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1 Introduction

In recent years, the need of accurate theoretical predictions for scattering amplitudes in
collider physics requested a strong effort in the development of methods and strategies for
the calculation of multi-loop Feynman diagrams. In particular, it was recently possible to
afford many analytic calculations unthinkable up to fifteen years ago.

This success is largely due to reliable and powerful algorithms, as for instance the so-
called “Laporta algorithm” [1]. The calculation of a physical observable in perturbation
theory requires the (numerical or analytical) evaluation of a large number of regularized
scalar integrals. The Laporta algorithm allows to reduce this large number of scalar integrals
to a linear combination of a small set of independent scalar integrals, called the “Master
Integrals” (MIs) of the problem under consideration. The Laporta algorithm is based on the
Integration-by-Parts Identities (IBPs) [2], a set of relations that link scalar integrals with
a different power of the propagators and of scalar products in the numerator among each
other1. The interplay between the “Differential Equations Method” [4] and the techniques
based on Mellin-Barnes representations of the integrals [5] provides, then, a powerful tool
for the analytic calculation of the MIs.

Another important ingredient for the analytic calculation of the higher-order corrections
to a physical observable is the identification of the base of functions in terms of which the
MIs can be expressed. This base of functions is strictly related to the structure of the
thresholds of the Feynman diagrams under consideration.

The connection between Feynman diagrams with a simple structure of thresholds and the
functional base of the Harmonic Polylogarithms2 (HPLs) [6] is completely clear. Feynman
diagrams with a richer structure of thresholds require the introduction of one- [10, 11] and
two-dimensional [12, 13, 14, 15, 16] extensions of the HPLs, that will be generically referred
to as Generalized Harmonic Polylogarithms (GHPLs).

We briefly recall the advantages of using the (G)HPLs, that constitute a well suited
functional base in which to express the analytic results. i) The structure of the (G)HPLs,
is strictly connected with the solution, with the Euler method, of the first-order linear
differential equations satisfied by the Feynman amplitudes. ii) The (G)HPLs constitute a
base of linearly independent functions. iii) The base of (G)HPLs provides a perfect control
on the analytical properties of the MIs and, therefore, of the physical observable that we
aim to calculate. iv) Finally, there are available numerical routines, that allow a precise
evaluation of the (G)HPLs in FORTRAN [17], Mathematica [18], C++ [19].

In this paper, we provide a detailed analysis of the GHPLs of a single variable, with
weights containing square roots. These GHPLs were introduced in [11] for the analytic
expression of the MIs concerning the electroweak form factor [20, 11]. In [21], ad hoc nu-
merical routines were made for the evaluation of a subset of functions of this class occurring
in the calculation of the electroweak NLO corrections to the production of a Higgs boson
in gluon fusion and its decay in two photons. The purpose of the present analysis is to give
a general framework for the evaluation of GHPLs with weights containing square roots and
to show that the evaluation of all of the GHPLs introduced in [11] can be performed using
already existing numerical routines.

1Public implementations of the algorithm are available in [3].
2Together with the related harmonic [7], nested [8] and binomial sums [9].
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In section 2, we recall the definition and the basic properties of the 1-dimensional HPLs
and GHPLs with square roots in the weights. We start on the case of real variable x
and on the subset of GHPLs that have the following possible weights: {−r,−4,−1, 0}.
Subsequently we discuss their analytic continuation. In section 3, we illustrate how to
move from the set of GHPLs with square roots in the weights to a set of generalized
polylogarithms, with linear weights. This is the remark that allows a numerical evaluation
of the GHPLs with square roots, using the C++ routines of Vollinga and Weinzierl [19] (in the
following they will be referred to as “VW routines”). In section 4, we consider the case in
which the variable x is complex. We provide a demonstration of the GHPLs scale invariance
in the complex plain, justifying the use of the VW routines also in this case. In section
5, we introduce additional weights and discuss the transformations of section 3 applied to
this new extended set. In section 6, we apply the results of this paper to the numerical
evaluation of the GHPLs involved in the NLO light-fermion electroweak corrections to the
Higgs boson production in gluon fusion, in the case of complex W and Z masses. Finally,
in the appendices, we provide the analytic expressions of the linearized GHPLs involved in
the calculation shown in section 6.

2 HPLs and GHPLs of a Real Variable

In this section, we recall the definition and the properties of the one-dimensional Harmonic
Polylogarithms (HPLs) of a real variable and their generalization (GHPLs), with square
roots and linear weights, introduced in [11].

2.1 Harmonic Polylogarithms

The set of functions denominated Harmonic Polylogarithms (HPLs) [6] is defined as re-
peated integrations of the following three fundamental3 “weight functions”:

f(−1; t) =
1

t+ 1
, f(0; t) =

1

t
, f(1; t) =

1

t− 1
. (1)

Note that the functions in Eq. (1) have a non-integrable singularity in t = −1, t = 0, and
t = 1 respectively. The related HPLs of weight 1 are

H(−1; x) =

∫ x

0

dt

t+ 1
= log (x+ 1) , (2)

H(0; x) =

∫ x

1

dt

t
= log (x) , (3)

H(1; x) =

∫ x

0

dt

t− 1
= log (1− x) , (4)

where x is a real variable (x ∈ R). Since the logarithms have branch cuts on the real axis
for x ≤ −1, x ≤ 0, and x ≥ 1, respectively, the three HPLs in Eqs. (2,3,4) are real and
uniquely defined only for x > −1, x > 0, and x < 1, respectively. Outside these intervals,

3Note a minus sign in the weight +1 with respect to the Remiddi-Vermaseren definition of [6]
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the logarithms become complex, and a prescription for the approach to the branch cut has
to be chosen (see section 2.1.1).

An HPL with weight 2 or bigger is defined through a repeated integration of the weight
functions of Eq. (1). If w is a vector with w components consisting of a sequence of −1, 0,
and +1, we define the HPL of weight w + 1 as follows:

H(a,w; x) =

∫ x

0

dt f(a; t)H(w; t) , a = −1, 0, 1 , (5)

with the exception of the case in which the weights are only zeroes, defined as

H(0w+1; x) =

∫ x

1

dt f(0; t)H(0w; t) =
1

(w + 1)!
logw+1 x . (6)

The singularity structure and analyticity properties of the HPLs derives from the prop-
erties of the logarithms. A logarithmic singularity in 0, −1 or +1 (and +∞) can occur,
together with the respective branch cuts in x ≥ 1, x ≤ 0, and x ≤ −1, as discussed in the
next section.

