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Abstract
Multipole expansions offer a natural path to coarse-graining the electrostatic potential. However,
the validity of the expansion is restricted to regions outside a spherical enclosure of the
distribution of charge and, therefore, not suitable for most applications that demand accurate
representation at arbitrary positions around the molecule. We propose and demonstrate a
distributed multipole expansion approach that resolves this limitation. We also provide a practical
algorithm for the computational implementation of this approach. The method allows the
partitioning of the charge distribution into subsystems so that the multipole expansion of each
component of the partition, and therefore of their superposition, is valid outside an enclosing
surface of the molecule of arbitrary shape. The complexity of the resulting coarse-grained model
of electrostatic potential is dictated by the area of the molecular surface and therefore, for a typical
three-dimensional molecule, it scale as N2/3 with N, the number of charges in the system. This
makes the method especially useful for coarse-grained studies of biological systems consisting of
many large macromolecules provided that the configuration of the individual molecules can be
approximated as fixed.
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1. Introduction
Electrostatic interactions represent the major long-range component of the Hamiltonian that
drives the dynamics of molecular systems. For example, full classical molecular simulations
involve, typically, the computation of the electrostatic potential at a given point in space
with a complexity of N, and of all pairwise atomic interactions with a complexity of N2 with
respect to the charges and coordinates of the N atoms in the system. This quickly becomes
the major bottleneck in such simulations when the number of atoms increases. Various
algorithms have been developed to simplify the complexity of these calculations. In a most
typical approach, the interaction between remote groups of charges are approximated by
some collective representation of those groups. For example, in the fast multipole method
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(FMM) [1, 2, 3] the interaction between such groups of atoms are simplified by the use of a
collective representation of their charges in terms of multipole moments. Various
refinements of the FMM have been developed that take advantage of space division
algorithms (octree algorithms in three dimensions) [4, 5, 6] to reduce the computational cost
of the pairwise interaction to N log N, or even linear complexity.

The above approach is sufficient for many applications in material sciences and single-
macromolecule biophysics where these techniques are often used. The rapid progress in
biological sciences within the last few decades has, however, brought to the forefront of
research, applications that far exceed this scale: studying processes at molecular,
supramolecular and cellular levels of organization requires the modeling of systems
consisting of large numbers of macromolecules (for example a virus may contain from tens
to hundreds or thousands of protein molecules) of various shapes and physicochemical
complexities. At this scale, even the linear complexity is too challenging. Unfortunately,
further reduction of the complexity, by exact means, does not seem possible since N already
represents the number of (three-dimensional) degrees of freedom of an atomic system.
Therefore, the most efforts in overcoming this computational challenge have focused on
development of approximate coarse-grained (CG) models [7, 8, 9].

The general underlying assumption of all CG models is that the biological processes of
interest at this scale are robust with respect to certain detailed properties of the constituent
molecules. This leads to various CG models depending on the type of details that are
ignored. In many studies the configuration of individual macromolecular components of the
system, or of big parts of such macromolecules, can be approximated as rigid. This results in
a significant reduction in the dynamical degrees of freedom, and eliminates the computation
of the internal interactions of rigid components. However, this is not automatically
accompanied by a reduction in the complexity of the interaction between different rigid
components. For example, the electrostatic interaction still requires the computation of all
inter-component atomic pairwise interactions. To fully take advantage of the rigid-
conformation approximation a CG model for the interaction itself is needed.

The purpose of this paper is to address this later aspect. More specifically, we present a
method for automatic coarse-graining the electrostatic potential of a molecule at any level of
accuracy demanded by an application. The CG potential is represented in the form of a
superposition of multipole expansions corresponding to the components of a partition of the
atomic system. In this sense, the approach resembles the distributed multipole analysis from
theoretical chemistry [10]. However, that method serves a different purpose and relates to
detailed chemical information about the molecular entity, which makes it only suitable for
small molecules. By contrast, the partitioning of the system in our approach is done in such
a way that convergence to the correct electrostatic potential is assured at any of a given set
of “control” points. When the control points describe a closed surface enclosing the
molecule, convergence at these points insures convergence anywhere outside this enclosing
surface. The criterion used in our partitioning scheme can be applied in an automatic
fashion, which is essential for the modeling of large molecular assemblies.

