and

covered about 10 times the structural relaxation time; all results

6We could not find any signs of crystallisation for a very long thermostat
run of a small system of 1,500 particles at T ∗ = 0.4 and ρ∗ = 1.2 over a time
span of 108 LJ units or 5×109 MD steps.
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Figure 7: Simulation results for a Kob–Andersen mixture obtained on a GPU using double-single arithmetic. Mean-square displacements (a) and incoherent
intermediate scattering functions (b) of the A particles are shown for different temperatures approaching the glass transition at fixed density ρ∗ = 1.2. Broken lines
indicate results with single floating-point precision.

were obtained for two independent systems with different ini-
tial conditions. Production runs of 1×106 to 2×108 steps (for
T ∗ = 0.60 and 0.43, respectively) including the online evalua-
tion of the correlation functions merely took between 1.4 hours
and 9.6 days of real time.

For the following discussion, we need some basic quanti-
ties central to the description of glassy dynamics. The simplest
quantity to characterise the transport dynamics is the mean-
square displacement (MSD) δr2(t) =

〈〈
ri(t) − ri(0)

〉〉
N , where〈·〉 denotes a microcanonical time average and

〈·〉N an average
over all particles, i = 1, . . . ,N. Here, we restrict the discussion
to A particles. The diffusion constant D of a tagged particle is
then obtained via δr2(t) ' 6Dt for t → ∞. A more complex
quantity is the time-correlation function of local density fluc-
tuations, the intermediate scattering function (ISF). The self-
part of the ISF is defined as Fs(q, t) =

〈〈
ρ(s)

q (t)ρ(s)
−q(0)

〉〉
N

using

the Fourier components of the tagged particle density, ρ(s)
q (t) =

exp
(
−iq·r(s)(t)

)
, with discrete wavenumbers q ∈ (2π/L)Z3 and

r(s) denoting any of the ri. Rotational symmetry implies that
Fs(q, t) = Fs(q, t) merely depends on the magnitude of the
wavevector q = |q|, and additional averaging can be done over
the orientation of q. To quantify the structural relaxation time
τα, we adopt the usual definition Fs(qmax, τα) = 1/e, where
qmax = 7.25σ−1 denotes the maximum of the structure factor.

The MSD develops a pronounced plateau for decreasing
temperature, reflecting the caging by the arrested surroundings;
see Fig. 7a. The diffusion coefficient is drastically suppressed
as the temperature approaches an anticipated glass transition
temperature Tg and spans more than 3 decades over the simu-
lated temperature range. Correspondingly, the density correla-
tors shown in Fig. 7b develop a plateau, which is a signature
of the structural arrest. The slow dynamics is quantified by the
diverging structural relaxation time τα, for which we observe
an increase by 4 orders of magnitude.

T ∗ D∗d.-s. D∗single error τ∗α; d.-s. τ∗α; single error

0.48 1.02×10−4 1.03×10−4 1% 2.31×103 2.26×103 2%
0.46 4.48×10−5 5.12×10−5 14% 6.43×103 5.69×103 12%
0.44 1.73×10−5 2.43×10−5 40% 2.19×104 1.71×104 22%
0.43 1.02×10−5 ∞ 4.24×104 2.50×104 41%

Table 1: Dimensionless diffusion constants D∗ and relaxation times τ∗ of A
particles for temperatures close to the glass transition. The table compares sim-
ulation results obtained with double-single and single floating-point precision
and gives the relative error due to the limited precision.