The HPLs satisfy a shuffle algebra according to which a product of two HPLs of weights
n1 and n2 is a combination of HPLs of weight n = n1 + n2. Let w1 be a vector with n1

components and w2 a vector with n2 components, both consisting of a sequence of -1, 0
and +1. Then we have:

H(w1; x)H(w2; x) =
∑

w=w1⊎w2

H(w; x) , (7)

where w is a vector with n = n1 + n2 components −1, 0, or +1. The sign ⊎ means that
the order in the components of w1 and w2 has to be preserved in the sequence w. For
instance, an HPL with weight 4 can be made out of a product of two HPLs, one of weight
1 and another of weight 3, or both of weight 2. The relevant formulas are:

H(a; x)H(b, c, d; x) = H(a, b, c, d; x)+H(b, a, c, d; x)+H(b, c, a, d; x)+H(b, c, d, a;x) , (8)

H(a, b; x)H(c, d; x) = H(a, b, c, d; x)+H(a, c, b, d; x)+H(a, c, d, b; x)+H(c, a, b, d; x)

+H(c, a, d, b; x)+H(c, d, a, b; x) . (9)

The demonstration that HPLs satisfy the shuffle algebra in Eq. (7) can be done by induction,
using integration by parts (see [6]).

2.1.1 Analytic Continuation

The HPLs are, in general, complex, depending on the value of the real variable x. In many
relevant physical cases, the calculation of the Feynman integrals involved in some observable
is done in a restricted range of x. For instance, if x is related to the squared center of mass
energy s through the relation x = −s/m2, with m a mass scale of the problem, the Feynman
integrals are usually solved in the so-called Euclidean region: x ≥ 04.

4If, moreover, x is related to s through a quadratic relation, as the transformation of variable in Eq. (34),
the Euclidean region is even more restricted: 0 ≤ x < 1.
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Let us suppose, then, x ≥ 0. In the range 0 ≤ x ≤ 1 all the HPLs are real. For x > 1,
instead, we have a possible cut, corresponding to the HPLs with a +1 in the right-most
weight, and therefore, ultimately, to the log (1− x), that has an imaginary part in this
region.

In the case of HPLs of weight 1, depending on the prescription adopted, this imaginary
part is ±iπ:

H(1; x) = log (1− x) = log |1− x| ± iπ θ(x− 1) , (10)

while H(0; x) and H(−1; x) are real for positive x.
In the case of HPLs of weight 2, or bigger, an explicit expression for the imaginary part

can be found, using the shuffle algebra properties to move the weights 1 from the right to
the left in the sequence and the relation of Eq. (10). For instance, for H(0, 1; x) = Li2(x),
the Euler Dilogarithm, we have:

H(0, 1; x) = H(0; x)H(1; x)−H(1, 0; x) ,

= log (x) log |1− x| −H(1, 0; x)± iπ θ(x− 1) log (x) . (11)

The HPL H(1, 0; x) is real for x > 1 and the imaginary part of H(0, 1; x) is explicitly given
by the last term in Eq. (11).

Once the searched analytic expression is known in the range of x > 0, one has to do
an analytic transformation to move back to the Minkowski region (s > 0 and then x < 0).
Because of causality, the Mandelstam invariant s has to be assigned a positive vanishing
imaginary part, s+ i0+. Therefore, if x = −s/m2, the case s > 0 is recovered using

x → −x′ − i0+ , (12)

where now x′ = s/m2 > 0.
If 0 < x′ ≤ 1 (−1 ≤ x < 0), we have to take into account the branch cut connected to

the weight 0. For HPLs of weight 1 we have

H(0; x) → H(0;−x′ − i0+) = H(0; x′)− iπ , (13)

H(1; x) → H(1;−x′ − i0+) = H(−1; x′) , (14)

H(−1; x) → H(−1;−x′ − i0+) = H(1; x′) . (15)

Therefore, only the log (x) gets the imaginary part. The case of HPLs of weight 2 or bigger
has to be treated extracting, with the help of the shuffle algebra, the right-most zeroes
(trailing zeroes). The HPLs that have no zeroes on the right of the sequence of the weights
do not get imaginary parts. Moreover, moving from x to x′, the weights flip in sign. The
logn x extracted with the algebra are then transformed according to Eq. (13). As a simple
example, consider the function H(1,−1, 0, x). Using the shuffle algebra we obtain:

H(1,−1, 0; x) = H(0,−1, 1; x)−H(0,−1; x)H(1; x) +H(1,−1; x)H(0; x) . (16)

The cut behaviour is explicitly extracted asH(0; x). The other functions, H(1; x),H(1,−1; x),
H(0,−1; x), and H(0,−1, 1; x) are real for −1 ≤ x < 0. Therefore, using Eqs. (12) and
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(13), we have:

H(1,−1, 0;−x′ − i0+) = H(0,−1, 1;−x′ − i0+)−H(0,−1;−x′ − i0+)H(1;−x′ − i0+)

+H(1,−1;−x′ − i0+)H(0;−x′ − i0+) ,

= H(0, 1,−1; x′)−H(0, 1; x′)H(−1; x′) +H(−1, 1; x′)H(0; x′)

−iπ H(−1, 1; x′) . (17)

If x′ > 1 (x < −1), we have the superposition of the cuts connected to the weights 0 and
1. The first cut is taken into account with the analytic continuation discussed just above:
x → −x′ − i0+ with 0 < x′ ≤ 1. Now, if x′ > 1, the HPLs with the right-most weight 1
exhibits an imaginary part, which comes from the log (1− x′). Using the shuffle algebra,
the weights +1 on the right of the sequence can be moved to the left, and the log (1− x′)
explicitly extracted. Since s is to be understood with a vanishing positive imaginary part,
this is also the case of x′: x′ + i0+. Therefore, we have:

log (1− x′ − i0+) = log (x′ − 1)− iπ , x′ > 1 . (18)

Continuing with the example of H(1,−1, 0; x), now we start from Eq. (17). The cut for
x′ > 1 shows up in the functions H(0, 1; x′) andH(−1, 1; x′). Using again the shuffle algebra
we can rewrite these functions extracting explicitly the dependence on log (1− x′) as

H(1,−1, 0;−x′ − i0+) = H(0, 1,−1; x′) +H(1, 0; x′)H(−1; x′)−H(1,−1; x′)H(0; x′)

−iπ [H(−1; x′)H(1; x′)−H(1,−1; x′)] ,

= H(0, 1,−1; x′) +H(1, 0; x′)H(−1; x′)−H(1,−1; x′)H(0; x′)

−π2 − iπ [H(−1; x′) log (x′ − 1)−H(1,−1; x′)] , (19)

Every function in Eq. (19) is real for x′ > 1 and the imaginary part is explicitly given by
the last term.

2.1.2 Transformations of Variables and Numerical Evaluation

A fast and precise numerical evaluation of the HPLs, for all the values of the real variable x,
can be done using an appropriate Taylor expansion in the vicinity of a point of analyticity
of the functions. The strategy is the following (see for instance [17]):

1. We focus on the point x = 0. We extract the possible logarithmic behaviour, logn(x),
of the HPL using the shuffle algebra (we move the rightmost zeroes to the left). The
HPLs with no zeroes on the right are analytic in x = 0. Correspondingly, each HPL
takes the form

∑

n,m Pm(x) log
n(x), where Pm is a polynomial of degree m. In the case

x → 0−, the imaginary part comes from logn(x), using the prescription of Eq. (10).

