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Obtaining reliable estimates of the statistical properties of complex macromolecules by computer
simulation is a task that requires high computational effort as well as the development of highly
efficient simulation algorithms. We present here an algorithm combining local moves, the pivot
algorithm, and an adjustable simulation lattice box for simulating dilute systems of bottle-brush
polymers with a flexible backbone and flexible side chains under good solvent conditions. Applying
this algorithm to the bond fluctuation model, very precise estimates of the mean square end-to-end
distances and gyration radii of the backbone and side chains are obtained, and the conformational
properties of such a complex macromolecule are studied. Varying the backbone length (from Nb = 67
to Nb = 1027), side chain length (from N = 0 to N = 24 or 48), the scaling predictions for the
backbone behavior as well as the side chain behavior are checked. We are also able to give a direct
comparison of the structure factor between experimental data and the simulation results.

I. INTRODUCTION

The so-called “bottle-brush polymers” consist of a long
macromolecule serving as a “backbone” on which many
flexible side chains are densely grafted [1–4]. In nature,
bottle-brush like aggrecans have been found in the car-
tilage of mammalian including human joints and are in-
deed held responsible for the excellent lubrication prop-
erties in such joints [5, 6]. Recently, the chemical syn-
thesis of such complex molecular bottle-brushes has be-
come possible in laboratories with newly developed syn-
thetic techniques [7–10]. Theoretical predictions [11-42]
of the conformational properties of bottle-brush polymers
based on the blob picture, the scaling theory, and the self-
consistent field theory have also been worked out. How-
ever, in order to check the theoretical predictions and to
give a reasonable explanation for the experimental results
or to control the functions of bottle-brush polymers com-
puter simulations are needed for a deeper understanding
of the structure of these macromolecules.

“Static” Monte Carlo (MC) algorithms (simple sam-
pling of self-avoiding walks (SAWs)), extensions such
as dimerization, enrichment techniques, Rosenbluth’s
inversely restricted sampling and the pruned enriched
Rosenbluth method (PERM) do not converge for very
large branched polymers such as bottle-brushes. “Dy-
namic” MC algorithms also encounter serious problems,
since the relaxation times of these polymers are expected
to be excessively large, and hence prohibitively long MC
simulations would be required. In the early work on
bottle-brush polymers in a good solvent, both lattice and
off-lattice models were used for MC simulations. Using
the bond fluctuation model [43–46] on a simple cubic lat-
tice, applying local moves to the bottle-brush polymers,
side chain lengths up to N = 64, backbone lengths up to
Nb = 64, and grafting densities up to σ = 1 were studied
in [26]. In combination with the pivot move algorithm,
Nb up to 800, N up to 80, and σ < 1/3 were studied
in [22, 25]. Using flexible freely jointed chains [23, 32]
and the bead-spring model [35] with hard sphere interac-

tions in a continuous space and using the pivot moves, the
largest bottle-brush polymers which were studied were
Nb = 402, N = 25, and σ = 1, and using the Metropo-
lis algorithm for the latter model, maximum values of
Nb = 100, N = 50 were studied. However, although
all these studies clearly are very interesting and stim-
ulating, the accessible parameter range clearly was not
large enough (and the accuracy of the results not precise
enough) to allow a straightforward test of the theoretical
concepts, and thus a need for further work with different
methods clearly did emerge.

In our previous work [37, 38], we were able to simu-
late bottle-brush polymers with rigid linear backbone and
flexible side chains under various solvent conditions by
applying a variant of the PERM algorithm [47] to a sim-
ple lattice model with periodic boundary conditions along
the backbone. Under good solvent conditions, we have
shown that the power laws predicted for the side chain
behavior are still difficult to reach although the maximum
side chain length in our simulation was N = 2000. How-
ever, a crossover behavior from 3D SAW-like side chains
to stretched side chains was presented in [37, 38] as the
side chain length or the grafting density increased. Of
course, removing all configurational degrees of freedom
of the backbone was a crucial prerequisite to allow the
successful use of the PERM algorithm, but it also means
that highly interesting questions (such as backbone stiff-
ening due to the side chains) could not be studied.

