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Abstract

An algorithm for generating optimal nonuniform grids for solving the two-

body Schrödinger equation is developed and implemented. The shape of the

grid is optimized to accurately reproduce the low-energy part of the spec-

trum of the Schrödinger operator. Grids constructed this way are applicable

to more complex few-body systems where the number of grid points is a

critical limitation to numerical accuracy. The utility of the grid generation

for improving few-body calculations is illustrated through an application to

bound states of He trimers.

Keywords: Quantum few-body calculations, Nonuniform grids,

Optimization, Grading function, Faddeev equations

Introduction

The dynamics of few-body systems remains a robust field of research with

many practical applications. A number of theoretical advances, coupled with

increased computational resources, have lead to significant advances in both
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the understanding of few-body processes and in the number of physical sys-

tems that can be successfully treated with existing, well-tested methodolo-

gies (see [2, 3, 4, 5, 6, 7, 8, 9] and references therein). We are, for example,

currently developing public source code and a graphical user interface for sci-

entists interested in solving Faddeev equations numerically for a wide array

of potential three-body applications. Challenging computations that have

been accessible to only a small group of specialists will soon become elemen-

tary and well characterized tools used by a large number of practitioners in

different fields.

Solving the two-body Schrödinger equation numerically is an elementary

exercise in the case of smooth central potentials. Typically, the power of

modern computers makes it possible to use even the simplest numerical ap-

proaches to perform quite accurate calculations of the low-energy part of the

two-body spectrum. Three-or-more-body calculations, however, usually re-

quire greater attention to the details of numerical technique, as the required

computer resources usually scale geometrically with the growth of dimension-

ality of the problem, and optimizing any aspect of the solution representation

leads to substantial computational savings.

When solving bound state or scattering problems for few-body systems

it is important to treat the states of two-body subsystems carefully, as such

states represent the asymptotic boundary conditions for the corresponding

few-body states. It is also important to minimize the computational cost of

reproducing every asymptote of the few-body calculations. The key feature

of the Faddeev approach to few-body problem is the asymptotic factorability

of the solutions, so that grids constructed for the efficient solution of the
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two-body problem can be immediately employed with considerable numerical

advantage. In previous calculations [11, 12, 13] this optimization has been

performed manually. The procedure, however, is very time consuming and

difficult for an inexperienced user or a student. Therefore, we needed an

automatic procedure of constructing an effective grid representation of the

two-body subsystems.

Methods of refining grids automatically are often used in solving vari-

ous nonlinear evolution equations (hydrodynamical equations, for example)

to reproduce discontinuities and other singular features of the solutions. In

contrast,our goal is to create a software package specifically designed to solve

the quantum-mechanical few-body problem, fully exploiting the features in-

trinsic to the physical problem and the numerical techniques to achieve high-

performance of the resulting code. We therefore needed a solution which is

on the one hand more specific to our problem, and on the other hand allows

us to construct the grids on the base of some clearly understood physical

and mathematical principles, with particular emphasis on reproducing the

low-energy part of the two-body Schrödinger operator for subsequent use in

more complex few-body calculations.

In this paper we describe and implement a practical nonuniform grid

suitable for reproducing the low-energy part of the Schrödinger operator for

two-body systems. When applied to systems of more than two particles, this

grid permits a several-fold reduction in the number of grid points required

for a desired level of numerical accuracy. Equally important, the procedure

of constructing the grid is automatic and requires only minimal interference

from a user.
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1. Basic principles

We are solving the Schrödinger equation for a two-body system with cen-

tral potentials using S3,2 or S5,3 Hermite splines and collocations at Gaussian

points. We are constructing a nonuniform grid from the requirement of uni-

formity of the numerical error over the entire range where the solution is

constructed.

Let us start from the radial Schrödinger equation in atomic units (a.u.)

chosen so that h̄ = e = me = 1

(− 1

2µ

d2

dx2
+

l(l + 1)

x2
+ V (x) − Ei)ϕ(x; ǫi) = 0 (1)

where µ is the reduced mass of the two-body system, subject to the Dirichlet

boundary conditions

ϕ(0) = ϕ(xmax) = 0 . (2)

The right boundary of the interval xmax is assumed to be chosen so that its

influence can be neglected. Let ∆N,χ ≡ {0, x1, . . . , xN} be a grid constructed

over the interval [0, xN = xmax] consisting of N intervals, χ is the map

used to construct the nonuniform grid from a uniform grid. Particularly,

xi = xmaxχ(i/N). The map χ : [0, 1] → [0, 1] is a smooth function growing

monotonically over the interval [0, 1].