The structure of the paper is as follows. In the following Theory section we first introduce
the contextual background on coarse-graining molecular systems, and describe how
multipole expansions can provide an ideal framework for the modeling of their interactions.
We also describe the main limitation that prevents their wide use for this purpose. Then, in
the final subsection 2.3, we describe an approach that overcomes this limitation. Section 3
and the Appendix A provide the algorithm for the implementation of the proposed approach.
Section 4 illustrates the performance of our approach on a specific application, coarse-
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graining the electrostatic potential of a large biological molecule. We summarize our results
in the Conclusions section.

2. Theory
2.1. Coarse-graining molecular systems

Coarse-graining techniques should, in principle, address two problems: 1) defining the
structural CG beads, a problem that consists in distributing the atoms of the molecules into
separate subsystems whose internal state can be considered fixed for the purpose of the
study under consideration and 2) deriving the functional form of the interaction (in the form
of an effective Hamiltonian or potential) for the resulting CG beads.

The first aspect has been studied more extensively, even though there is no general
prescription for choosing the CG beads and this process is usually strongly dependent on a
priori knowledge about the properties of the physical system that is being modeled. Each of
the present approaches to CG bead assignment is typically accompanied by a model or
approximation for the interaction between CG beads. However, this second aspect has been
addressed in a less systematic fashion except, perhaps, for some more recent approaches to
multi-scale coarse-graining [11, 12, 8]. This is despite the fact that deriving a CG interaction
should, at least in principle, be more amenable to solutions than the bead assignment step:
once an atomic interaction model is known, deriving a CG Hamiltonian can be reduced to a
transformation from atomic to collective coordinates (this may be more complicated if
thermodynamic properties are to be captured; here, we are only concerned with coarse-
graining the interaction Hamiltonian).

Deriving a collective coordinate representation of the Hamiltonian from the atomic
interaction model is closely related to macroscopic averaging of the electromagnetic
properties and, therefore, various techniques from this area can be used. In particular, for the
electrostatic interaction, which forms our main interest, the multipole expansions provide an
ideal candidate for the coarse-graining of the electrostatic potential of a three dimensional
molecule. The advantages of this technique are: 1) it provides a systematic description of the
electrostatic field in terms of a hierarchical set of multipoles describing features at various
spatial scales (i.e., it is intrinsically a multi-scale approach); 2) the multipole moments are
very effective in encoding directional properties of the interactions, properties that are
essential when large and complex molecular entities are involved; 3) the multipole
expansion techniques have been extensively studied – both as a core technique in theoretical
physics (electromagnetism, nuclear physics, gravitational physics, astrophysics, for
example) and from a practical perspective in the context of the FMM approach – and
therefore many technical aspects are well understood. Despite all these advantages, the
multipole expansions have been only applied on a limited scale to practical modeling of the
molecular fields [13, 14, 15, 16]. This is due to major limitations in the accuracy of
multipole expansions in the immediate vicinity of the surface of the molecule [17, 18], as
discussed in the next section.

2.2. Multipole expansions and their limitations
The multipole expansions represent a systematic method for going from a microscopic to a
“macroscopic” (or collective) representation of the electrostatic field of a system of charges.
To understand the limitations of this technique in molecular modeling we briefly introduce
here the derivation of these expansions. Since the algorithms presented here, as well as the
applications (macromolecular modelling) that motivated them are discrete in nature, we
adopt in this paper a point-charge model of the distribution of charge for purpose of
presentation. However, the results can be directly extended to the continous case by an
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appropriate conversion, for example, to a discrete representation of the distribution of charge
on a three-dimensional grid.