Recently, we have focused on the comparison of struc-
ture factors to experimental data and on the persistence
length [40–42] of the backbone using the bond fluctu-
ation model on a simple cubic lattice. This communi-
cation will discuss in detail the algorithm we developed
for these simulations. It is introduced in Sec. II, and
results for the conformational properties of bottle-brush
polymers only achievable by this very efficient simulation
approach are shown in Sec. III. Finally, our conclusions
are presented in Sec. IV.
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(a) (b)

FIG. 1: Snapshots of initial configurations of bottle-brush
polymers withNb = 35 monomers on the backbone andN = 6
monomers on each side chain, showing the geometry of our
model for bottle-brush polymers with the grafting densities
(a) σ = 1 and (b) σ = 1/2.

II. MODEL AND SIMULATION METHODS

For studying bottle-brush polymers with a flexible
backbone and with flexible side chains under very good
solvent conditions so that only excluded volume effects
are considered, we generalize the standard bond fluctu-
ation model for linear polymers [43–46] to bottle-brush
polymers. In the standard bond fluctuation model, a
flexible polymer chain with excluded volume interac-
tions is described by a chain of effective monomers on
a simple cubic lattice (the lattice spacing is the unit of
length). Each effective monomer blocks all 8 corners
of an elementary cube of the lattice from further oc-
cupation. Two successive monomers along a chain are

connected by a bond vector ~b which is taken from the
set {(±2, 0, 0), (±2,±1, 0), (±2,±1,±1), (±2,±2,±1),
(±3, 0, 0), (±3,±1, 0)}, including also all permutations.

The bond length |~b| = `b is in a range between 2 and
√

10.
There are in total 108 bond vectors serving as candidates
for building the conformational structure of bottle-brush
polymers.

As shown in Fig. 1, the geometry of the bottle-brush
polymer is arranged in a way that side chains of length
N are added to the backbone at a regular spacing 1/σ
(σ is the grafting density), and two additional monomers
are added to the two ends of the backbone. Thus, the
number of monomers of the backbone Nb is related to
the number of side chains nc via

Nb = [(nc − 1)/σ + 1] + 2 , (1)

and the total number of monomers of the bottle-brush
polymer is Ntot = Nb + ncN . Creating an initial config-
uration of a bottle-brush polymer that does not violate
any excluded volume constraint would be a highly non-
trivial matter if we would require that both backbone and
side chains are already coiled. Thus one simple way to
construct an initial configuration of bottle-brush poly-
mers in the simulation is to assume that the backbone
and all side chains are rigid rod-like structures. In order
to fit the criteria of the bond fluctuation model without
further checking, the backbone is placed in the direction
along the z-axis with fixed bond length `b = 3 between
two successive monomers on the backbone. The bond
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FIG. 2: Time series of the rescaled square gyration radii for
the backbone monomers, R2

gb(t)/N
2ν (a), and the space oc-

cupations in the Cartesian coordinates (∆x(t),∆y(t),∆z(t))
(b). Here we apply the “L26” move algorithm to simulate the
bottle-brush polymers of Nb = 35, N = 12, and σ = 1.

vectors of each side chain are chosen randomly from one
of the allowed bond vectors in the (xy)-plane, but the
bond vectors used to connect the monomers on the same
side chain starting from the grafting site on the backbone
are the same.

In our algorithm, instead of trying to move a monomer
to the nearest neighbor sites in the six directions (“L6”
move), ±x̂, ±ŷ, and ±ẑ for the standard bond fluctuation
model, we use the local 26 (“L26”) moves [48]. Namely,
the chosen monomer is allowed to move to not only the
nearest neighbor sites but also the next neighbor sites,
and the sites at the 8 corners, which are located

√
2, and√

3 lattice spacings away from the chosen monomer, re-
spectively. The move is accepted only if the selected new
positions are empty and the bond length constraints are
satisfied. The key point of this move is that it allows
for crossings of bonds during the move; no such sim-
ple moves that allow bond crossing for the simple SAW
model (where the bond length is fixed to one lattice spac-
ing) are known. Without the possibility of bond cross-
ing, two side chains of the bottle-brush that happen to
be entangled with each other would relax this topological
constraint only extremely slowly.