2. With an appropriate number of terms in the Taylor expansion, one is able to evaluate
numerically the HPL in an interval around x = 0 with a given precision. In [17]
the interval −(

√
2 − 1) ≤ x ≤ (

√
2 − 1) is taken as the central region and using

Bernoulli numbers and Chebyshev polynomials, the authors evaluate the HPLs in
double precision using only few terms in the expansion.
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3. Using the properties of the HPLs, one can find suitable transformation formulas for
the argument in order to map different domains of the real axis back to the central
value −(

√
2 − 1) ≤ x ≤ (

√
2 − 1). In so doing, using the formulas found for that

region, one is able to cover all the possible values of the variable x ∈ R.

2.2 Generalized Harmonic Polylogarithms

In some physically relevant cases, it can happen that the weight functions defined in Eq. (1)
are not sufficient to describe the analytic structure of the result. Therefore, additional
weights (and/or additional structures) have to be taken into account, together with the
ones introduced in the last section. This gives rise to an enlarged set of functions, called
Generalized Harmonic Polylogarithms (GHPLs), which maintain the structure and proper-
ties of the HPLs.

Let us focus, for the moment, on the GHPLs that are involved in the calculation of
the NLO light-fermion electroweak corrections to the cross section of production of a Higgs
boson in gluon fusion and its decay in two photons5, as considered in [21]. This is a restricted
set, that contains only four weights, denominated as follows:

G(w1, w2, ..., wn; x) , withwi ∈ {−r,−4,−1, 0} , (20)

according to the definitions given below. Let furthermore restrict the analysis to the case
of real variable x ∈ R (the case of complex x will be treated in section 4). Therefore, we
consider the following set of weight functions:

g(−r; x) =
1

√

x(x+ 4)
, (21)

g(w; x) =
1

x− w
, withw ∈ {−4,−1, 0} . (22)

These functions have an integrable singularity in x = 0 and x = −4, and a non-integrable
singularity in x = w, respectively. The related GHPLs of weight 1 are

G(0; x) = log (x) , (23)

G(−r; x) =

∫ x

0

dt
√

t(t+ 4)
= − log

(
√
x+ 4−√

x√
x+ 4 +

√
x

)

, (24)

G(w; x) =

∫ x

0

dt

t− w
= log (x− w)− log (−w) , withw ∈ {−4,−1} , (25)

and they have at most a logarithmic singularity in x = 0, x = −1,−4. G(0; x) and G(w; x)
have a branch cut for x ≤ 0 and x ≤ w, respectively. For these negative values of x, they
become complex, with imaginary part depending on the prescription of approach to the
cut. G(−r; x) has a branch cut for x ≤ 0; it is purely imaginary in the range −4 ≤ x < 0
and it is a complex number, with non vanishing real part, for x < −4.

5The more extended set introduced in [11] will be discussed in the following sections.
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The GHPLs with weight 2 or bigger are defined as repeated integrations of the weight
functions in Eqs. (21,22):

G(a,w; x) =

∫ x

0

dt g(a; t)G(w; t) , (26)

with the exception of G(0w; x), defined as:

G(0w; x) =
1

w!
logw (x) . (27)

Such a set of functions obeys (by construction) the shuffle algebra of Eq. (7) and all the
important properties of the HPLs.

The analytic properties of the functions defined in Eqs. (26,27) derive from the properties
of the logarithm and of the square root.

2.2.1 Analytic Continuation

When x ≥ 0, every GHPL belonging to the set considered in the previous section is real
and the only possible divergence is a logarithmic divergence in x = 0.

For negative x, since the logarithm and the square root have a branch cut for negative
argument, we must choose how to approach the cut. In order to do that, we give a vanishing
imaginary part to the variable x. Let us choose the following prescription:

x → −x′ − i 0+ . (28)

The region x < 0 is divided in three sets, depending on the value of x′. The analytic
continuation has to be done in each region differently.

1. For −1 ≤ x < 0, the imaginary parts come from log (x) and from the square root,
that becomes purely imaginary:

log (x) → log (−x′ − i 0+) = log (x′)− iπ , (29)
1

√

x(x+ 4)
→ 1

√

(−x′ − i 0+)(−x′ − i 0+ + 4)
=

i
√

x′(4− x′)
. (30)

2. For −4 ≤ x < −1, also the log (x+ 1) gives an imaginary part:

log (x+ 1) → log (−x′ − i 0+ + 1) = log (x′ − 1)− iπ . (31)

3. For−∞ ≤ x < −4, an additional imaginary part comes from the logarithm log (x+ 4),
while the square root becomes real again:

log (x+ 4) → log (−x′ − i 0+ + 4) = log (x′ − 4)− iπ , (32)
i

√

x′(4− x′)
→ i

√

(x′ + i 0+)(−x′ − i 0+ + 4)
= − 1

√

x′(x′ − 4)
. (33)
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2.2.2 Numerical evaluation

The numerical evaluation of the GHPLs considered in the previous section can be done in
principle using basically the same strategy of the HPLs. One focuses on x = 0, extracts the
logarithmic behaviour using the shuffle algebra and then expands the remaining analytic
functions (with no zeroes in the rightmost weight). Then, using suitable transformations,
one relates the basic interval around x = 0 to the rest of the real axis.

However, the actual implementation of this strategy is quite cumbersome. Instead, it
turns out to be convenient to transform from the beginning the GHPLs with square roots
in the weights into a combination of GHPLs with linear weights using a set of variable
transformations that will be discussed in the following section. The advantage of doing so
lies in the fact that there exist fast and precise public numerical routines, that allow for the
evaluation of generalized polylogarithms with generic linear weights [19]. The latter can be
used to evaluate the GHPLs belonging to the set discussed in the last section, or, more in
general, to the wider set introduced in [11].

3 Linearization

The presence, in an analytic result, of GHPLs with square roots together with linear weights,
is due to the structure of the thresholds and pseudo-thresholds of the corresponding Feyn-
man diagrams.

Let us consider, for instance, the QED corrections to the vertex diagrams representing
the decay of a photon into an electron-positron pair. The particle content reduces to
massless photons and massive electrons/positrons. The threshold for the production of the
electron-positron pair is at s = 4m2, while the pseudo-threshold lies at s = 0. Let us look at
the differential equations with respect to s, for the solution of the corresponding MIs. The
structure of the thresholds and pseudo-thresholds emerges in the homogeneous part with
terms such as 1/s and 1/(s− 4m2), that are also present in the non-homogeneous part (see
for instance [22]). The solution of the homogeneous equation contains the inverse square
root 1/

√

s(s− 4m2). The particular solution, then, comes from repeated integrations of

1/
√

s(s− 4m2), 1/s, and 1/(s − 4m2) terms. In the Euclidean region (p2 = −s > 0) the
solution can be expressed in terms of GHPLs of the variable x = p2/m2 = −s/m2, with
weights −r, −4, and 0.

