
ar
X

iv
:1

01
2.

50
22

v1
 [

ph
ys

ic
s.

co
m

p-
ph

]
 2

2
D

ec
 2

01
0

Numeric and symbolic evaluation of the pfaffian of

general skew-symmetric matrices

C. González-Ballesteroa, L.M. Robledoa,∗, G. F. Bertschb

aDepartamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid,

Spain
bDepartment of Physics and Institute for Nuclear Theory, University of Washington,

Seattle, WA 98195–1560 USA

Abstract

Evaluation of pfaffians arises in a number of physics applications, and for some
of them a direct method is preferable to using the determinantal formula. We
discuss two methods for the numerical evaluation of pfaffians. The first is tridi-
agonalization based on Householder transformations. The main advantage of
this method is its numerical stability that makes unnecessary the implementa-
tion of a pivoting strategy. The second method considered is based on Aitken’s
block diagonalization formula. It yields to a kind of LU (similar to Cholesky’s
factorization) decomposition (under congruence) of arbitrary skew-symmetric
matrices that is well suited both for the numeric and symbolic evaluations of
the pfaffian. Fortran subroutines (FORTRAN 77 and 90) implementing both
methods are given. We also provide simple implementations in Python and
Mathematica for purpose of testing, or for exploratory studies of methods that
make use of pfaffians.

Keywords: Skew symmetric matrices, Pfaffian

PROGRAM SUMMARY
Manuscript Title: Numeric and symbolic evaluation of the pfaffian of general skew-

symmetric matrices

Authors: C. Gonzalez-Ballestero, L.M.Robledo and G.F. Bertsch

Program Title: Pfaffian

Journal Reference:
Catalogue identifier:
Licensing provisions:
Programming language: Fortran 77 and 90

Computer:
Operating system:
RAM: bytes

Number of processors used:

∗Corresponding author.

E-mail address: luis.robledo@uam.es

Preprint submitted to Computer Physics Communications April 12, 2018

http://arxiv.org/abs/1012.5022v1

Supplementary material:
Keywords: Skew symmetric matrices, Pfaffian

Classification: 4.8 Linear Equations and Matrices

External routines/libraries: BLAS

Subprograms used:
Catalogue identifier of previous version:*
Journal reference of previous version:*
Does the new version supersede the previous version?:*
Nature of problem: Evaluation of the Pfaffian of a skew symmetric matrix.

Evaluation of pfaffians arises in a number of physics applications involving fermionic

mean field wave functions and their overlaps.

Solution method: Householder tridiagonalization. Aitken’s block diagonalization for-

mula.

Reasons for the new version:*

Summary of revisions:*

Restrictions:

Unusual features:

Additional comments: Python and Mathematica implementations are provided in the

main body of the paper

Running time: Depends on the size of the matrices. For matrices with 100 rows

and columns a few miliseconds are required.

1. Introduction

In a number of fields in physics, the formal equations derived from the theory
make use of the pfaffian of some skew-symmetric matrix appearing in the theory.
For example, the pfaffian arises in the treatment of electronic structure with
quantum Monte Carlo methods [1], the description of two-dimensional Ising spin
glasses [2], and the evaluation of entropy and its relation to entanglement [3].
Pfaffians occur naturally in field theory and nuclear physics in formalisms based
on fermionic coherent states [4, 5, 6, 7]. A recent application is to the overlap
of two Hartree Fock Bogoliubov (HFB) product wave functions [8], needed for
nuclear structure theory. While there is a simple formula for the pfaffian of a
skew-symmetric matrix M in terms of the determinant,

pf(A) =
√

det(A) (1)

the so-called “sign problem of the overlap” [9] associated with the square root
motivates the use of numerical algorithms that evaluate it directly. The most
straightforward method, the rule of “expanding in minors” [10], has bad scaling

2

with the size of the matrix and is prohibitive for large matrices. In this paper
we discuss two alternative methods that have the same scaling property as the
normal N3 algorithms for the determinant. The methods are implemented in
the FORTRAN 77 and 90 subroutines provided in the accompanying program
library. We also comment on the practical implementation of the two methods
in Mathematica and in the Python programming language.