The criterion we choose for constructing χ is the uniformity of numerical

error over the whole interval [0, xmax]. An approximate solution constructed

with N points deviates from the exact solution by

ϕ(N)(x) = ϕ(x) + residueN(x)

At each sub-interval [xi, xi+1] the residue norm can be estimated as

||residueN(x)|| ≤ Ci(x)|xi+1 − xi|k+1 + o(|xi+1 − xi|k+1)
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where x ∈ [xi, xi+1] and k is the order of the spline [10]. The factors Ci(x)

are determined by the properties of the equation and the chosen numerical

scheme. We can optimize the distribution of the grid points so that the error

||Ci(x)|xi+1−xi|k+1|| has the same order of magnitude throughout the whole

interval. It is useful to treat the length hi = |xi − xi−1| of the i-th interval

as a continuous function h(u). The function h(u) is naturally related to the

derivative of the map χ(u)

hi = (xi−xi−1) = xmax(χ(
i

N
)−χ(

i− 1

N
)) =

xmax

N
χ′(

i− 1/2

N
) +O(

1

N2
) (3)

and

hi = h(
i− 1/2

N
) + O(

1

N2
) .

So, for sufficiently dense grids the i-th grid step is determined by the slope

of the mapping function.

If ǫ(t) is some non-negative function, termed the ”grading function”, that

characterizes the local approximation error, then the integral

χ−1(u) =

∫ uxmax

0 ǫ(x)dx
∫ xmax

0 ǫ(x)dx
, (4)

provides a monotonic map connecting the non-uniform grid with a uniform

one. χ(u) is referred to herein as the ”mapping function”. If the grading

function is chosen so that it peaks in the regions that are the most difficult

to reproduce numerically, the inverse of the mapping function χ−1(u) will

grow the most rapidly in the corresponding regions. The mapping function,

therefore, will have smaller derivative. It will make the nonuniform grid

denser where the function is more difficult to reproduce. Characterizing the

difficulty of representing the object function, the grading function can be
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linked to some derivative of the function being interpolated. For example, if

using a linear interpolant, the error of approximation will be of the order of

the second derivative of the interpolated function. A quantitative characteri-

zation of the error and optimal properties of the grading functions have been

studied in Ref. [1]. We shall use the approach of Ref. [1] for constructing an

optimal map for solving Eq. 1.

Suppose we have a sample function ϕ(x) for which we seek a piece-wise

polynomial approximant ϕ̃(x). It is shown in Ref. [1] that in order to mini-

mize the L2-norm of the error function ‖ ϕ− ϕ̃ ‖L2
the grading function ǫ(t)

should be chosen as

ǫ(x) = | d
k+1

dxk+1
ϕ(x)| 2

2k+3 ,

where k is the order of the polynomial approximant. According to [1] this

grading function provides an asymptotically L2-optimal grid for a sufficiently

large N, when the O(N−2) term in the equation (3) can be neglected.

There are a few complications with implementing this approach directly.

The exact sample function ϕ(x) is unknown. Moreover, our goal is an ac-

curate approximation of an invariant subspace of the two-body Hamiltonian

which is characterized by several functions that are the eigenvectors of the

Hamiltonian. Those complications, however, are not critical.

If we redefine the norm to be optimized for a vector function composed

of a set of eigenfunctions of the Hamiltonian {ϕ1(x), ϕ2(x), . . . , ϕn(x)}, the

optimal grading function takes the form

ǫ(x) = (
n∑

m=1

| d
k+1

dxk+1
ϕm(x)|2) 1

2k+3 . (5)

Although the explicit form of the functions ϕm(x) is generally unknown, for
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our purpose we can use numerical approximation of these functions obtained

on non-optimal grids. The resulting suboptimal estimates can be refined

iteratively.

In the following sections we shall provide a few examples of how this

approach can be realized in practice.

2. Implementation

Before describing the grid construction algorithm itself, we shall briefly

outline the discretization procedure for the simplest case of zero angular mo-

mentum l = 0. For discretization we use the orthogonal collocation scheme

[10] with the S5,3 splines [11]. We shall seek for a solution of Eq. (1) an

expansion in terms of B-spline basis in the spline space S5,3(∆) constructed

for a given mesh ∆

ϕm(x) ≈
M∑

j=1

fm,jBj(x) .

Functions Bj(x) are constructed to satisfy the appropriate boundary condi-

tions. Requiring the equation (1) to be satisfied exactly in the given set of

collocation points xk, k = 1, 2, . . . ,M we reduce the equation to the (gener-

alized) eigenvalue problem

(−D̂2 + V̂ −EmB̂)fm = 0 .

Here D̂2, V̂ and B̂ are square matrices

[D̂2]ij =
1

2µ
B

′′

j (xi) ,

[V̂ ]ij = (V (xi) +
l(l + 1)

x2
i

)Bj(xi) ,
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[B̂]ij = Bj(xi) .