We can get rid of the square root (the weight −r) using the following quadratic trans-
formation of variable:

x =
(1− ξ)2

ξ
, ξ =

√
x+ 4−√

x√
x+ 4 +

√
x
, (34)

where ξ ∈ C, |ξ| ≤ 1, while x ∈ R. In fact, we have:

1

(x+ 4)
=

ξ

(ξ + 1)2
, (35)

1
√

x(x+ 4)
= − ξ

(ξ + 1)(ξ − 1)
. (36)
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Moving from x to ξ, the integration measure changes as follows:

∫ x

0

dt =

∫ ξ

1

(η + 1)(η − 1)

η2
dη , (37)

and every GHPLs reduces to a combination of repeated integrations of the simpler weight
functions defined in Eqs. (1). As a consequence of that, the set of weights {−r,−4, 0} is
transformed into the set {−1, 0, 1}, and the GHPLs are transformed into the usual HPLs
defined in section 2.1.

Let us consider, now, a more complicated problem, in which zero- and multiple-mass cuts
are present at the same time. This is, for instance, the case of the electroweak corrections to
leptonic or hadronic processes in which the lepton and quark masses are neglected and only
the vector boson masses are considered different from zero. In this case, the homogeneous
part of the differential equations for the corresponding MIs contain terms as 1/s, 1/(s −
4m2), 1/

√

s(s− 4m2), together with terms as 1/(s−m2). Therefore, the weights −r, −4,
−1, and 0 are present at the same time. In this situation, it is more difficult to get rid of
the square root. If we require, for instance, that the weights belong always to the set of real
numbers, wi ∈ R, there is no transformation of variable that could linearize all the weights
{−r,−4,−1, 0} at the same time. However, if we relax this constraint, we can move from
the set with square roots and linear weights to a set of only linear weights, using the change
of variable (34).

Using Eq. (34), the old weight functions are transformed into:

g(−r; t) =
1

√

t(t + 4)
= − η

(η + 1)(η − 1)
, (38)

g(−4; t) =
1

t+ 4
=

η

(η + 1)2
, (39)

g(−1; t) =
1

t+ 1
=

η

(η − c)(η − c̄)
, (40)

g(0; t) =
1

t
=

η

(η − 1)2
, (41)

with

c =
1 + i

√
3

2
= ei

π

3 , c̄ =
1− i

√
3

2
= e−iπ

3 , (42)

where c and c̄ are the two primitive sixth roots of the unity. Then, combining the integration
measure, Eq. (37), with the Eqs. (38–41), the original GHPLs with square root in the weight
are transformed into

G(−r,w; x) =

∫ x

0

dt g(−r; t)G(w; t) = −
∫ ξ

1

dη
1

η
G(w; t(η)) , (43)

G(−4,w; x) =

∫ x

0

dt g(−4; t)G(w; t) =

∫ ξ

1

dη

(

−1

η
+

2

η + 1

)

G(w; t(η)) , (44)

G(−1,w; x) =

∫ x

0

dt g(−1; t)G(w; t) =

9



=

∫ ξ

1

dη

(

−1

η
+

1

η − c
+

1

η − c̄

)

G(w; t(η)) , (45)

G(0,w; x) =

∫ x

0

dt g(0; t)G(w; t) =

∫ ξ

1

dη

(

−1

η
+

2

η − 1

)

G(w; t(η)) . (46)

Therefore, the set {−r,−4,−1, 0} of weights with square roots, has been transformed into a
new set, with only linear weights: {−1, 0, 1, c, c̄}. This new set, contains the original HPLs,
discussed in section 2.1, and new GHPLs with complex weights c and c̄. The latter, have
branch cuts in the complex x plain, starting at x = c, c̄ respectively. At weight 1, they are:

G(c; x) =

∫ x

0

dt

t− c
= log (x− c)− log (−c) , (47)

G(c̄; x) =

∫ x

0

dt

t− c̄
= log (x− c̄)− log (−c̄) . (48)

We can summarize the linearization procedure as follows:

1. We base our analysis in the region in which x ≥ 0 (the formulas will be afterwards
analytically continued in the region x < 0, if necessary).

2. We transform the integration variable in the new variable η, on which we integrate
from 1 to ξ. Troubles with the integration in η = 1 can occur, due to possible singular
behaviours. Since such singularities can occur only from the weights 0 in the variable
x, we avoid the possible logarithmic divergence in η = 1 using the shuffle algebra and
extracting the trailing zeroes in x. The logarithms so found, G(0n; x), are directly
rewritten as 1/n! logn (x) and, then, straightforwardly transformed in the variable ξ
using the relation log (x) = 2 log (1− ξ)− log (ξ).

3. We linearize the GHPLs of weight 1.

4. Weight-by-weight we proceed to the linearization of the GHPLs with weight 2 and
bigger, integrating over the new integration measure the corresponding linearized
GHPL times the corresponding linearized weight function.

As an example, we give here the expressions of the linearized GHPLs with weight 1.
G(0; x) can be converted directly in the new variable ξ, since6:

G(0; x) = log (x) = 2 log (1− ξ)− log (ξ) = 2G(1; ξ)−G(0; ξ) . (49)

Using the relations in Eqs. (43–46), we have:

G(−r; x) = −
∫ ξ

1

dη

η
= −G(0; ξ) , (50)

G(−4; x) =

∫ ξ

1

dη

(

−1

η
+

2

η + 1

)

= −2 log (2) + 2G(−1; ξ)−G(0; ξ) , (51)

G(−1; x) =

∫ ξ

1

dη

(

−1

η
+

1

η − c
+

1

η − c̄

)

,

= −G(c; 1)−G(c̄; 1) +G(c; ξ) +G(c̄; ξ)−G(0; ξ) . (52)

6 Note again the different sign with respect to the weight +1 in the Remiddi-Vermaseren notation [6].
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It is worth to notice that the linearization algorithm generates some constants, i.e. the
linearized GHPLs evaluated in ξ = 1. In many cases, these constants have a representation
in terms of known transcendental constants. In general, however, this is not true. For the
purpose of the numerical evaluation of the GHPLs with square roots in the weights using
existing C++ routines, these constants can be left as they are. In fact, the routines provide
a fast and accurate numerical evaluation in every point, and then also in ξ = 1. In our
particular case we have7:

G(c; 1) +G(c̄; 1) = 0 , (53)

such that
G(−1; x) = G(c; ξ) +G(c̄; ξ)−G(0; ξ) . (54)

Knowing the expressions of the linearized GHPLs with weight 1 and linearized weight
functions, we can proceed with the linearization of the GHPLs at weight 2. If we consider,
for instance, the function G(0,−1; x) we have:

G(0,−1; x) =

∫ x

0

dt

t
G(−1; t) ,

=

∫ ξ

1

dη

(

−1

η
+

2

η − 1

)

[G(c; η) +G(c̄; η)−G(0; η)] ,

= ζ(2)−G(0, c̄; ξ)−G(0, c; ξ) +
1

2
G(0; ξ)2 − 2G(1; ξ)G(0; ξ)

+2G(0, 1; ξ) + 2G(1, c̄; ξ) + 2G(1, c; ξ) . (55)

In the same way one can proceed for higher weights. Explicit formulas for the weight-2 and
weight-3 GHPLs involved in the NLO electroweak corrections for the production of a Higgs
boson in gluon fusion are provided in appendix A and appendix B, respectively.