2. Evaluation of the Pfaffian

The Pfaffian pf(A) is reduced to a simple form that is easily evaluated by
making repeated use of transformation formula given in Appendix A,

pf(BtAB) = det(B)pf(A). (2)

In order to perform the numerical evaluation of the Pfaffian of a complex skew-
symmetric matrix A we reduce the skew-symmetric matrix to a tridiagonal form
ATR by using unitary matrices U . Once it is in this form, the evaluation of the
pfaffian is straightforward (see below).

2.1. Reduction to tridiagonal form by mean of Householder transformations

In this method, we will use the well-known Householder transformations
[11] to reduce A to tridiagonal form. We present it in some detail because the
generalization to the complex number field is not entirely trivial.

Complex Householder transformations have the form

P = I− 2
u⊗ u+

|u|
2 (3)

where u is an arbitrary complex complex row vector u = (u1, u2, . . . , uN) and
(u⊗ u+)ij = uiu

∗

j . The vector u must be chosen to zero all the elements of a

vector x except a given one. If we take u = x∓ ei arg(xj)|x|ej , with (ej)k = δjk,
it can be easily proved that

Pux = ±ei arg(xj)|x|ej

as required. The freedom on the sign in the expression defining the vector u can
be used to make sure that the vector u is non zero. The rest of the Householder
tridiagonalization procedure follows exactly as in the real case. Consider a
skew-symmetric matrix of dimension N (even)

A =

0 a12 a13 . . .

−a12
−a13

(N−1)A
...

(4)

3

The Householder transformation matrix is

P1 =

1 0 0 . . .

0

0 (N−1)P1

...

where (N−1)P1 is built by using Eq. (3) and taking the vector x (of dimension
N-1) as (a12, a13, . . .)

T . The resulting transformed matrix is given by

P1AP
T
1 =

0 k1 0 . . .

−k1
0 (N−1)Ã
...

where k1 = ±ei arg(a12)|x| and the matrix (N−1)Ã is skew-symmetric and given
by (N−1)Ã = (N−1)P1

(N−1)A(N−1)PT
1 . Performing this procedure a total of N-2

times we end up with a tridiagonal and skew-symmetric matrix

PN−2 . . . P2P1AP
T
1 PT

2 . . . PT
N−2 =

0 k1 0 0 . . . 0
−k1 0 k2 0 . . . 0

0 −k2 0
.

...
. . . 0

. . .

0
. . . 0 kN−1

...
... −kN−1 0

(5)
Using now a known property the Pfaffian (see Appendix A) we can deduce from
the above identity that det(P1) . . . det(PN−2)pf(A) = pf(ATR) where ATR is the
triagonal and skew-symmetric matrix of the right hand side of Eq. (5). Taking
into account that the determinant of any Householder matrix is -1 and that N is
even, we can express the Pfaffian of A in terms of the pfaffian of the tridiagonal
ATR

pf(A) = pf(ATR)

As will be shown below the Pfaffian of a tridiagonal skew-symmetric matrix is

simply given by k1k3 . . . kN−1 =
∏N/2

i=1 k2i−1 (this result can also be obtained
using the “minor expansion” formula [10]) and finally we obtain

pf(A) =

N/2
∏

i=1

k2i−1. (6)

In terms of numerical stability, the Householder transformation is very ro-
bust and there is no need to consider any “pivoting” strategy common to other
methods. However, the presence of the square root of x and the argument

4

arg(xj) of complex quantities prevents an easy implementation of the House-
holder tridiagonalization procedure for symbolic computation. For this purpose
the second method described in the next section is far easier to implement.

2.2. Aitken’s block diagonalization formula

There is an alternative method for the calculation of the pfaffian, which is
also well suited for a symbolic implementation and that relies on an expression
for the pfaffian of a bipartite skew-symmetric matrix. Let us start with a general
skew-symmetric matrix A (dimension N, even) given by

A =

(

R Q

−QT S

)

(7)

where R and S are square skew-symmetric matrices and Q is a general rectan-
gular matrix (to account for the case where R and S have different dimensions).
Using Aitken’s block diagonalization formula (see [12] for an early use of the
formula and [13] for a recent and thorough reference) for a bipartite matrix we
obtain

(

I 0
QTR−1

I

)(

R Q

−QT S

)(

I −R−1Q

0 I

)

=

(

R 0
0 S +QTR−1Q

)