Since neighboring side chains are rigidly grafted to
neighboring “anchor points” at the backbone, they can
never diffuse away from each other, unlike free chains
in a solution or melt; thus topological constraints could
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FIG. 3: Time series of the rescaled square gyration radii for
the backbone monomers, R2

gb(t)/N
2ν
b (a), and the space oc-

cupations in the Cartesian coordinates (∆x(t),∆y(t),∆z(t))
(b). Here we apply the “L26 +pivot” algorithm to simulate a
bottle-brush polymer of Nb = 515, N = 12, and σ = 1. The
time series obtained when using the “L26” move is shown in
the inset. The legends e1, e2, e3 in (a) indicate three different
starting configurations.

relax only via an “arm retraction mechanism” famil-
iar from star polymers, if the algorithm ensures non-
crossability of chains. This arm reaction leads to an ex-
tremely long relaxation time. This problem is avoided
by the “L26” moves. Applying the “L26” move algo-
rithm to a small bottle-brush polymer of 431 monomers
(Nb = 35, N = 12, and σ = 1), results of the time series
of the square gyration radius of the backbone scaled with
the scaling law for 3D SAWs, R2

gb(t)/N
2ν (ν = 0.588),

and the time series of the shape change of bottle-brush
polymers, which is described by the space occupation in
the Cartesian coordinates (∆x(t),∆y(t),∆z(t)) shown in
Fig. 2 indicate that it needs about 106 MC steps to reach
an equilibrium state. Here one MC step is a sequence of
Ntot “L26” moves (each monomer is attempted to move
once). As the number of monomers on the backbone in-
creases to Nb = 515, i.e., the total number of monomers
increases to Ntot = 6671, one would expect for a Rouse
scaling of the relaxation time τ ∼ N1+2ν that it might
need about 400 times the number of MC steps to reach
an equilibrium state. Unfortunately, the simple Rouse
behavior does not describe the scaling of the relaxation
time for the bottle-brushes and the relaxation time in-
creases even faster as shown in the inset of Fig. 3.

(b)

(a)

FIG. 4: Pivot moves applied to a randomly chosen monomer
on the backbone (a) and on one of the side chains (b).

In our simulations, the lattice size V = Lx × Ly × Lz
is chosen large enough so that no monomer can inter-
act with itself. The ith monomer located at the site
~ri = (xi, yi, zi) is denoted by pi = zi + yiLz + xiLyLz.
No periodic boundary condition is considered here but a
hashing method is used to map the position of monomers
back into the original box. For small bottle-brush poly-
mers it is possible to set the lengths of the simple cubic
lattice equal in each dimension, i.e., Lx = Ly = Lz = 3Nb
(the maximum length determined by the initial config-
uration), while for large bottle-brush polymers one en-
counters difficulties in the limitation of computer mem-
ory. Therefore, in order to be able to simulate large
bottle-brush polymers, a new method is introduced which
separates the equilibrating process into several stages.
The maximum lattice size which we can use on the com-
puter is 228. Thus, we first choose Lz = 3Nb, Ly = Lx,
and V = LzLyLx ≤ 228. As shown in Fig. 3, the time
series of ∆x(t), ∆y(t), and ∆z(t) as well as configura-
tions in the intermediate state are stored. After tf MC
steps, we reset the size of the lattice by decreasing Lz to
Lz = ∆z(tf ) but increasing Ly and Lx to Ly = Lx =

Integer{(228/∆z(tf ))1/2} ≥ max(∆y(tf ),∆x(tf )). Here
tf is the number of MC steps at the current stage, which
can be adopted to the simulation such that the condition
∆x < Lx and ∆y < Ly holds. We repeat the same pro-
cedure until Lx = Ly = Lz since the space occupation
of the conformations of bottle-brush polymers must be
isotropic.