The number of collocation points M – and the number of elements of the

basis Bj(x) – depend on the chosen spline space and the number of grid

points N . For S3,2 splines and Dirichlet boundary conditions M = 2N . In

the case of S5,3 splines M = 3N + 1.

Following the strategy we described in the previous section, first we dis-

cretize the two-body Hamiltonian using some non-optimal grid ∆0. A cubic

mapping χ0(u) = u3 is, usually, a good starting point.

Next, we construct a sequence of grids ∆i = ∆χi,N and the corresponding

approximations to the lowest n eigenfunction ϕm,(i)(x). Each subsequent grid

∆i+1 is constructed using equations (4) and (5) with approximate functions

ϕm(x) ≡ ϕm,(i)(x) obtained at the previous step. We repeat the process

several times until the grading function is stabilized.

Straightforward implementation of this approach, however, may look un-

realistic. Indeed, we seek a solution in terms of piecewise polynomial func-

tions of 5-th order. Evaluation of the grading function, however, requires

evaluation of the 6-th order derivative of the solution. We, therefore, can not

differentiate the spline expansion of the solution directly. Instead, we ap-

ply the discrete analog of the second derivative operator B̂−1D̂2 three times.

Each application projects the corresponding derivative function back into the

spline basis and this way an approximate 6-th derivative of the solution can

be obtained.

In Fig. 1 we show an example of the sequence of the grading functions

and the corresponding mappings χi(u) for the LM2M2 (He-He) potential [14]

and Ne-Ne potential (av5z+(3321) fit) [15] for S3,2 splines (for l = 0 angular
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momentum). In both cases we have chosen the number of states n in Eq. (5)

as the number of bound states supported by the potential plus one, so that

the grid is optimized to reproduce all the bound states plus the continuum

state closest to the threshold that satisfies the boundary conditions (2). (The

He-He potential supports one s-wave bound state and the Ne-Ne potential

supports three.)

It takes only a few iterations for the grading function to converge. The

grading function reaches its maximum in the potential well, rapidly falls

at the repulsive core and slowly decays at larger distances. The inverse of

the mapping function χ−1(u), according to equation (4), rapidly grows at

the values of u that correspond to the potential well, so that the mapping

function χ(u) grows very slowly in a wide range of the parameter u. The

grid steps, therefore, become much smaller in the important potential well

region (see Eq. (3)).

In the next section we shall compare grids generated by the optimal map-

pings with other empirical choices.

3. Convergence of two-body bound states

How practical is the construction? Can we expect any computational sav-

ings in few-body calculations when using the optimal mappings compared to

widely used simple power or exponential mappings? To answer this question

let us study the convergence of the bound state energies for the two-body

problem with respect to the number of grid points.

To study the convergence properties of the numerical procedure it is natu-

ral to represent the property of interest – the bound state energy for example
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Figure 1: Grading functions and the corresponding mappings for He-He (left, a) and

b)) and Ne-Ne potentials (right, c) and d)). The grading functions are maximal in the

integration region ∼ 1 − 10 a.u., as a result, the corresponding mapping functions have

smaller derivatives ensuring smaller grid steps in the region of interaction.
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– as a sum of two terms: the exact value and the grid-dependent numerical

error

Ẽ(N) = E + Eerr(∆N,χ) .

The numerical error depends on the number of grid points N , their distribu-

tion defined by the mapping χ and the boundary conditions. Here we shall

assume that the boundary conditions are chosen so that they essentially do

not contribute to the error, or can be taken into account analytically. We

shall consider the following grid shapes

χn
power = un ,

χn
exp = enu

−1
en−1

for comparison with χopt defined by Eq. (4) and (5). To make this comparison

we want to introduce a quantity which describes the character of convergence

qualitatively.

The collocation methods used in this work are expected to converge with

the rate O(N−(k+1)) where k is the order of the spline. It is, therefore, natural

to parametrize the numerical error by the inverse number of grid points 1
N

.

The error term Eerr(
1
N

) does not behave regularly with the number of grid

points and it is difficult to estimate it exactly. Its absolute value, however,

should behave as 1
Nk+1 . To characterize the convergence obtained with a

particular mapping χ we shall fit the numerical values obtained with the

given number of points ẼN as

Ẽ(N) = E + C
1

Nk+1
. (6)

The coefficient C characterizes the speed of convergence and E gives a more

accurate estimate for the energy of the bound state. Both the speed of
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convergence C and the extrapolated energy estimate E discussed below are

obtained by least square fits of the expression (6) to data sets similar to

the one shown in Fig. 2. When fitting we gave bigger weights to the values

obtained with denser grids. Having a finite number of points in each data

set, we can extract estimates for E and C only with finite accuracy. As we

have mentioned above, the error term does not behave monotonically, which

makes it difficult to obtain very accurate estimates of E and C. 1 For the

extrapolated energy estimate E we make sure that the error of the estimated

value is comparable with systematic errors of different origins, such as the

error introduced by an approximate boundary condition at the right end of

the interval.