(8)

where the matrix S + QTR−1Q is referred to in the literature as the Schur
complement of the matrix A (see, for instance, [13]). For the special case of a
skew-symmetric matrix A, the matrices R and S are also skew-symmetric and
the transformation of the matrix A is a congruence (i.e. the matrix acting on
the left hand side of A is the transpose of the one acting on the right hand side).
Denoting

P1 =

(

I 0
QTR−1

I

)

(9)

Eq. (8) becomes

P1AP
T
1 =

(

R 0
0 S +QTR−1Q

)

An equivalent expression involving S−1 instead of R−1 is easily obtained

P2AP
T
2 =

(

R+QS−1QT 0
0 S

)

with

P2 =

(

I −QS−1

0 I

)

(10)

By using the property pf(PTAP) = det(P)pf(A) (see Appendix A) and taking
into account that detP1 = detP2=1, we come to

pf(A) = pf(R)pf(S +QTR−1Q) (11)

= pf(R +QS−1QT)pf(S) (12)

5

Another nice property of the matrices P1 and P2 is that their inverses can be
obtained very easily

P−1
1 =

(

I 0
−QTR−1

I

)

(13)

and

P−1
2 =

(

I QS−1

0 I

)

(14)

These expressions of the inverses explicitly show that both P1 and P2 are not
orthogonal matrices.

Let us now apply the above result to an arbitrary skew-symmetric matrix of
dimension N = 2M which is written in block form as

A =

A(1) AN−1 AN

−AT
N−1 0 aN−1,N

−AT
N −aN−1,N 0

 (15)

where A(1) is a skew-symmetric square matrix of dimension N − 2 = 2(M − 1)
and AN−1 and AN are column vectors AN−1 = {Ai,N−1, i = 1, N − 2} and
AN = {Ai,N , i = 1, N − 2} both of dimension (N − 2)× 1. In the language of
Eq (7) the matrix R is the matrix A(1), the matrix Q is a rectangular matrix
of dimension 2 × (N − 2) made of the two column vectors, AN−1 and AN and
finally the matrix S is the 2 × 2 skew-symmetric matrix with matrix element
S12 = aN−1,N . Using the ideas of Aitken’s block diagonalization formula, it is

easy to shows that the matrix Ã = DT
1 AD1 is in block diagonal form

Ã =

Ã
(1)

0 0
0 0 aN−1,N

0 −aN−1,N 0

 (16)

with a matrix D1 of the form

D1 =

IN−2 0 0
X 1 0
Y 0 1

 (17)

where IN−2 stands for the identity matrix of dimension N − 2 and both X and
Y are row vectors of dimension 1× (N − 2) and given by X = −a−1

N−1,NAT
N and

Y = a−1
N−1,NAT

N−1. In the above equation 16, the skew-symmetric matrix Ã(1)

is given by

Ã(1) = A(1) +AN (aN−1,N)−1AT
N−1 −AN−1a

−1
N−1,NAT

N (18)

Taking into account that detD1 = 1 then pf(A) = pf(Ã) = aN−1.Npf(Ã(1)).
The algorithm can be applied recursively to Ã(1) to obtain

pf(A) = aN−1,N ã
(1)
N−3,N−2pf(Ã(2)) so as to reduce, after M − 1 iterations, the

computation of the pfaffian to the product of the corresponding elements.

6

This procedure can be easily implemented for a skew-symmetric tridiagonal
matrix, as the transformed matrices in Eq (18) coincide with the original ones;
for instance, Ã(1) = A(1). As a consequence, the pfaffian of a tridiagonal matrix
is given by

pf

0 d1 0 0 . . . 0
−d1 0 d2 0 . . . 0

0 −d2 0
.

...

0 0
. . . 0

. . . 0
...

...
...

. . . 0 d2N−1

0 0 · · · 0 −d2N−1 0

= d1d3 . . . d2N−1 =

N
∏

i=1

d2i−1

2.2.1. Pivoting

As a consequence of the division by matrix elements like aN−1,N in the first
iteration, the numerical stability of the algorithm requires the use of pivoting
strategy in the implementation of the method. Full pivoting amounts to search
the whole matrix for the matrix element with the largest modulus and exchange
it with the required matrix element. For instance, in the first iteration of the
procedure, the matrix element ap,q (p < q) with the largest modulus is searched
for and exchanged with the matrix element aN−1,N . In this way we avoid
dangerous divisions by small (or even zero) matrix elements. We have to take
into account that in the present case, the exchange of both columns and rows
is required to preserve the skew-symmetric nature of the matrices involved. To
carry out the exchange of rows and columns we will use the exchange matrix
P (ij) that, when applied to the right of an arbitrary matrix, exchanges columns
i and j. The exchange matrix is given by the matrix elements