To speed up the equilibrating process and the time for
generating independent configurations, in addition to the
local “L26” move [48] also pivot moves [49] are used. Two
types of moves are attempted (see Fig 4):

(i) a monomer on the backbone is chosen randomly
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FIG. 5: Autocorrelation functions of the mean square gyra-
tion radii for the side chains c(R2

gc, t) (taking the average of all
side chains at t) (a), and for the backbone c(R2

gb, t) (b), plot-
ted vs. the number of Monte Carlo steps t. Data obtained for
bottle-brush polymers with backbone length Nb = 35, side
chain lengths N = 48, 24, 12, and 6, and grafting density
σ = 1 when using the “L26” moves and the “L26+pivot”
moves are shown by the dashed and solid curves, respectively.

and the short part of the bottle-brush polymer is
transformed by randomly applying one of the 48
symmetry operations (no change; rotations by 90o

and 180o; reflections and inversions) to the adjacent
bond.

(ii) A monomer is chosen randomly from all the side
chain monomers, and the part of the side chain from
the selected monomer to the free end of the side
chain is transformed by one of the 48 symmetry
operations.

Again, we apply the “L26 + pivot” algorithm to the
bottle-brush polymers with Nb = 515, N = 12, and σ = 1
but start the simulations from three different initial con-
figurations named by e1, e2, and e3. From the results
shown in Fig. 3, we see that the equilibrium states are
reached in less than 106 MC steps. Here one MC step is
a sequence of Ntot “L26” moves, kpb pivot moves of the
backbone and kpc pivot moves of side chains; kpb is cho-
sen such that the acceptance ratio is about 40% or even
larger, while kpc = nc/4. It takes about 1.25 hours CPU
time on an Intel 2.80 GHz PC to reach the equilibrium

state (after 106 MC steps are performed) for one single
simulation of bottle-brush polymers (Nb = 515, N = 12,
and σ = 1) with Ntot = 6671, kpb = 40, and kpc = 128.

Another important point one has to be aware of is
that the monomers on the backbone, labelled as 0, 1, . . .,
Nb − 1, which can be selected as a pivot point Np

b for
applying the pivot move are also limited due to the size
of the lattice we set up before reaching the equilibrium
state. However, once the system is in equilibrium one has
to allow all possible moves (1 ≤ Np

b ≤ (Nb− 2)) with the
“L26+pivot” algorithm. For the case shown in Fig. 3,
the equilibrating process is divided into four stages:
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FIG. 6: (a) Autocorrelation function of the mean square gy-
ration radii for the side chains c(R2

gc, t) as a function of Monte
Carlo time t (a). Both for Nb = 35 and Nb = 515, one pivot
move per side chain is tried on average every 4 MC steps.
(b) Autocorrelation function for the backbone c(R2

gb, t) plot-
ted vs. the total number of pivot moves done, comparing the
relaxation for Nb = 35 and for Nb = 515.

stage 1: 1 ≤ Np
b ≤ 128, Lz = 1545, Ly = Lx = 415,

tf = 262144 MC steps

stage 2: 1 ≤ Np
b ≤ 256, Lz = 1201, Ly = Lx = 473,

tf = 262144 MC steps

stage 3: 1 ≤ Np
b ≤ 513, Lz = 851, Ly = Lx = 561,

tf = 262144 MC steps

stage 4: 1 ≤ Np
b ≤ 513, Lz = Ly = Lx = 645, tf =

1310720 MC steps
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As a caveat, the number of stages needed for the system
reaching the equilibrium is empirical. It varies accord-
ing to the size of the backbone length and fluctuations
from one equilibration path to the other equilibration
path. When one simulates an end-grafted bottle-brush
polymer adsorbed to an impenetrable flat surface, it also
varies depending on the attractive interactions between
the monomers and the surface. Due to the fluctuation of
the conformations of bottle-brush polymers, the time se-
ries of the square gyration radius of the backbone, R2

gb(t),
and the space occupations in the Cartesian coordinations
(∆x(t),∆y(t),∆z(t)) of the bottle-brush polymers (sim-
ilar to the functions shown in Fig. 3) are required in or-
der to determine the lengths of the simulation box for the
next stage and to check whether the equilibrating process
is finished or not.