The Coulomb potential created by a point charge ei, located at point r ⃗i is:

(1)

where r ⃗ is the observation point, and ε is the permittivity of the medium. Eq. (1) can be
expanded in a series in which the dependence on charge coordinates and observation point
coordinates separates, in each term, into independent factors as follows [19]:

(2)

Here, ri and r are the lengths of the position vectors r ⃗i and r ⃗, and r ̂i and r ̂ are the unit vectors
in the direction of those vectors. The unit vectors are specified in the last formula by their
spherical angles θ and φ. The functions Pl are the Legendre polynomials, depending here
only on the cosine function of the angle between the position vectors of the observation
point and that of the charge. The Legendre polynomials satisfy the spherical harmonics
addition theorem [19] which allows their factorization in terms of the Racahnomalised
spherical harmonic functions  as represented by the second
summation (over index m) in the last formula.

The factorization in terms of spherical harmonics is essential because it is this property that
allows the transition from the atomic (‘microscopic’) to a collective (‘macroscopic’ or
molecular in the present context) representation, in terms of multipoles, of the electrostatic
field of all charges in a molecule. Indeed, in the case of many charges, the superposition
principle states that the total electrostatic potential is a sum over the potentials created by
each individual particle. By grouping together the coefficients depending only on the charge
coordinates, which is made possible by the above-mentioned factorization property, one
arrives at the following multipole representation of the electrostatic potential:

(3)

The coefficients qlm are the multipole moments of the distribution of charge and are given
by the expression:

(4)

where the summation runs over all N charges in the system. For a given l, the 2l + 1
components corresponding to different values of m form the multipole of order (or rank) l:
the 0th order multipole is just the total charge, the 1st order is the dipole, the 2nd order is the
quadrupole, etc.
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Note that in the series expansion of the Coulomb potential in Eq. (2) we tacitly made the
critical assumption that r > ri, required for the series to converge. For a collection of
charges, the convergence of the multipole expansion in Eq. (3) to the exact electrostatic
potential requires this condition be satisfied, simultaneously, for all charged particles in the
system. In geometrical terms, the condition states that the observation point must reside
outside a spherical enclosure of the whole system of charges centered at the center of
expansion, for example as shown in Fig. 1(a) for the smallest possible enclosing sphere.

Even if we place the origin such that the whole set of charges is enclosed in the smallest ball
possible (the case illustrated in Fig. 1), for any non-spherical charge distributions there will
be cavities where multipole methods can not accurately represent the real electrostatic
potential, no matter how many terms in the series of Eq. (3) are retained (for example for
points such as the one shown in Fig. 1(b)). As long as these regions are accessible to other
molecules in the system, these regions cannot be ignored and the problem must be
addressed.

The above restrictions in the immediate vicinity of molecules constitute the main limiting
factor [17, 18] for the practical applications of multipole expansions in modeling molecular
interactions. In most cases, their use for this purpose has been confined to small molecules
such as water [15, 16], where other effects prevent molecules from exploring very close
configurations anyway. Still, the effectiveness of multipole expansion in describing non-
isotropic interactions (i.e., their directional variation) has motivated their usage for modeling
of some larger molecules too [13, 14], despite these shortcomings.

Even though somewhat related, the problem defined above remains essentially distinct from
another practical limitation of the classical multipole expansion: the dependence of their
convergence rate on the location of the center of expansion, which makes choosing the
center ambiguous. The ambiguity of the center of expansion can be removed by using a
rankwise distributed multipole analysis as we have shown previously [20]. However, solving
the ambiguity with respect to the center of expansion does not resolve the problem
highlighted above, of limited accuracy near the distribution of charge.

2.3. Resolving the limitations of multipole expansions by partitioning
Let us assume that we are interested in an accurate representation of the electrostatic
potential at point A1 located as shown in Fig. 1(b), and let us name such a point a “control
point”. The multipole expansion of the total charge set is not convergent at that point. We
choose to interpret this, in the context of a CG model, as signifying that our attempt to
model the electrostatic potential of such a molecule by a single set of multipoles is too
coarse. To refine the description, we will partition the distribution of charge into two parts,
and represent the potential of the whole molecule as the superposition of the two potentials.
We do this in effect by identifying two spheres such that 1) the union of the two spheres
encloses all charges in the molecule, and 2) the control point A1 resides outside this union
or, in the worst case, on its boundary. This can be achieved, for example, as shown in Fig.
2(a). Note that, unlike the illustration in Fig. 1, this time the spheres are not, typically, the
smallest enclosing spheres, and, therefore, the surface of such a sphere resides outside the
boundaries of a smaller sphere that can be fit inside. In other words, all the points of such a
surface can be made, typically, points of convergence by choosing the center of the smaller
sphere as center of expansion. Then, the potential at point A1 can be, typically, represented
exactly as a superposition of convergent multipole expansions of the two distributions of
charge corresponding to the two spheres of the geometric partitioning.