3.1 Analytic Continuation of the Linearized GHPLs and their

Numerical Evaluation

The analytic continuation of the linearized GHPLs is less complicated than the one concern-
ing their original form. In fact, while the variable x ranges from ∞ to 0, the corresponding
variable ξ is real and positive and it ranges from 0 to 1. When x becomes negative, but in
the range −4 ≤ x < 0,

x → −x′ − i 0+ , 0 < x′ ≤ 4 , (56)

ξ becomes imaginary:

ξ =

√
x+ 4−√

x√
x+ 4 +

√
x

→ ζ =

√
4− x′ + i

√
x′

√
4− x′ − i

√
x′

= ei 2φ , (57)

where

φ = arctan

√

x′

4− x′
, 0 < φ ≤ π

2
. (58)

7The constants (and also the GHPLs with complex weights in the actual expressions for the MIs) should
appear always in a way such that their sum is real, as it has to be, since we are in the Euclidean region.
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Finally, when x′ ranges from 4 to ∞, ξ becomes real again:

ζ → ξ′ =

√
x′ −

√
x′ − 4√

x′ +
√
x′ − 4

, (59)

and it ranges from 1 to 0. We must, therefore, discuss three regions.

1. For 0 ≤ x < ∞, we have 0 < ξ < 1. The original GHPLs are real. The linearized
GHPLs contain functions that are manifestly real, as the ones with weights −1, 0, 1,
but also functions that are complex: those that contain the weights c and c̄. However,
the GHPLs containing the weights c and c̄ appear in the formulas always in pairs (for
instance G(−1, c; ξ) + G(−1, c̄; ξ)), in such a way that, although the single GHPLs
of the pair are complex, their sum is real, since the imaginary parts are equal and
opposite. The numerical evaluation of such GHPLs can be done straightforwardly
using the VW routines presented in [19].

2. For −4 ≤ x < 0, ξ is a pure phase, ξ = ei 2φ. In order to evaluate numerically the
GHPLs in this region, we have to notice that the VW routines, while allowing the
use of complex weights, do not provide the possibility of evaluation of GHPLs with
complex argument. However, for the GHPLs with non-trailing zeroes the following
general formula holds:

G(w1, w2, ..., wn; x) = G(λw1, λw2, ..., λwn;λx) , λ ∈ C , (60)

as it will be discussed in the next section. Extracting the trailing zeroes and then
choosing8

λ =
1

x
, (61)

the GHPLs under consideration are transformed in GHPLs of real argument, ξ = 1,

and complex weights, {±e−i 2φ, 0, e−i(2φ±
π

3 )}, that can be evaluated using again the
VW routines.

3. For −∞ < x < −4, ξ is again real and we are back to the case explained in the first
point.

4 GHPLs of a Complex Variable

In this section, we consider the case in which the GHPLs have to be evaluated in the
complex plain. Therefore, x is complex from the beginning9. We are particularly interested
in the following situation. Let us suppose that the dimensionless variable x is indeed a ratio
between two physically meaningful variables: a squared momentum and a squared mass:

x =
p2

m2
= − s

m2
, (62)

8Actually, it is sufficient to choose λ = e−i arg(x).
9The case in which x is real, but the corresponding reduced variable ξ is complex, was already discussed

in the previous section.

12



with
√
s the c.m. energy of a certain process. This is, for instance, the case of the cor-

rections presented in [21], but it is a quite general assumption. If the particle to which
the mass m belongs is an unstable particle, its width Γ is going to play an active role in
the determination of the corresponding physical observable. Consequently, the parameter
x becomes complex, since we should now consider

x = − s

(m− iΓ/2)2
= − s

M2
eiφ , (63)

where

M2 = m2 − Γ2

4
, and φ = arctan

{

mΓ

m2 − Γ2

4

}

. (64)

In the non-physical region, in which s < 0, we have from Eq. (63) that

Re(x) > 0 , and Im(x) > 0 . (65)

The variable ξ defined in Eq. (34), correspondingly, is also complex. The definition of the
GHPLs does not change, except from the fact that now the integration is over a curve in
the complex plain. Since the functions are analytic in the region defined by Eq. (65), the
value of the GHPL does not depend on the path. In this region we have:

ξ =

√
x+ 4−√

x√
x+ 4 +

√
x
=

√
r1 + x1 + 4−√

r2 + x1 + i (
√
r1 − x1 − 4−√

r2 − x1)√
r1 + x1 + 4 +

√
r2 + x1 + i (

√
r1 − x1 − 4 +

√
r2 − x1)

, (66)

where:

x1 = Re(x) > 0 , (67)

x2 = Im(x) > 0 , (68)

r1 =
√

(x1 + 4)2 + x2
2 , (69)

r2 =
√

x2
1 + x2

2 . (70)

Therefore, we are in the situation in which we have to evaluate GHPLs with linear complex
weights as functions of a complex variable ξ.

Let us consider a generic GHPL, G(w1, w2, ..., wn; x) in the case in which wi, x ∈ R. If
no trailing zeroes are present, we can define a non-vanishing real parameter λ ∈ R, such
that the following scale invariance holds:

G(w1, w2, ..., wn; x) = G(λw1, λw2, ..., λwn;λx) . (71)

The demonstration of Eq. (71) can be done by induction. It is trivially verified for n = 1
(λ, w1 6= 0). In fact:

G(λw1;λx) =

∫ λx

0

dt g(λw1; t) , (72)

and moving to the new integration variable r = t/λ, we have:

G(λw1;λx) =

∫ x

0

λdr g(λw1;λr) =

∫ x

0

dr g(w1; r) = G(w1; x) . (73)
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Let us suppose it is verified for n = i. For n = i+ 1 we have:

G(λwi+1, λw;λx) =

∫ λx

0

dt g(λwi+1; t)G(λw; t) =

∫ x

0

λdr g(λw1;λr)G(λw;λr) ,

=

∫ x

0

dr g(w1; r)G(w; r) = G(wi+1,w; x) . (74)

Let us suppose, now, that wi, λ, x ∈ C. For the weight 1 we have (remember that we
are considering the case in which |λ|, |w1| 6= 0):

G(λw1;λx) =

∫ λx

0,γ

dz g(λw1; z) =

∫ λx

0,γ

dz

z − λw1

, (75)

where γ is a path in the complex plain connecting the origin, z = 0, to the point λx =
|λ||x|ei(arg(λ)+arg(x)) = |λ||x|ei(Λ+X). If we rescale the integration variable by the real number
|λ||x|, we have

G(λw1;λx) =

∫ ei(Λ+X)