To illustrate the meaning of the coefficient C, in Fig. 2 we show the

convergence plots for the bound state energy of He2 calculated with three

different mappings: χopt, χ8
exp and χ4

power. In Fig 2a) the fit of the bound

state energy convergence for S3,2 splines is shown. The method of orthogonal

collocations that we employ is not variational, and the error for the Hamilto-

nian eigenvalues is expected to have the same order of accuracy as the wave

function. The computational error, therefore, should scale as O(N−4). We

1We see two sources of this non-monotonic behavior. First, the collocation scheme that

we employ does not give an optimal variational estimate for the energy, therefore, when

the grid is sparse, the deviation of the energy estimate from an optimal value is comparable

with the error of approximation of the wave function. There is also a second source of non-

monotonic behavior which influences even variational estimates of the energy and becomes

evident for very dense grids: when increasing the number of grid points the spline space

itself does not approach the invariant subspace of the Hamiltonian monotonically. This

second effect, however, is much smaller than the first one.
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Figure 2: Convergence of the He2 bound state energy for LM2M2 potential

do observe this kind of scaling in Fig. 2a-b. The speed of convergence coef-

ficient C corresponds to the slope of the lines in Fig. 2. It is important to

note that as the coefficient C is calculated from the fits, its typical relative

error is of the order of 50%, its estimate may vary depending on a particular

grid sampling used in the fitting procedure. We thus will report only one

significant figure in the estimates of the coefficient C, and deviations of the

coefficient estimate within the same order of magnitude can be considered

insignificant. Accordingly, C gives the desired qualitative measure of a grid

quality.

In Table 1 we report the fitted values of the speed of convergence coeffi-

cient. It is evident, that the error estimate for the optimal mapping is at least

an order of magnitude smaller than for other considered grid choices. The

result is not surprising, as can be seen from Fig. 3. Indeed, as the optimal

mapping is not linear in logarithmic scale, simple power grids χm
power are not

expected to produce a good approximation of the solution. The exponential

mappings, on the other hand, can fit the optimal mapping more closely at
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Figure 3: Optimal and suboptimal mappings for He2.

n ≈ 8, and the estimates of the speed of convergence for n = 8 are minimal

within the set of exponential grids.

All the grids we demonstrated have been constructed for two-body states

with zero orbital angular momentum l = 0 (Eq.1). When constructing grids

for actual use in few-body calculations the bound states with higher angular

momenta should also be reproduced accurately. The centrifugal barrier for

these states is usually a small perturbation compared to the two-body force,

so that at least for a few lowest angular momentum states explicit inclusion of

the rotationally excited states into the grading function may be unnecessary.

Let us compare the spectra of rotationally excited Ne2 dimer obtained with

the grid optimized for the s-wave with the spectra calculated with grids

14



He2

n χn
power χn

exp χopt

3 1 × 10−2 −3 × 10−1

4 6 × 10−3 4 × 10−2

5 5 × 10−3 5 × 10−3 6 × 10−5

6 5 × 10−3 10−3

7 5 × 10−3 6 × 10−4

8 6 × 10−3 5 × 10−4

Ne2

n χn
power χn

exp χopt

3 6 101

4 3 3

5 4 8 × 10−1 −2 × 10−3

6 6 6 × 10−1

7 7 7 × 10−1

8 7 1

Ne∗2

n χn
power χn

exp χopt

3 6 101

4 3 2

5 4 9 × 10−1 −2 × 10−3

6 6 7 × 10−1

7 2 8 × 10−1

8 7 1

Ne∗∗2

n χn
power χn

exp χopt

3 2 × 10−1 3 × 10−1

4 1 × 10−1 8 × 10−2

5 1 × 10−1 3 × 10−2 −3 × 10−6

6 2 × 10−1 2 × 10−2

7 3 × 10−1 3 × 10−2

8 2 × 10−1 4 × 10−2

Table 1: Estimates of the convergence speed C for the He2 and Ne2 s-wave bound state

energies for different grid shapes 15



Ground 1st excited 2nd excited

lopt 1s 1p 1d 1f 2s 2p 2d 2f 3s

0 -2e-3 -2e-3 -2e-3 -2e-3 -3e-3 -3e-3 -2e-3 -2-e3 -2e-6

1 -2e-3 -2e-3 -2e-3 -2e-3 -3e-3 -3e-3 -2e-3 -3e-3 1e-3

2 -3e-3 -3e-3 -3e-3 -3e-3 -4e-3 -4e-3 -4e-3 -3e-3 5e-4

3 -4e-3 -4e-3 -3e-3 -3e-3 -5e-3 -5e-3 -4e-3 -4e-3 5e-4

Table 2: Ne2 speed of convergence of the rotationally excited states. The optimal mapping