The addition of another control point, A2 (Fig. 2(b)), imposes another constraint for the
sphere coverage of the distribution of charge. This may be resolved without increasing the
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number of covering spheres, as is the case in Fig. 2(c), or may require a three-sphere
coverage. The problem repeats itself with any additional point added to the set of control
points. A further solution, for a three-point control set, is shown in Fig. 2(d). Obviously, if
the added point is already outside of the coverage satisfying previous constraints, no further
refinement is needed. The scenario described above can be formalized as the following
problem:

Partitioning Problem—Given the set of charges  of a molecule, and a set of control

points , find a set of three-dimensional enclosing spheres , and a partition of

the charge set  with ΣNp = N, such that: a) the subset  is inside sphere 
and b) none of the control points resides inside the union of the enclosing spheres.

We will name a pair  an “interaction CG bead”, to distinguish it from a
regular structural CG bead. A solution of the partition problem consisting of a collection of
N interaction beads  constitutes an “N-bead CG partition model” of the
interaction. Note that in the applications envisioned by our method a typical structural CG
bead will consist of many interaction CG beads: a structural CG bead in such applications
will often extend over large parts or even entire macromolecules, and retain their rigid
conformation during a computational simulation.

Once a solution to the above problem is determined, the electrostatic potential surrounding
the molecules can be coarse-grained as a superposition of multipole expansions of each of
the interacting CG beads as follows:

(5)

The multipole moments  are the moments of bead p of the partition with respect to the

center of its enclosing sphere, and the unit vectors  are the directions of the relative
position vectors of the observation point with respect to that center.

For a rigid molecule, such as a structural CG bead, the inside of the molecule is not
accessible to other molecules. In this case it is only useful to choose control points from
regions located outside the molecule. The set of control points is arbitrary. However, the
most obvious practical choice is a selection of control points from a closed surface enclosing
the whole molecule. If the control points sample the surface densely enough, satisfying
convergence at the control points will automatically ensure convergence at any point outside
the surface. In other words, such a surface can be used to define the region of convergence
of the CG model. Moreover, since the electrostatic potential outside the sampling surface
satisfies Laplace’s equation, its value at any point is completely determined by its values on
this surface. Therefore, the accuracy of the potential in the domain of convergence (outside
the sampling surface) can be completely controlled by the accuracy of the potential over the
set of control points.

The most complex scenario corresponds to control points located on the surface of the
molecule [21]. The number of control points needed, and thus the size of the partition and
the complexity of computation will then increase proportional to the surface of the molecule.
Therefore, for a three-dimensional molecule, the complexity of the CG model of the
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interaction will scale as N2/3 with N atoms, for a given truncation order for the multipole
expansions. The real complexity for a given molecule depends also on details of the spatial
distribution of charges. In the simplest case of a spherical molecule with a uniform
distribution of charge, the electrostatic field can be represented by the total charge only. On
the other hand, in the more complex case of a deeply convoluted molecular surface, the CG
model may require a much larger number of interaction CG beads and the complexity may
exceed N2/3. This is because in this case the effective dimensionality of the space occupied
by the molecule may be less than three – the dimensionality of the physical space. Our
analysis applies only to three-dimensional molecules.

The above complexity of N2/3 in calculating the electrostatic potential at a given point is,
asymptotically, the worst possible from a partitioning perspective. In practice, if the control
points are selected from a more distant enclosing surface for example, the CG model may be
significantly simpler. Therefore, since a full atomic representation has a computational
complexity of N, a multipole CG model based on partitioning is assured to be more efficient
against a full atomic representation for a sufficiently large molecule. The threshold size
depends on details of implementation of the algorithms and, of course, the overall degree of
accuracy required, since this determines the truncation order of the multipole expansions.