P (ij)kl = δkl − δi,lδi,k − δj,lδj,k + δi,lδj,k + δj,lδi,k. (19)

To exchange the corresponding rows we have to apply P (ij)T to the left of the
matrix (notice that P (ij) is symmetric). With the help of these matrices we
can write the matrix after pivoting ap,q with aN−1,N (and aq,p with aN,N−1) as

AP = PT (N − 1, p)PT (N, q)AP (N − 1, p)P (N, q)

As a consequence of such exchange and taking into account that detP (ij) = −1
we can conclude that the pfaffian of A does not change by the pivoting procedure.
Finally we obtain

A = P (N, q)P (N − 1, p)AP PT (N − 1, p)PT (N, q)

= P (N, q)P (N − 1, p)DT −1
1 ÃPD

−1
1 PT (N − 1, p)PT (N, q)

where ÃP has the same structure as S̃ in Eq. (16). As before, pf(A) = pf(ÃP) =

(AP)N−1,N pf(Ã
(1)
P) and repeating recursively the whole procedure M − 1 times

we obtain the pfaffian as the product of the corresponding matrix elements.

7

2.2.2. Cholesky like decomposition of a skew-symmetric matrix

Although it is not necessary in order to compute the pfaffian, it can be useful
to show that even with pivoting we can write the matrix A as

A = PLT ÃLP (20)

where P is the product of exchange matrices as in Eq (19), L is the product of
matrices of the D−1 type, Eq (17), and therefore is a lower triangular matrix
with ones in the main diagonal and finally, Ã is a skew-symmetric matrix in
canonical form, i.e. a block diagonal matrix with skew-symmetric, 2× 2 blocks
in the diagonal. This decomposition of a general skew-symmetric matrix A

resembles the Cholesky decomposition of a general matrix and can be useful in
formal manipulations like, for instance, the inversion of the matrix A. In order
to show that Eq (20) holds the only required property is that, when applying the

pivoting procedure to Ã
(1)
P the exchange matrices required P (N−2, s)P (N−3, r)

have the property of preserving the structure of the matrix D1(and its inverse).
For instance,

DT −1
1 P (N − 2, s)P (N − 3, r) = P (N − 2, s)P (N − 3, r)D̃T −1

1

with D̃T −1
1 a matrix that is obtained from DT −1

1 by exchanging rows N−2 and
s and rows N − 3 and r and therefore has the same upper triangular structure
with ones in the diagonal as the original matrix DT −1

1 . Using this property
we can move all the exchange matrices to the right (or to the left) and the
remaining matrix will be the product of triangular matrices (lower for products
involving D−1) with ones in the diagonal.

As mentioned earlier, Aitken’s method is better adapted to symbolic eval-
uations. However, one must take care that in each step of the process some
specific matrix elements are non-zero.

3. Fortran implementation

The implementation of the algorithms considered in this paper in a high
level computer language is straightforward. However, specific code in FOR-
TRAN (both 77 and 90, real and complex arithmetic) is provided along with
this paper. The algorithms are easy to follow and the comments included in
the code are useful guides. Just a few comments are in order: to implement
the tridiagonalization procedure in Fortran, it is advantageous to use the BLAS
package [14] to perform the required matrix by vector multiplication and rank
two update. Unfortunately there are no equivalent in the skew-symmetric case
of the routines SYM (to multiply a symmetric matrix by a vector) or SYR2
(to perform a symmetric rank two update) but the general procedures GEMV
and GERU can be used instead. On output, both the pfaffian of the matrix
and the set of vectors required to bring it to tridiagonal form are returned.
For the implementation of the method based on Aitken’s block diagonalization
formula a pivoting strategy is required. We have used full pivoting in our imple-
mentation due to its robustness. The routines provided only require the upper

8

part of the skew-symmetric matrix. The lower part is destroyed and replaced
with the tridiagonal transformation matrix that brings the skew-symmetric ma-
trix to canonical form upon congruence. An integer vector is also returned to
reconstruct the required exchange of rows and columns.