χopt has been constructed for the states with angular momentum quantum number lopt,

the corresponding speed of convergence coefficients C for the energies of the low-lying

bound states are shown.

optimized for a given angular momentum. We report the estimates for the

speed of convergence for s-, p-, d- and f-waves in Table 2.

We have optimized the grid to reproduce 5 lowest eigenstates of the two-

body Hamiltonian with angular momentum lopt and used those grids to cal-

culate the ground state and low-lying vibrationally and rotationally excited

states of the system. The extrapolated energy estimates (see the discussion

for Eq. 6) agree excellently at the level of 10−13 a.u., which is comparable

with the error introduced by the cut-off distance of 500 a.u. As expected,

optimizing the grid for the s-wave spectrum provides a very good basis for

reproducing the rotationally excited states. Optimizing the grid for the ro-

tationally excited states similarly gives very good results for the lowest two

s-wave vibrational states. The convergence for the near-threshold s-wave

state, however, is getting much slower, although still comparable with the

speed of convergence for the low-lying states. We therefore conclude that only

the s-wave optimization is needed to provide a good description of processes
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involving the few lowest rotational excitations.

The other important question is how many states should be included

in the grading function (5). From Table 3 we can conclude that the very

minimal number of states to be included in the grading function to reproduce

the discrete spectrum of the operator should be equal to the number of the

s-wave bound states. When including more states into the grading function

the convergence of the bound state energies is getting insignificantly slower.

We can expect, however, that the states from the continuum start being

reproduced better. To check the convergence of the continuum states we fit

the low-energy expansion for the s-wave scattering phase

k cot δ0(k) = −1

a
+

r0k
2

2
+ Xk4 + O(k6) (7)

to the spectrum of the discretized Hamiltonian2 and calculate the conver-

gence coefficients of the effective range parameters, in quite the same man-

ner as was done for the binding energy (Table 4). To estimate the scattering

parameters we used the six lowest positive eigenvalues of the Hamiltonian.

As there are three bound states in the system, it is not surprising that the

fastest convergence is obtained with nine states included in the grading func-

tion. Similar to the bound state case, including extra states into the grading

2 Note that the energies of the discretized continuum are determined by the scattering

phase and the boundary condition at the right end R of the interval. For the s-wave states

the wave function behaves as sin(kR+δ(k)), and the phase shifts can be recovered from the

positive energy spectrum En and the box size R using the condition
√
EnR + δ(

√
En) =

πn. For large R the number of energies En that fall in the region where the effective

range expansion is valid becomes sufficient to extract the parameters of the effective range

expansion.
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Ground 1st excited 2nd excited

n 1s 1p 1d 1f 2s 2p 2d 2f 3s

1 -1e-3 -1e-3 -1e-3 -1e-3 -3e-3 -3e-3 -4e-3 -6e-3 2e-1

2 -4e-4 -4e-4 -4e-4 -3e-4 -5e-4 -5e-4 -5e-4 -4e-4 -3e-2

3 -1e-3 -1e-3 -1e-3 1e-3 -2e-3 -2e-3 -1e-3 -1e-3 -2e-6

4 -1e-3 -1e-3 -1e-3 -1e-3 -2e-3 -2e-3 -2e-3 -2e-3 -2e-6

5 -2e-3 -2e-3 -2e-3 -2e-3 -3e-3 -3e-3 -2e-3 -2-e3 -2e-6

6 -3e-3 -3e-3 -2e-3 -2e-3 -4e-3 -4e-3 -3e-3 -3e-3 1e-7

7 -4e-3 -4e-3 -3e-3 -3e-3 -6e-3 -5e-3 -5e-3 -4e-3 4e-6

8 -5e-3 -5e-3 -4e-3 -4e-3 -8e-3 -7e-3 -7e-7 -6e-3 4e-6

9 -6e-3 -6e-3 -6e-3 -5e-3 -1e-2 -1e-2 -9e-3 -7e-3 1e-5

10 -8e-3 -8e-3 -7e-3 -6e-3 -1e-3 -1e-2 -1e-2 -1e-2 1e-5

Table 3: Ne2: speed of convergence for the s-wave vibrational bound states and first 3

rotational excitations as a function of the number of optimized states.

function does not have much effect on the speed of convergence after all the

states used for estimating the effective range parameters have already been

included.