In many typical applications the pairwise interaction energy is also needed. In a naïve
implementation, the complexity of such a calculation for a CG model obtained as described
here would scale with the numbers N, M of atoms on the interacting molecules as N2/3M2/3.
However, present techniques to reduce the complexity of electrostatic pairwise interaction
can be used within the framework of our CG approach since the interaction CG beads plays
the same role as the atomic charges in these methods. For example, one commonly used
technique consists in precomputing the potential on a grid surrounding each molecule. With
such an approach, the computation of the pairwise interaction energy can be linearized with
respect to the number of interaction CG beads on each molecule.

3. The partitioning algorithm
As formulated, the partitioning problem does not, in general, have a unique solution: both
the geometric partitioning into covering spheres and the way the charge is distributed among
spheres in overlapping regions may admit multiple solutions. In particular, the problem
always admits a trivial solution in which each charge is enclosed inside its own sphere. But
even such a partitioning is not unique because the radius of the enclosing sphere is not
strictly defined, unless additional constraints are imposed. This radius is irrelevant when the
sphere is centered at the enclosed point charge since the multipole expansions converge in
this case at all points, independent of the radius of enclosing sphere. In general, however, for
an arbitrary placement of the center, the radius of the sphere has to be such that all control
points, in particular the closest one to the center, reside outside the sphere, while the charge
is contained inside. For the purpose of minimizing the size of the covering set of spheres for
a more general solution, it is advantageous to choose the maximum possible radius, i.e. a
radius equal to the distance to the closest control point. If the sphere is centered at the
position of the enclosed charge, the radius then corresponds to the distance between that
charge and the closest of the control points.

The solution described above in which each charge is enclosed in its own sphere centered at
the position of that charge is equivalent to an all-atom Coulomb representation since, with
this geometry, the multipole expansion reduces to the monopole Coulomb term only. This,
of course, is the most detailed coarse-graining since complete accuracy of the electrostatic
field can be achieved at any point in space. We will furthermore set the radius of the
enclosing sphere of each charge to the distance to the closest control point, as discussed
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above, name the partition defined in this way an “atom-level partition”, and denote it by .
The partition  represents the starting point of the algorithm for deriving an optimal
solution to the partitioning problem formulated in the previous section, i.e., for obtaining a
CG partition of the distribution of charge and, therefore, a CG model for the electrostatic
interaction.

In general, a CG partition, in particular the atom-level partition , is reducible in the sense
that it contains pairs of interaction CG beads such that the whole set of charges of one of
them is completely contained within the covering sphere of the other. That first member of
such a CG bead pair can be “merged” into the other without losing the convergence of the
multipole expansions. By recursively merging all reducible pairs of interaction CG beads
one can reach an irreducible CG partition. By definition, we will consider optimal a solution
of the partition problem that is an irreducible CG partition. A pseudo-code description of
this algorithm is given in the Appendix.

In a real application, the input partition is set initially to the atom-level partition  ←  of
the structural CG bead. The atom-level partition has to be precomputed in advance from
the coordinates of the atoms in the molecule and their charges, and from the coordinates of
the control points. From the definition, the calculation of the atom-level partition consists
mainly in identifying the closest control point to each atom in the molecule and overall the
computational complexity is proportional to the product between the number of atoms and
the number of control points. Since the structural CG bead is rigid in the typical application
of our method, this calculation needs to be done only once for each molecule, and therefore
the complexity of this step is not important. However, tree methods can be used to reduce
the complexity of the computation of the atom-level partition.

For the same reason, the CG interaction model only needs to be computed once at the
beginning of the molecular simulation and, therefore, the complexity of the computation,
which is quadratic in the worst case scenario, is not typically of concern. However, more
efficient algorithms are possible and we will address this aspect elsewhere [22].