0,γ′

dz′

z′ − ξei(Λ+W1)
, (76)

where ξ = |w1|/|x| and W1 = arg(w1). The path γ′ connects the origin and the point on
the circle of radius 1 with argument (Λ + X). Let us define γ1 the path along the radius
from the origin to ei(Λ+X). Γ = γ′ − γ1 is a closed path that we suppose not to include the
pole z′ = ξei(Λ+W1). The integral along the path Γ vanishes for the Cauchy’s theorem. The
integral over the radius can be rewritten as a one-dimensional integral of real variable with
the substitution t = z′ exp (−i(Λ +X)). Therefore:

G(λw1;λx) =

∫ ei(Λ+X)

0,γ1

dz′

z′ − ξei(Λ+W1)
=

∫ 1

0

dt

t− ξei(W1−X)
= G(w1/x; 1) . (77)

On the other hand, we have also:

G(w1; x) =

∫ ei(X)

0,γ1

dz′

z′ − ξei(W1)
=

∫ 1

0

dt

t− ξei(W1−X)
= G(w1/x; 1) , (78)

thus,
G(λw1;λx) = G(w1; x) . (79)

Note that, in the end, for our purposes, we can just use Eq. (78).
Let us suppose, now, that the rescaling is verified for n = i. For n = i+ 1 we have:

G(λwi+1, λw;λx) =

∫ λx

0,γ1

dz g(λwi+1; z)G(λw; z) =

∫ ei(Λ+X)

0,γ1

dz′

z′ − ξei(Λ+Wi+1)
G(λw; |λ||x|z′) ,

=

∫ 1

0

dt

t− ξei(Wi+1−X)
G(λw;λx t) ,

=

∫ 1

0

dt

t− ξei(Wi+1−X)
G(w/x; t) = G(wi+1/x,w/x; 1) . (80)
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Choosing λ = 1 in Eq. (80), we can demonstrate that

G(wi+1,w; x) = G(wi+1/x,w/x; 1) , (81)

and, therefore
G(λwi+1, λw;λx) = G(wi+1,w; x) . (82)

Using Eq. (81), we can employ the numerical routines provided in [19] for the evaluation
of the GHPLs. In fact, now the GHPLs have complex weights (ratios of the original weights
wi and the variable x), but real variable10, equal to 1.

Let us consider again our set {−r,−4,−1, 0}, and see what happens in the different
regions. The analytic continuation from the non-physical s < 0 region to the physical
region in which p2 → −s − i 0+, with s > 0, corresponds to the transformation x → −x′,
where, now, x′ ∈ C and it is defined as follows:

x′ = x′

1 + i x′

2 =
s

M2
eiφ . (83)

Correspondingly, the variable ξ becomes ξ → ζ , with ζ ∈ C defined as follows:

ζ =

√
4− x′ −

√
−x′

√
4− x′ +

√
−x′

=

√

r′1 − x′
1 + 4−

√

r2 − x′
1 − i (

√

r′1 + x′
1 − 4−√

r2 + x1)
√

r′1 − x′
1 + 4 +

√

r2 − x′
1 − i (

√

r′1 + x′
1 − 4 +

√
r2 + x1)

, (84)

where now

r′1 =
√

(4− x1)2 + x2
2 . (85)

Note that ζ does not have anymore modulus 1, as it was the case of real x shown in Eq. (42).

5 Generalizations and Additional Weights

In this section, we enlarge the set of possible weights in order to cover the GHPLs needed for
the analytic expressions of the MIs in [11]. The goal is to be able to describe the following
set:

{−1− r,−r,−4,−1, 0, 1, 4, r, 1 + r, c, c̄} , (86)

where the additional weight functions (not introduced in the previous sections) are defined
as follows11:

g(4; x) =
1

x− 4
, (87)

g(r; x) =
1

√

x(x− 4)
, (88)

g(1 + r; x) =
1

√

x(x− 4)(x− 1)
, (89)

g(−1− r; x) =
1

√

x(x+ 4)(x+ 1)
. (90)

10 Note that it is sufficient to divide by ei arg(x)
11Note the difference in sign in the definition of g(4;x), g(r;x), and g(1 + r;x) with respect to [11].
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The guidelines sketched in this section can be used for other, more complicated, sets.
It is first worth to notice that the possible weights listed in Eq. (86) do not appear all

together at the same time. The appearance of a particular weight in a GHPL depends on
the cut structure of the relative Feynman diagram. In the MIs presented in [11] we cannot
have, for instance, the weights r and −r at the same time in the same GHPL. The same
happens for the pair (c, c̄) with the square roots r or −r. Actually, the structure of the MIs
in [11] is such that we are concerned effectively with three different subsets, that form each
a closed base. They are:

{−1, 0, 1, c, c̄} , {−1− r,−r,−4,−1, 0} , {0, 1, 4, r, 1 + r} . (91)

The three subsets do not mix with each other and they can be linearized (once and for all)
using different variable transformations.

5.1 The set { − 1, 0, 1, c, c̄}
The GHPLs belonging to this set can be evaluated straightforwardly with the help of the
routines in [19] without any further variable transformation. In the case in which the
variable x is complex, we just have to use the scale invariance of the GHPLs, as explained
in section 4.

5.2 The set { − 1− r,−r,−4,−1, 0}
This set contains the weights treated in section 3, {−r,−4,−1, 0}, with a small enlargement
due to the weight (−1 − r). Note that this enlargement is totally painless, since the new
weight (−1− r) transforms in the same set of linearized weights {−1, 0, 1, c, c̄}. In fact,

G(−1 − r,w; x) =

∫ x

0

dt g(−1− r; t)G(w; t) =

∫ x

0

dt
√

t(t+ 4)(t+ 1)
G(w; t) ,

= i

√
3

3

∫ ξ

1

dη

(

1

η − c
− 1

η − c̄

)

G(w; t(η)) . (92)

Note that the GHPL G(−1 − r,w; x), which is real for x ≥ 0, is written as a difference
of the two complex GHPLs: G(c, ...; η) and G(c̄, ...; η). This difference is indeed complex,
since the two GHPLs have the same real part but opposite imaginary parts. The factorized
i in Eq. (92) makes in such a way that the combination is real.

5.3 The set {0, 1, 4, r, 1 + r}
These positive weights cannot be linearized with the change of variable in Eq. (34). Instead,
we must use the change of variable that was used in [23]:

x =
(1 + ω)2

ω
, ω =

√
x−

√
x− 4√

x+
√
x− 4

. (93)
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When x is positive and ranges from ∞ to 4, the corresponding variable ω ranges between 0
and 1. When 0 ≤ x < 4, ω becomes imaginary. Giving to x a negative vanishing imaginary
part (anticipating the prescription for the continuation to the Minkowski region), we have:

ω =

√
x−

√
x− 4√

x+
√
x− 4

→ ω′ =

√
x−

√
x− 4− i0+√

x+
√
x− 4− i0+

=

√
x+ i

√
4− x√

x− i
√
4− x

= ei 2φ , (94)

where

φ = arctan

√

4− x

x
, 0 ≤ φ <

π

2
. (95)

Finally, when x becomes negative,

x → −x′ − i0+ , x′ > 0 , (96)

we have

ω′ → ω′′ =

√
x′ + 4−

√
x′

√
x′ + 4 +

√
x′

, (97)

and ω′′ ranges between 1 and 0 when x′ ranges from 0 to ∞.
Moving from x to ω, the integration measure changes as follows:

∫ x

0

dt =

∫ ω

−1

(η + 1)(η − 1)

η2
dη . (98)

Using eq.(93) the old weight functions are transformed into:

g(0; t) =
1

t
=

η

(η + 1)2
, (99)

g(1; t) =
1

t− 1
=

η

(η + c)(η + c̄)
, (100)

g(4; t) =
1

t− 4
=

η

(η − 1)2
, (101)

g(r; t) =
1

√

t(t− 4)
= − η

(η + 1)(η − 1)
, (102)

g(1 + r; t) =
1

√

t(t− 4)(t− 1)
= − η2

(η + 1)(η − 1)(η + c)(η + c̄)
, (103)

where the complex numbers c and c̄ were defined in section 3.
Combining Eq. (98) with Eqs. (99–103), we have the following transformation formulas

for the definition of the GHPLs:

G(0,w; x) =

∫ x

0

dt g(0; t)G(w; t) =

∫ ω

−1

dη

(

−1

η
+

2

η + 1

)

G(w; t(η)) , (104)

G(1,w; x) =

∫ x

0

dt g(1; t)G(w; t) =

∫ ω

−1

dη

(

−1

η
+

1

η + c
+

1

η + c̄

)

G(w; t(η)) ,(105)

G(4,w; x) =

∫ x

0

dt g(4; t)G(w; t) =

∫ ω

−1

dη

(

−1

η
+

2

η − 1

)

G(w; t(η)) , (106)
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G(r,w; x) =

∫ x

0

dt g(r; t)G(w; t) = −
∫ ω

−1

dη
1

η
G(w; t(η)) , (107)

G(1 + r,w; x) =

∫ x

0

dt g(1 + r; t)G(w; t) = i

√
3

3

∫ ω

−1

dη

(

1

η+c̄
− 1

η+c

)

G(w; t(η)). (108)

The integration in η deserves a further discussion. As in the case already presented in
section 3, the point η = −1 can be source of a non integrable singularity. However, the
possible divergence in η = −1 is connected to the original point x = 0, and then, ultimately,
to the right-most weight 0 in the GHPLs of x. It is sufficient, therefore, to extract the right-
most trailing zeroes in x before the change of variable (93) is applied, using the shuffle
algebra. The functions G(0n; x) = 1/n! logn (x) can be directly transformed in the new
variable ω using the relation log (x) = 2 log (ω + 1) − log (ω). The GHPLs that do not
contain trailing zeroes in the right-most weights are regular in η = −1 after the variable
transformation.

5.4 Mixed Weights

Although the weights belonging to the different sets described above do not mix in the
expressions of the MIs of [11], we can further extend the analysis and try variable trans-
formations that linearize wider sets of weights. This can be done provided that we do not
mix the square roots with different signs. For instance, it can be shown that the weights
belonging to the set {−1 − r,−r,−4,−1, 0, 1, 4} can be linearized at the same time, using
the variable transformation in Eq. (34). Analogously, the set {−4,−1, 0, 1, 4, r, 1 + r} can
be linearized with the help of the change of variable of Eq. (93).

6 Two-loop Light-Fermion contributions to the Higgs

Production in Gluon Fusion

In this section, we revisit the calculation of the NLO light-fermion electroweak corrections
to the Higgs boson production in gluon fusion.

In [21] these corrections were evaluated analytically, and the results were expressed
in terms of GHPLs with square root in the weights. The numerical evaluation was done
using realW and Z masses and with FORTRAN routines written ad hoc12. The electroweak
corrections appear to be very peaked at mH ∼ 2mW and mH ∼ 2mZ because of the opening
of the two corresponding thresholds. In this section we recompute the NLO-EW corrections
using the VW routines employing complex values for the W and Z masses. As a result, the
finite W and Z widths smear the peaks at the thresholds and resize the relative importance
of the corrections in the region mH ∼ 2mW , 2mZ .

Neglecting QCD corrections, the partonic production cross section, up to 2-loop level,

12 In [24], the remaining electroweak corrections due to the top quark were calculated as a Taylor
expansion in m2

H/(4m2
W ). Finally, in [25] a numerical calculation with complex W and Z masses was done

for the complete set of NLO electroweak corrections.
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has the following form:

σ(gg → H) =
GFα

2
S

512
√
2π

|G1l + αG2l
EW |2 , (109)

where GF is the Fermi constant, αS the strong coupling constant, and α the fine structure
constant.

The lowest order, G1l, is due to one-loop diagrams with heavy quarks running in the
loop. The dominant contribution comes from a loop of top, while the contribution of a
b-quark loop is of the order of some percents of the previous one. The analytic expression
of G1l is:

G1l =
∑

q=t,b

4

xq

[

2−
(

1 +
4

xq

)

G(−r,−r; xq)

]

, (110)

where xq = −m2
H/m

2
q, mq is the heavy-quark mass (top or bottom mass), and the analytic

continuation has to be taken considering a positive vanishing mH imaginary part: xq →
−x′

q − i 0+, where x′

q = m2
H/m

2
q . G(−r,−r; xq) can be immediately transformed into a

square logarithm of the variable ξ, defined in Eq. (34), as for instance in Eq. (118).
The two-loop electroweak light-fermion contributions, G2l

lf , to G2l
EW can be expressed as

[21]:

G2l
lf =

(mW − iΓW/2)2

2πs2m2
H

[

2

c4

(

5

4
− 7

3
s2 +

22

9
s4
)

A1(xZ) + 4A1(xW )

]

, (111)

where s2 = sin2 θW , c2 = 1− s2,

xW = − m2
H

(mW − iΓW/2)2
, xZ = − m2

H

(mZ − iΓZ/2)2
(112)

and

A1(x) = −4 + 2

(

1 +
1

x

)

G(−1; x) +
2

x
G(0,−1; x) + 2

(

1 +
3

x

)

G(0, 0,−1; x)

+

(

1 +
2

x

)

[2G(0,−r,−r; x)− 3G(−r,−r,−1; x)]−
√

x(x+ 4)

{

2

x
G(−r; x)

+
x+ 2

x2

[

2G(−r,−r,−r; x) + 2G(−r, 0,−1; x)− 3G(−4,−r,−1; x)
]

}

. (113)

The GHPLs with square root in the weights involved in Eq. (113) are listed in section 3
and in appendix B.