Perhaps the best test to check the validity of the two implementations is
to compute the pfaffian of a skew-symmetric matrix using both procedures in
order to compare the output. If it is the same up to a given accuracy then
it is very likely that the two implementations are correct. We have writen a
test program (also included in the distribution) that generates skew-symmetric
matrices of given dimension with random entries and compute the pfaffian using
both techniques. In our tests the pfaffians computed both ways coincide up to
one part in 1010 with dimensions of the matrices of one thousand. This result
also supports the adequacy of the implementation in terms of numerical stability.
Another possibility to test the numerical implementation is to use the analytical
formula given in Appendix B for a specific kind of 8×8 matrices. A test program
implementing this approach has also been included in the distribution.

To finish this section we will briefly comment on the timing of the FOR-
TRAN numerical implementations mentioned. In a modern personal computer
under Linux the computation of the pfaffian of a 100× 100 matrix takes a few
milliseconds in both implementations and the timing scales roughly as the cube
of the dimension of the matrix in such a way that for matrices of a 1000× 1000
dimension the time is of the order of a few seconds.

4. A simple Python implementation

We provide here a simple implementation of the tridiagonal reduction method
(see [12] and [15]) in Python, which may be useful for testing purposes. It is
similar to the Householder, but it only use simple row and column operations
that have determinants of unity. The code is:

from numpy import *

def pfaff_py(m) :

mat=copy(m)

ndim = shape(mat)[0]

t1=1.0

for j in range(ndim/2) :

t1 *= mat[0,1]

print ’t1’, t1

if j <ndim/2-1 :

ndimr=shape(mat)[0]

for i in range(2,ndimr) :

if mat[0,1] != 0.0 :

tv=mat[1,:]*mat[i,0]/mat[1,0]

mat[i,:] -= tv

tv=mat[:,1]*mat[0,i]/mat[0,1]

mat[:,i] -= tv

9

else :

print ’need to pivot’

raise Exception

mat=mat[2:,2:]

return t1

The user should be cautioned that the algorithm is not guaranteed to be stable
without an additional pivot step. Also, the matrix is assumed to have been
constructed with the array function in the Numpy library.

5. A simple Mathematica implementation

We also provide a simple Mathematica implementation of the method based
on Aitken’s block diagonalization formula. As mentioned above, this method
requires pivoting to avoid divisions by small (or zero) numbers. In the symbolic
implementation, this issue is solved by replacing the denominator by a variable
(OO on the implementation below) in case it is zero and an additional limit
when the variable tends to zero is performed at the end. The two Mathematica
modules required are:

Aitken[M_,n_,OO_]:=

Module[{MM=M,i,j,p},

If[MM[[n-1,n]]==0,MM[[n-1,n]]=OO;MM[[n,n-1]]=-OO];

p=MM[[n-1,n]];

For[i=1,i<=n-2,i++,

For[j=1,j<=n-2,j++,

MM[[i,j]]=M[[i,j]]+(MM[[i,n]]*MM[[j,n-1]]-MM[[j,n]]*MM[[i,n-1]])/p

]

];

MM];

pfaffian[S_]:=

Module[{T=S,n,p},

n=Length[T]/2;

If[T[[2*n-1,2*n]]==0,T[[2*n-1,2*n]]=OO;T[[2*n,2*n-1]]=-OO];

For[n=Length[T]/2;p=T[[2*n-1,2*n]],n>1,n--,

T=Aitken[T,2*n,OO];

p=p*T[[2*(n-1)-1,2*(n-1)]]

];

Limit[p,OO->0]];

6. Conclusions

The issue of how to compute both numerically and symbolically the pfaffian
of a skew-symmetric matrix has been addressed using two different approaches.

10

Numerical stability issues are discussed and methods to assure the desired ac-
curacy are fully incorporated. A collection of subroutines and test programs
in FORTRAN (both 77 and 90, double precision and complex) are provided.
A few comments on the implementation of the algorithms in Mathematica and
Python are also given.

7. Acknowledgements

We acknowledge K. Roche for a careful reading of the manuscript and sev-
eral suggestions. This work was supported by MICINN (Spain) under research
grants FPA2009-08958, and FIS2009-07277, as well as by Consolider-Ingenio
2010 Programs CPAN CSD2007-00042 and MULTIDARK CSD2009-00064.