As an important note, we would emphasize again that the partitioning problem does not have
a unique solution, even in an irreducible form. In the context of the coarse-graining
algorithm presented above, this non-uniqueness manifests itself in the fact that the output of
the algorithm depends on the order of the CG beads in the initial input partition. In
particular, while the algorithm optimizes the CG interaction model by reducing the partition
to a totally irreducible one, it does not necessarily produce the smallest CG partition.
Additional optimization is possible with respect to the size of the CG model as well as the
rate of convergence of each of the multipole expansions in the partition. This can be
achieved, for example, by running the algorithm on randomized orderings of the interaction
beads in the initial partition. However, this leads to combinatorial complexity. The main
objective of the partitioning problem, however, is to insure convergence of the distributed
multipole expansion. From this perspective, the objective is effectively achieved since any
irreducible CG partition satisfies this requirement.

4. Illustration and performance of the partitioning CG approach
To evaluate our CG approach we now explore how well it performs by comparison to
present multipole expansion techniques. In particular, we will analyze 1) how well it
addresses the inaccuracies of multipole expansion near the distribution of charge; 2) the
speed of convergence and 3) the reduction in computational complexity that it achieves.

We illustrate these aspects with a concrete example: a CG model of the electrostatic
potential of the Arc repressor, a DNA-binding protein [23] (PDB ID [24]: 1MYK). A
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graphical comparison of such a CG model with the exact calculation is shown in Fig. 3. The
equipotential surface in Fig. 3(a) (shown in blue) is an exact calculation from Coulomb’s
law. Figs. 3(b) and 3(c) represent the same isosurface as captured by a 70-bead CG model
generated with our approach at the monopole and dipole truncation levels, respectively. For
the generation of the 70-bead partition we used as control points the 2492 vertices
describing a closed surface (not shown) shifted by 2Å outward, and parallel to the molecular
surface (shown in black). The vertices, as well as the normal directions to the molecular
surface were generated with a standard rolling-ball technique [25, 26] using the MSMS
program [27]. The rolling ball radius and the vertex density were set to 2.0 Å and 0.25Å−2

respectively. The order of the initial atom-level partition used as input in the CG algorithm
is the one in which the atoms are listed in the PDB file [24]. The molecule contains almost
1600 atoms for a total of about 6500 coordinate and charge parameters. At the dipole level
(Fig. 3(c)) there are 490 parameters in this CG model, which amounts to a reduction in
complexity by a factor of about 13. This is the reduction in complexity that would be
expected in a simulation that uses this CG model instead of the exact calculation from
Coulomb’s law.

It is clear that the CG model captures quite well the features of the electrostatic potential at
both levels of truncation (compare Figs 3(b) and 3(c) with 3(a)), with an obvious increase in
the finesse of spatial details at the more accurate dipole level. To properly evaluate this, it is
important to note that the equipotential surface chosen for illustration explores challenging
regions around the molecule located in the immediate vicinity, above and below, the closed
surface from where control points were sampled (surface that is not shown in the figure to
avoid obstructing the view of the equipotential surface, but located just 2Å above the black
molecular surface). Inevitably, when the isosurface crosses the sampled surface towards the
molecular surface (and towards the interior of the distribution of charge) the convergence of
the CG model fails, and this explains the small inaccuracies visible in the reentrant regions
of the isosurface. This is particularly true for the fine features of the isosurface around the
two central openings marking the DNA-binding regions in the three pictures (Fig. 3).

In Tables 1–3 we further illustrate the performance of the above CG model with quantitative
results. Table 1 shows the root mean square deviation (RMSD) between the approximate
electrostatic potential of our CG model and the exact Coulomb potential at the control
points only. The regular single-center multipole expansion data, (“Single Center” row),
highlights how inadequate this approach is: not only does this approach not converge to the
correct field with the increase in the truncation order, but it actually rapidly worsens with
every additional order retained in the multipole expansion. By contrast, the CG model
obtained by partitioning the system of charges, (the “Partitioning” row), converges
systematically with the increase in the order of expansion, as expected.