Before discussing the application to three-body calculations, we provide a

check of the suitability of the grading function suggested in Ref. [1]. For this

purpose we compare the speed of convergence obtained with different values

of k in Eq. 5, but holding the order of the polynomial k′ fixed, and check

whether the value of k = k′ provides the best speed of convergence. We sum-

marize our observations in Tables 5, 6 and 7. In Table 5 we summarize our

convergence speed analysis for the He2 dimer bound state energy (LM2M2

18



n C(a), a.u. C(r0), a.u. C(X), a.u.3

2 6e12∗ 4e10∗ 5e13∗

3 3e8 -6e9 6e12∗

4 4e5 -7e6 6e9

5 4e5 -5e6 4e9

6 2e4 -5e5 6e8

7 7e4 -8e5 5e8

8 -2e4 3e5 -2e8

9 1e4 2e4 6e7

10 2e4 -4e4 8e7

11 3e4 -4e4 7e7

12 3e4 -4e4 6e7

Table 4: Ne-Ne scattering parameters speed of convergence as a function of the number

of states included in the grading function. Those data points marked with an asterisk

indicate a failed convergence estimate.
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potential [14]) with the grid optimized for the ground and one continuum

state. The theoretically optimal values are shown in bold font. In Table 6

we show the same data for the grids optimized for the bound state only. The

lower values of k correspond to bigger variations of the mesh points density

distributions, the bigger the k the more uniform the grid is. We can easily

observe that for the values of k considerably different from the optimal val-

ues the speed of convergence essentially deteriorates. For the values of k a

little bit smaller than the theoretically optimal one, however, the observed

speed of convergence can be close to the optimal or even demonstrate a little

better convergence. In the case of two states included into the grading func-

tion (Table 5) this can be partially attributed to the fact that the grading

function is actually optimized for more than one state which we are track-

ing. However, we observe similar behavior even if we optimize the grid to

reproduce the bound state only. As our grids are constructed on the base

of an iterative numerical procedure which is not proved to be exact and the

speed of convergence parameter is intended as a qualitative measure of the

convergence properties, this minor deviation of the observed optimal k from

the theoretically optimal value can not be considered evident (see the discus-

sion for Eq. (6)). It is also useful to note that when the value of k exceeds

the theoretically optimal value, the coefficient C starts to grow rapidly.

In Table 7 we report the speeds of convergence for the energies of the s-

wave bound states of the Ne2 dimer. We have optimized the grid to reproduce

the three bound states of the dimer and one state from the continuum. The

speed of convergence coefficient for the near-threshold state clearly reaches

its minimum at the theoretically optimal value of k, which confirms the
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S3,2 S5,3

k E2(extrapolated) C E2(extrapolated) C

6 -4.146595e-09 2e-4 n/a n/a

7 -4.146597e-09 2e-5 n/a n/a

8 -4.146598e-09 -1e-5 n/a n/a

9 -4.146596e-09 -5e-5 -4.146638e-09 -2e-2

10 -4.146598e-09 -1e-4 -4.146578e-09 3e-4

11 -4.146598e-09 -3e-4 -4.146577e-09 8e-4

12 -4.146608e-09 -6e-4 -4.146579e-09 1e-4

13 -4.146636e-09 -1e-3 -4.146581e-09 6e-4

14 -4.146658e-09 -1e-3 -4.146573e-09 -5e-4

15 -4.146751e-09 -9e-4 -4.146586e-09 2e-3

16 -4.146510e-09 -1e-2 -4.146581e-09 -7e-3

Table 5: Optimality check of the automatically generated grids: He2 bound state energy

(a.u.) and the speed of convergence for different values of k in Eq. (5). The grading

function is optimized for n = 2 states. Bold font indicates the asymptotically optimal

choice [1].
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S3,2 S5,3

k E2(extrapolated) C E2(extrapolated) C

6 -4.146595e-09 2e-4

7 -4.146598e-09 2e-5

8 -4.146595e-09 -1e-5

9 -4.146598e-09 -6e-5 -4.146589e-9 -1e-2

10 -4.146597e-09 -2e-4 -4.146622e-9 8e-4

11 -4.146589e-09 -3e-4 -4.146634e-9 8e-4

12 -4.146625e-09 -7e-4 -4.146624e-9 4e-4

13 -4.146597e-09 -2e-3 -4.146631e-9 4e-4

14 -4.146551e-09 -2e-3 -4.146642e-9 -6e-4

15 -4.146658e-09 -2e-3 -4.146650e-9 2e-3

16 -4.146452e-09 - -6e-3 -4.146649e-9 -3e-3

17 -4.146679e-09 -1e-2 -4.146655e-9 7e-3

18 -4.146670e-09 -1e-2 -4.146656e-9 -2e-2

19 -4.146366e-09 -6e-3 -4.146574e-9 -7e-2

20 -4.146584e-09 3e-2 -4.146598e-9 -3e-1

Table 6: Optimality check of the automatically generated grids: He2 bound state energy