Writing
σ(gg → H) = σ0 (1 + δlf ) , (114)

where σ0 is:

σ0 =
GFα

2
S

512
√
2 π

|G1l|2 , G1l = G1l
t + G1l

b . (115)

we have for δlf :

δlf =
2α

|G1l|2
[

Re(G1l)Re(G2l
lf) + Im(G1l) Im(G2l

lf )
]

. (116)
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Figure 1: δlf as defined in Eq. (116).

mH δlf mH δlf mH δlf mH δlf mH δlf
110 0.04445 180 0.01723 250 -0.01830 320 -0.01047 390 -0.00462
120 0.04992 190 -0.00888 260 -0.01711 330 -0.00952 400 -0.00419
130 0.05585 200 -0.01729 270 -0.01590 340 -0.00860 410 -0.00382
140 0.06227 210 -0.02003 280 -0.01472 350 -0.00754 420 -0.00350
150 0.06939 220 -0.02063 290 -0.01358 360 -0.00655 430 -0.00322
160 0.06862 230 -0.02025 300 -0.01249 370 -0.00576 440 -0.00297
170 0.02764 240 -0.01939 310 -0.01145 380 -0.00514 450 -0.00275

Table 1: δlf as a function of the Higgs boson mass (mH in GeV).

In Fig. 1 we plot δlf computed with the VW routines and some numerical values are collected
in Table 1. The set of parameters used is the following:

mt = 173.1GeV , mb = 4.6GeV , mW = 80.398GeV , ΓW = 2.141GeV ,

mZ = 91.1876GeV , ΓZ = 2.4952GeV ,

α = 1/128 , GF = 1.16637 · 10−5GeV−2 , sin2 θW = 0.23149 (117)

7 Conclusions

In this paper we analyzed the set of GHPLs of a single variable containing square roots in
the weights. After recalling the definition and basic properties of the HPLs, we introduced
the GHPLs with weights belonging to the set {−1− r,−r,−4,−1, 0, 1, 4, r, 1+ r, c, c̄}. This
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specific set of GHPLs appears in the analytic expressions of the MIs that enter into the
calculation of the electroweak form factor [20, 11].

One of the main observations of the paper lies in the fact that, once the weights are
allowed to be complex, the GHPLs with square roots in the weights can be “linearized”,
i.e. expressed as a combination of GHPLs with linear weights. These linearized GHPLs
are functions of a transformed variable, that is not unique, but can be properly chosen
depending on the nature of the weights. The set {−1 − r,−r,−4,−1, 0, 1, 4, r, 1 + r, c, c̄}
can be linearized, once and for all, with just two variable transformations.

The other observation concerns the possibility of a fast and precise numerical evalua-
tion of the linearized GHPLs using already existing numerical routines. In particular, the
C++/GiNaC routines by Vollinga and Weinzierl [19] offer a well suited tool for this goal.

Finally, the strategy for the numerical evaluation of GHPL presented in the paper
is applied to the known case of electroweak light-fermion NLO corrections to the Higgs
production in gluon fusion. We evaluate the GHPLs with square roots using the VW
numerical routines. As a further refinement, while in [21] the corrections were evaluated
neglecting the effects of the W and Z widths, we consider here the case of complex mW

and mZ , getting a more realistic result. It is worth to notice that the GHPLs with square
roots allow for a very compact analytic expression of the results, which would be extremely
lengthy if expressed in terms of the linearized GHPLs.
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A Some Examples at Weight 2

As simple examples, in this appendix we apply the procedure outlined in the paper to the
following GHPLs at weight 2: G(−r,−r; x) and G(−r,−1; x). We find:

G(−r,−r; x) =

∫ x

0

dt
√

t(t + 4)
G(−r; t) = −

∫ ξ

1

dη

η
[−G(0; η)] ,

=
1

2
G(0; ξ)2 , (118)

G(−r,−1; x) =

∫ x

0

dt
√

t(t + 4)
G(−1; t) = −

∫ ξ

1

dη

η
[G(c; η) +G(c̄; η)−G(0; η)] ,

= −1

3
ζ(2)−G(0, c; ξ)−G(0, c̄; ξ) +

1

2
G(0; ξ)2 . (119)
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B Some Examples at Weight 3

In this appendix, we provide the expressions for the 5 GHPLs at weight 3 containing square
roots in the weights, involved in the corrections of [21]. We have:

G(−r,−r,−r; x) =

∫ x

0

dt
√

t(t + 4)
G(−r,−r; t) = −

∫ ξ

1

dη

η

1

2
G(0; η)2 ,

= −1

6
G(0; ξ)3 , (120)

G(0,−r,−r; x) =

∫ x

0

dt

t
G(−r,−r; t) =

∫ ξ

1

dη

(

−1

η
+

2

η − 1

)

1

2
G(0; η)2 ,

= 2ζ(3)− 1

6
G(0; ξ)3 +G(0; ξ)2G(1; ξ) + 2G(0, 0, 1; ξ)

−2G(0; ξ)G(0, 1; ξ) , (121)

G(−r, 0,−1; x) =

∫ x

0

dt
√

t(t + 4)
G(0,−1; t) ,

= −
∫ ξ

1

dη

η

[

ζ(2)−G(0, c̄; η)−G(0, c; η) +
1

2
G(0; η)2

−2G(1; η)G(0; η) + 2G(0, 1; η) + 2G(1, c̄; η) + 2G(1, c; η)
]

,

= −10

3
ζ(3) + 2K1 − ζ(2)G(0; ξ)− 1

6
G(0; ξ)3 +G(0, 0, c̄; ξ)

+G(0, 0, c; ξ)− 2G(0, 1, c̄; ξ)− 2G(0, 1, c; ξ)

+2G(0; ξ)G(0, 1; ξ)− 2G(0, 0, 1; ξ) , (122)

G(−r,−r,−1; x) =

∫ x

0

dt
√

t(t + 4)
G(−r,−1; t) ,

=

∫ ξ

1

dη

η

[

1

3
ζ(2) +G(0, c; η) +G(0, c̄; η)−G(0, 0; η)

]

,

=
2

3
ζ(3) +

1

3
ζ(2)G(0; ξ)− 1

6
G(0; ξ)3 +G(0, 0, c; ξ)

+G(0, 0, c̄; ξ) , (123)

G(−4,−r,−1; x) =

∫ x

0

dt

t+ 4
G(−r,−1; t) ,

=

∫ ξ

1

dη

(

1

η
− 2

η + 1

)[

1

3
ζ(2) +G(0, c; η) +G(0, c̄; η)−G(0, 0; η)

]

,

= −5

6
ζ(3)− 2K2 −

2

3
ζ(2)G(−1; ξ)− 2G(−1; ξ)G(0, c̄; ξ)

−2G(−1; ξ)G(0, c; ξ) +G(−1; ξ)G(0; ξ)2 + 2G(0, c̄,−1; ξ)

+2G(0, c,−1; ξ) +
1

3
ζ(2)G(0; ξ)− 1

6
G(0; ξ)3 + 2G(0,−1, c̄; ξ)

+2G(0,−1, c; ξ)− 2G(0; ξ)G(0,−1; ξ) +G(0, 0, c̄; ξ)

+G(0, 0, c; ξ) + 2G(0, 0,−1; ξ) . (124)
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In the formulas above, we introduced the two constants K1 and K2. They have a
cumbersome expression in terms of known transcendental constants, that we omit here.
Their numerical value is known with infinite precision and it is:

K1 = 0.278425076639727748441973590814.. , (125)

K2 = −0.152226248227607546589100778278.. . (126)
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