In Table 2 we provide the same type of calculations, but this time we keep all points outside
the region covered by the interaction CG-beads, not only the control points. This set of
points includes about 42000 points located inside cavities of the molecule where the regular
multipole expansions do not apply. As a result, the divergence of the regular single-center
multipole expansion is even more dramatic in this analysis. The CG model converges again,
as expected.

Finally, Table 3 shows the RMSD only for points ‘outside’ the molecule, i.e., outside a
spherical enclosure where, according to theory, both approaches should converge.
Reassuringly enough, both methods indeed converge. However, the CG model still
converges much faster than the regular expansion.
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The above data clearly illustrate the significance of the lack of convergence, and therefore
the total inadequacy of the regular, single-center multi-pole expansion, for modeling the
electrostatic potential in the regions close to the molecule. At the same time the results
unambiguously show that the partitioning technique proposed here completely resolves this
limitation, and provides a very efficient convergence of the CG field to the exact value
within the domain exterior to the control point sampling surface.

The final aspect that we analyze is the complexity of our CG approach. As already
mentioned, for a given multipole expansion order, the complexity of the resulting CG model
is determined by the set of control points. While the control points can be chosen arbitrarily
in general, the most practical scenario corresponds to their selection from a closed surface
enclosing the molecule. Obviously, the closer this surface to the surface of the molecule, the
stronger the convergence constraints they impose, and the larger the number of interaction
CG beads required. On the other hand, for a surface sufficiently distant from the molecule,
the CG model should comprise a single interaction CG bead since for the surface at infinity
the classical single-center multipole expansion provides accurate convergence to the exact
electrostatic potential.

The model constructed above for the Arc repressor protein is rather refined and its
complexity is, therefore, only about an order of magnitude lower than an atomic level
model. Very often, simpler models are sought in practical applications. Such models can be
obtained by imposing less stringent convergence requirements. One way to accomplish this
is, for example, by selecting control points from a more distant surface. In Fig. 4 we provide
a representation of the number of the CG beads of the model as a function of the offset
distance of the sampled surface relative to the surface of the molecule. The sampled surfaces
were generated by shifting the molecular surface, generated with the MSMS program [27],
by various distances along the normal to the molecular surface. To prevent self-intersection
of the shifted surface in regions of strong curvature (such as inside small cavities) we used a
biger density of vertices (3.0Å−2 instead of 0.25 Å−2) and appropriately adjusted the rolling-
ball radius [25, 26] of the reference molecular surface with the increase in the shift distance.
The graph in Fig. 4 is typical for any three-dimensional molecule, and validates the
expectations based on theoretical arguments for the computational complexity of the CG
models generated with our approach.

5. Conclusions
We have introduced a systematic approach for coarse-graining the electrostatic field created
by large distributions of charge, such as those associated with biological molecules. The
approach uses a geometric partitioning scheme to overcome the intrinsic limitations in
accuracy of the regular multipole expansion in the immediate vicinity of the distribution of
charge and, at the same time, to reduce the complexity in the computation of the
intermolecular electrostatic interaction. We provide an algorithm for the implementation of
the partitioning scheme and then illustrate it with a concrete example of a CG model for the
electrostatic field of a biological molecule.

The analysis of the illustrative example confirms the performance expected on theoretical
grounds: the approach resolves the convergence limitations of the regular multipole
expansion techniques, and provides the possibility of adjusting the CG model with regard to
degree of accuracy and computational efficiency. This later capability is enabled by two
mechanisms: 1) the selection of control points defining the domain of convergence of the
multipole expansions (which determines the number of interaction CG beads in the model –
i.e., the granularity at which the distribution of charged is analyzed by the partitioning
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scheme), and 2) by the truncation order of these expansions, which allows the adjustment of
accuracy.

In a typical application of our methods, the control points are chosen from a closed surface
surrounding the molecule. Then, for a sufficiently dense sampling, the convergence of the
resulting CG model is warranted anywhere outside that enclosing surface since the
electrostatic potential satisfies Laplace’s equation in that domain. In other words, this
mechanisms provides a practical path toward extending the applicability of multipole
expansions from the exterior of a sphere to the exterior of a closed surface of arbitrary
shape.