(a.u.) and the speed of convergence for different values of k in Eq. (5). The grading

function is optimized for the bound state only. Bold font indicates the asymptotically

optimal choice [1].
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S3,2 S5,3

k CNe2 CNe∗
2

CNe∗∗
2

CNe2 CNe∗
2

CNe∗∗
2

6 -2e-5 -2e-5 3e-3 n/a n/a n/a

7 -2e-4 -5e-4 5e-4 n/a n/a n/a

8 -6e-4 -1e-3 1e-4 n/a n/a n/a

9 -1e-3 -2e-3 4e-6 -3e-2 8e-2 -2e-2

10 -2e-3 -3e-3 -5e-5 -3e-2 1e-2 1e-4

11 -4e-3 -5e-3 -8e-5 -9e-2 3e-3 2e-3

12 -3e-3 -5e-3 -3e-5 -2e-1 -6e-3 9e-4

13 2e-3 2e-3 2e-4 -7e-1 -3e-2 -7e-4

14 2e-2 2e-2 9e-4 -2 -9e-2 -4e-3

15 2e-2 2e-2 1e-3 -4 -2e-1 -1e-2

16 5e-3 4e-2 2e-3 -4 -4e-1 -2e-2

Table 7: Optimality check of the automatically generated grids: the speed of convergence

for the Ne2 dimer s-wave states. Bold font indicates the asymptotically optimal choice [1].
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practicality of our approach.

4. The three-body calculations with optimized grids

As mentioned in the introduction, the practical value of optimizing the

grids for two-body states lies in their application to more complex few-body

calculations. In this case, reducing the number of points needed to achieve the

required accuracy is critical for saving computational time. The direct use of

the two-body optimized grids described in the previous section is especially

appropriate in the Faddeev (three-body)[11, 12, 13] or Faddeev-Yakubovsky

(four-body) [2, 9] formalism. When solving the Faddeev equations, as we

shall briefly discuss below, it is natural to represent the grid as a direct prod-

uct of the grid supporting the two-body bound states, and grids describing

other coordinates in the configuration space of the three-body system. We

shall demonstrate, that optimizing the grid even in one of the coordinates

can improve the accuracy of the three-body calculations substantially.

Here, for simplicity, we shall discuss only the three-body calculations

below the three-body threshold, which physically means that we restrict our

attention to three-body bound states or scattering with only two clusters in

the initial and the final states of the system. Within the Faddeev approach

the wave function of such states resolves into a sum of three components

Ψ = Φ1(x1, y1) + Φ2(x2, y2) + Φ3(x3, y3)

that correspond to different partitionings of the three-body system into an

interacting two-body subsystem and the free third particle. xi and yi are the

Jacobi coordinates for the i-th partitioning: xi connects the particles in the
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i − th pair, yi points to the remaining particle from the i-th pair center of

mass. The asymptotic properties of the components Φi below the three-body

threshold are very simple: at large distances between the i-th particle and

the center of mass of the corresponding two-body cluster (|yi| → ∞), the

Faddeev components factorize. In the very simplest case of one single s-wave

bound state in the pair the components Φi behave as

Φi ∼ φ2(|xi|)f(|yi|) ,

where φ2(|xi|) is the wave function of the two-body subsystem and f(|yi|)
describes the free motion of the third particle. When solving the Faddeev

equation numerically, we, therefore, need to be able to reproduce the behav-

ior of the two-body clusters accurately. For this purpose we use the grid

optimization procedure described above. In principle, it is also possible to

develop some simple criteria for optimizing grids in the reaction coordinates

y. This problem, however, is beyond the goals of this paper and we shall

discuss it elsewhere.