A clear observation of the glassy dynamics requires suffi-
cient separation between short-time features and the slow struc-
tural relaxation. Hence, the temperature has to be fine-tuned
close to the transition, presupposing a sharp value for Tg. More-
over, simulation runs become very long and the energy of the
system must be extremely stable during a complete run; we
could limit the energy drift to merely 3×10−5 over 2×108 MD
steps at T ∗ = 0.43. It turns out that such a long-time stabil-
ity cannot be maintained with single floating-point precision.
For low temperatures T ∗ = 0.43, 0.44, 0.46, 0.48, we have per-
formed additional production runs with single precision, and
both the MSD and the density correlators deviate significantly
at long times, see Fig. 7 (broken lines). The system heats up
during the simulation, which introduces physical artifacts in the
form of a faster relaxation at the pretended temperature. The
determined diffusion constants and structural relaxation times
for both levels of precision are compared in Table 1, revealing
quantitative differences of up to 41%. At the lowest investigated
temperature, the system appears to become even super-diffusive
at long times; note the crossing of the MSD curve at T ∗ = 0.43
obtained with single precision and the one at T ∗ = 0.44 using
double-single precision in Fig. 7a.

Further, the use of current graphics processors facilitates
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the investigation of much larger system sizes than were usu-
ally accessible before. Among other benefits, data quality is
enhanced as statistical fluctuations of tagged particle quantities
are expected to scale as 1/

√
N. First results for the velocity au-

tocorrelation function display an excellent signal-to-noise ratio
and shed light on novel power-law correlations at low tempera-
tures [36].

6. Conclusion

We have shown how recent graphics processing units can be
harnessed to carry out large-scale molecular dynamics simula-
tions in the microcanonical ensemble with strict energy con-
servation even after 108 MD steps. Using GPU computing,
we were able to reproduce the slow glassy dynamics of a bi-
nary Lennard–Jones mixture over 4 nontrivial decades in time.
Single floating-point precision, however, is not sufficient for
this purpose and may result in qualitatively and quantitatively
wrong results; e.g., the diffusion coefficient was found to di-
verge at T ∗ = 0.43 and to deviate by up to 40% at higher
temperatures due to the limited energy conservation. We have
shown that the mediocre native double precision performance
of recent GPUs can be overcome by implementing numerically
critical parts of the MD algorithm with double-single precision
floating-point arithmetic, which is based on single precision in-
structions.

The described MD simulation package is fully implemented
on the GPU using CUDA, and it avoids costly memory transfers
of trajectory data between host and GPU. In addition to earlier
work [1, 2], the sorting of particles in memory and the evalua-
tion of dynamic correlation functions are completely performed
on the GPU. The number of simulated particles is solely lim-
ited by the amount of global device memory. On the NVIDIA
GeForce GTX 280 providing 1 GB of memory, simulations of
864,000 particles are possible, but the barrier of one million
particles is broken on the NVIDIA Tesla C1060 with 4 GB of
(somewhat slower) memory. Our performance measurements
show speedups of 70 to 80 compared to a serial simulation on
the host processor, and we have shown that the GPUs we have
deployed perform similarly to LAMMPS on a modern, conven-
tional HPC system running in parallel on 64 processor cores.
We have found that the use of double-single precision in spe-
cific parts of the algorithm increases the execution times by
merely 20%, which we attribute mainly to a doubling of mem-
ory accesses. While the use of native double precision arith-
metic in the next generation of GPUs will reduce the number
of floating-point operations compared to double-single preci-
sion, we expect that the performance penalty due to the latency
of global memory access will remain. In particular, the trade-
off between performance optimisation and numerical accuracy
in terms of floating-point precision will persist for GPUs as it
does for conventional processors.

In summary, current graphics processors provide a powerful
and robust means for state-of-the-art simulations of simple and
complex liquids in general and for numerical studies on glass-
forming liquids in particular. Substantial computing resources
can be delivered already by local GPU clusters containing a

few dozen high-end GPUs, which are affordable in terms of ac-
quisition cost and maintenance for a single institute and which
are likely to play a considerable role in future simulation-based
research. In addition, some national computing centres have
started to support GPU-accelerated computing on large dedi-
cated GPU clusters, which are useful at the single-GPU level
already. They will, however, be fully exploited only by the fur-
ther development of simulation packages running on distributed
GPUs (see Refs. 6–8, 10 for examples), enabling the routine in-
vestigation of large and complex systems that can be studied
today on exceptionally few supercomputers only.
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