In the present form, the algorithms described here are appropriate for studies in which the
coarse-grained molecular entities can be approximated as rigid. This limitation originates in
the cost of calculating the initial CG model which is too complex to be applied repeatedly to
a dynamically changing molecular configuration. It is possible however that updating an
already computed CG model to configuration changes may be a simpler process. We are
planning to address these aspects in future work.

Finally, we would like to emphasize that, while the development of the CG method
described here was motivated by biological applications, the techniques involved are general
and applicable to the modeling of the electrostatic field of any systems of charges.
Therefore, they can be of interest for the computational simulation of other classes of
physical systems.
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Appendix A. Pseudo-code description of the partitioning algorithm
Here we provide a pseudo-code description of the algorithm for the partitioning of a
distribution of charges into irreducible CG components. The elementary operations involved
in constructing such an irreducible solution are represented by the functions IsIn( , ) and
MergeIn( , ) described below.

IsIn( , )

Input: An interaction CG bead pair 

Output: True or False

1: isin ← True

2:
if e1i not inside S2 for any  then

3:  isin ← False

4: end if

5: return isin
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MergeIn( , )

Input: An interaction CG bead pair 

Output: A single interaction CG bead representing the first bead merged into the second

1: return 

The function IsIn tests whether the set of charges belonging to the first bead are fully
contained inside the covering sphere of the second bead (line 2) and returns False or T rue.
Note, that testing for reducibility requires the application of the function in both directions.
If both tests fail, then the pair of CG beads is irreducible already. If one of the tests
succeeds, then the function MergeIn can be used to discard the redundant bead by
incorporating all its charges into the other bead. In this way the size of the partition is
reduced by one bead.

The algorithm described by the following Reduce function applies these two elementary
operation repeatedly, in a recursive fashion, until an input partition  is reduced to an
irreducible set of interaction CG beads. The CG partition is transformed in place in the steps
6–16 of a double loop over all pairs of CG beads. In each cycle, a pair is tested for
reducibility and replaced by a merged bead if reducible (lines 7–9 and 11–12), or left alone
if not. The program ends naturally when no reducible pair is left in the dynamically updated
partition .

Reduce( )

Input: A CG partition (reducible, in general) 

Output: An irreducible CG partition

1: i ← 2

2: while i ≤ Length( ) do

3:  im ← i − 1

4:  j ← i

5:  while j ≤ Length( ) do

6:   if IsIn( , ) then

7:    ReplacePart( ,  ← MergeIn( , ))

8:    j ← i

9:    Drop( , )

10:   else if IsIn( , ) then

11:    ReplacePart( ,  ← MergeIn( , ))

12:    Drop( , )

13:   else

14:    Leave  unchanged

15:    j ← j + 1

16:    end if

17:   end while

18:   i ← i + 1

19: end while
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20: return 
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Figure 1.
(a) For a point outside an enclosing sphere the multipole representation can be made
arbitrarily precise by retaining a sufficient number of terms. (b) For points inside the sphere
even a complete summation of all terms in the series will not converge to the correct value
of the electrostatic potential.
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Figure 2.
Coarse-graining the electrostatic potential by geometric partitioning and superposition. The
sequence of figures illustrate the process of building partitioning schemes that insure
convergence at (a) 1, (b,c) 2, and (d) 3 specified control points.
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Figure 3.
An isosurface of the electrostatic potential (0.5 e/Å) around the Arc repressor protein (PDB
ID: 1MYK) from Coulomb’s potential (a), and from a 70-bead CG model in the monopole
(Lmax = 0) (b) and dipole (Lmax = 1) order (c). The dark-grey surface represents the
molecular surface generated with a rolling ball [25, 26, 27] of 2Å. About 2500 control points
were selected from a closed surface shifted by 2Å in the outward direction from the
molecular surface and used to generate the CG model as described in the text.
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Figure 4.
Size of the CG model (number of interaction CG beads) as a function of the offset distance s
of the sampled surface relative to the surface of the molecule. Arc repressor protein data are
used to generate this graph.
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