In order to demonstrate the importance of using optimized two-body

grids in three-body calculations we have performed a series of calculations

of He3 ground and excited states with both optimized and non-optimized

grids using a different number of points in the cluster coordinates. The

number of points as well as the grid shape in the reaction coordinate y

has been fixed for all sets of calculations. We used 100 grid points with

S5,3 splines in the y coordinate, the cutoff radius has been set to ymax =

2000 ×
√

3/2 a.u. and χ(4)
exp mapping has been used to construct the non-

uniform grid. As our three-body calculations here are only for purposes of

demonstration, we used the simplest possible grid consisting of one single
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interval in the angular coordinate (which is the cosine of the angle between

the direction to the third particle and the axis of the He2 cluster). We used

S5,3 splines in the angular coordinate. In this case the angular basis reduces

to polynomials of 5-th degree. The angular symmetry of the system has

not been taken into account explicitly, and, effectively, such angular basis

corresponds to taking into account two first virtual rotational excitations

(l = 0, 2, 4). More details on the method we use to solve Faddeev equations

can be found in [11, 12, 13]. The results are shown in Figs. 4 and 5, where

we have plotted the energies of the trimer bound states calculated using S3,2

(Fig. 4) and S5,3 splines (Fig. 5) as functions of the (appropriately scaled)

number of grid points in the cluster coordinate. In both cases we observe

much faster convergence and much smaller variation of the numerical results

when using the optimized grids in cluster coordinates. We obtained the

following estimates of the 4He3 bound state energies. With cubic splines and

100 grid points in x we find E0 = −3.98756 × 10−7 a.u = −125.917 mK

for the ground state and E1 = −7.1984 × 10−9 a.u. = −2.2731 mK for

the excited state. With quintic splines and 70 grid points the corresponding

results are E0 = −3.9877×10−7 a.u = −125.920 mK for the ground state and

E1 = −7.1978 × 10−9 a.u. = −2.2729 mK. These results agree perfectly well

with previously reported independent results using the same angular basis

(but a different projection operator) E0 = −125.9 mK and E1 = −2.28 mK

[3]. They also agree with previously reported results (for the same angular

basis) of one of the authors [11] E0 = −125.81 mK and E1 = −2.2677 mK

obtained with a similar method using less dense manually fine-tuned grids3

3 A slightly different coupling constant employed in previous calculations [11] makes for
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Figure 4: Energies of He3 bound states calculated using S3,2 splines as a function of the

number of grid points in cluster coordinates

27



-7e-09

-6e-09

-5e-09

E
E

xc
ite

d , 
 a

.u
. Exponential grid

Optimized grid

0.0e+00 5.0e-09 1.0e-08 1.5e-08 2.0e-08

1/N
6

-4e-07

-3.9e-07

-3.8e-07

-3.7e-07

E
G

ro
un

d 
,  a

.u
.

Figure 5: Energies of He3 bound states calculated using S3,2 splines as a function of the

number of grid points in cluster coordinates.
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5. Conclusions

We have presented an approach to constructing an optimized nonuniform

grid for use in quantum few-body calculations. The approach is based on

the results of Ref. [1], where a grading function which asymptotically mini-

mizes the L2 norm of the interpolation error is introduced. We have slightly

modified the optimization criterion to have several low-lying eigenstates of

the two-body Hamiltonian interpolated well.

We have studied the convergence properties of the optimized grids. For

this purpose we have introduced the speed of convergence coefficient which

characterizes the rate at which a physical observable – such as energy –

converges as the number of grid points is increased. The optimized grids,

even being only asymptotically optimal, demonstrate convergence properties

superior to other choices of non-uniform grids routinely employed in few-

body calculations. As far as rotational excitations of a two-body system can

be taken into account perturbatively, it is sufficient to optimize the grids to

reproduce the s-wave only and there is no need to optimize the grid for all the

rotational excitations. The number of two-body states to be included into

the grading function depends on the physical problem being solved. All the

states that contribute to the long-range asymptote of the few-body system

must be included into the grading function. Including some extra states can

be beneficial, as it makes possible to account for the corresponding virtual

60% of the discrepancy for the excited state and 100% of the discrepancy for the ground

state value. The sensitivity of the results to the details of the interaction is a subject of a

separate study being prepared for publication.
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excitations more accurately, while the convergence of the low-lying states is

only slightly affected.

We have used the optimized grid in three-body calculations to describe

cluster degrees of freedom. More accurate description of the internal dynam-

ics of the colliding clusters leads to substantial improvements in the accuracy

of calculations. The presented algorithm has allowed us to eliminate a dif-

ficult and time-consuming stage of manual fine-tuning the nonuniform grids

to be used with a particular three-body system. This result is essential for

the goals of our project to develop a simple and effective public code for

low-energy quantum three-body calculations.

The presented algorithm has been constructed specifically for solving the

quantum three-body problem with short-range interaction on the base of Fad-

deev equations. The approach itself, however, has an unexplored potential.

Let us make a few remarks on other possible applications. Optimal grids for

Coulomb systems can be considered. In this case the grading function can

be constructed analytically. Adiabatic hypersphecical calculations can also

benefit from adding a grid adaptation step after calculating the adiabatic

basis for each value of the hyperradius. Finally, finding an effective method

to optimize the “reaction” degrees of freedom in Faddeev calculations is a

subject especially interesting for our project.
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