Appendix A. Definition and basic properties of the pfaffian

The pfaffian of a skew-symmetric matrix R of dimension 2N and with matrix
elements rij is defined as

pf(R) =
1

2n
1

n!

∑

Perm

ǫ(P)ri1i2ri3i4ri5i6 . . . r2n−1,2n

where the sum extends to all possible permutations of i1, . . . , i2n and ǫ(P) is
the parity of the permutation. For matrices of odd dimension the pfaffian is
by definition equal to zero. As an example, the pfaffian of a 2 × 2 matrix R

is pf(R) = r12 and for a 4 × 4 one pf(R) = r12r34 − r13r24 + r14r23. Useful
properties of the pfaffian are

pf(PTRP) = det(P)pf(R), (A.1)

pf

(

0 R

−RT 0

)

= (−1)N(N−1)/2 det(R)

where the matrix R is N ×N and

pf

(

R1 0
0 R2

)

= pf(R1)pf(R2)

where R1 and R2 are skew-symmetric matrices. The matrices may be defined
on the real or on the complex number fields.

Appendix B. Pfaffian of a test matrix

In this appendix we give the expression of the pfaffian of a test matrix which
is big enough as not to be trivial but on the other hand is small enough as to
render the explicit expression of the pfaffian manageable. The expression given

11

below can be used to check both numerical and symbolic implementations of
the pfaffian.

Consider the two general skew-symmetric matrices of dimension 4

M =

0 f1 m11 m12

−f1 0 m21 m22

−m11 −m21 0 f2
−m12 −m22 −f2 0

and

N =

0 g1 n11 n12

−g1 0 n21 n22

−n11 −n21 0 g2
−n12 −n22 −g2 0

where the matrix elements can be complex numbers. With these two matrices
and the identity 4× 4 matrix we build the skew-symmetric matrix

S =

(

N −I

I −M∗

)

of dimension 8 × 8 (see Ref [8] for the physical context of this matrix). It is
relatively easy to compute its pfaffian

pf[S] = 1 + f∗

1 g1 + f∗

2 g2 +m∗

11n11 +m∗

22n22 +m∗

12n12 +m∗

21n21+

+(f∗

1 f
∗

2 −m∗

11m
∗

22 +m∗

12m
∗

21)(g1g2 − n11n22 + n12n21)

References

[1] M. Bajdich, L. Mitas and L.K. Wagner, Phys. Rev B77, 115112 (2008)

[2] C.K. Thomas and A. A. Middleton, Phys. Rev E80, 046708 (2009)

[3] J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier, Phys. Rev B80,
184421 (2009)

[4] F.A. Berezin, The Method of Second Quantization (Academic Press, New
York, 1966)

[5] Y. Ohnuki, and T. Kashiwa, Prog. Theor. Phys. 60, 548 (1978).

[6] John R. Klauder, Bo-Sture Skagerstam, Coherent states: applications in
physics and mathematical physics (World Scientific, Singapore, 1985)

[7] G.H. Lang, C.W. Johnson, S.E. Koonin, and W.E. Ormand, Phys. Rev. C48,
1518 (1993)

[8] L.M. Robledo, Phys. Rev. C79, 021302 (2009)

[9] K. Neergard, and E. Wüst, Nucl. Phys. A402, 311 (1983)

12

[10] E.R. Caianiello, Combinatorics and renormalization in Quantum Field
Theory (W.A. Benjamin, Massachusetts, 1973)

[11] G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins
University Press, Baltimore, 1996).

[12] J. R. Bunch, Math of Comp. 38, 475 (1982)

[13] F. Zhang Ed., The Schur Complement and Its Applications (Numerical
Methods and Algorithms) (Springer, Berlin, 2005)

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, ACM Trans.
Math. Soft. 14, 1 (1988),

[15] J. O. Aasen, BIT 11, 233 (1971)

13

	1 Introduction
	2 Evaluation of the Pfaffian
	2.1 Reduction to tridiagonal form by mean of Householder transformations
	2.2 Aitken's block diagonalization formula
	2.2.1 Pivoting
	2.2.2 Cholesky like decomposition of a skew-symmetric matrix

	3 Fortran implementation
	4 A simple Python implementation
	5 A simple Mathematica implementation
	6 Conclusions
	7 Acknowledgements
	Appendix A Definition and basic properties of the pfaffian
	Appendix B Pfaffian of a test matrix