The efficiency of the algorithm and the number of MC
steps needed for getting an independent configuration for
the measurement were determined by the autocorrelation
function c(A, t),

c(A, t) =
< A(t0)A(t0 + t) > − < A(t0) >< A(t0 + t) >

< A(t0)2 > − < A(t0) >2
,

(2)
where A is an observable. Results of c(A, t) for the mean
square gyration radius of the backbone, A = R2

gb, and

of the side chains, A = R2
gc (taking the average of all

side chains at the same Monte Carlo time t) plotted
against the number of MC steps t are shown in Fig. 5
for Nb = 35. We see that the “L26+pivot” algorithm is
two orders of magnitude faster than the “L26” algorithm
for the four cases of bottle-brush polymers (backbone
length Nb = 35, grafting density σ = 1, and side chain
lengths N = 48, 24, 12, and 6) we chose. Also, increasing
the side chain length from N = 6 to N = 48, the auto-
correlation time for the side chain structural relaxation
increases by more than two orders of magnitude for the
“L26” case and by less than one order of magnitude for
the “L26+pivot” case. When we increase the backbone
length Nb to Nb = 515 and adjust the number of pivot
moves for the side chains tried from kpc = 8 to kpc = 128
in each Monte Carlo step such that on average about 1/4
of the side chains is tried for a pivot move in each MC
step, we can see in part a) of Fig. 6 that the decay of
the autocorrelation function for the side chain structure
occurs on the same time scale, i.e., it is only the average
number of pivot moves per side chain which determines
the autocorrelation time. The same is true for the back-
bone as we can see in part b) of that figure. Here we plot
the autocorrelation function explicitly against the total
number of pivot moves tried, t kpb, and it is obvious that
the structural relaxation for the much longer backbone
chain occurs on the same time scale as the one for the
short backbone chain. A systematic increase of the re-
laxation time for both, side chains and backbone, as a
function of side chain length remains, however. The stage
wise decomposition of the equilibrating process, with the
appropriate adjustment of the simulation volume, as de-

scribed above, is a crucial step of our procedures, and a
novel ingredient, not used in other contexts, and was a
prerequisite for successful simulations.
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FIG. 7: Rescaled mean square end-to-end distance
〈R2

eb〉/(2`bN2ν
b ) (ν = 0.588) plotted against backbone length

Nb for bottle-brush polymers with grafting density σ = 1 (a)
and σ = 1/2 (b) Various values of side chain length N are
shown (N = 0 means that no side chains are grafted at all).
Horizontal straight lines indicate the estimates for the persis-
tence length, `p,R.

III. RESULTS

In order to test our program, we first simulated lin-
ear polymer chains of Nb monomers under good solvent
conditions, i.e., N = 0. According to the scaling law
of the mean square end-to-end distance, R2

eb, one should
expect that the curve of 〈R2

eb〉/N2ν
b becomes horizontal

as Nb → ∞. Here ν = 0.588 is the Flory exponent
for the 3D SAW. This is indeed seen in Fig. 7. Using
the “L26+pivot” algorithm, we can simulate bottle-brush
polymers with a number of monomers on the backbone
up to Nb = 1027, side chain length up to N = 24 for
Nb > 259, and side chain length up to N = 48 for
Nb ≤ 259. The results shown in Fig. 7 are the aver-
age of 105-106 independent configurations. The error
bars are given by the standard deviations of the average,
which are smaller than the size of symbols. Increasing
the side chain length N , but keeping the grafting den-
sity fixed to σ = 1 or σ = 1/2, one observes an increase
in 〈R2

eb〉/N2ν
b for a fixed value of Nb, which shows that
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(a) (b)

(c) (d)

FIG. 8: Snapshots of the conformations of bottle-brush poly-
mers with Nb = 131 monomers on the backbone and with side
chain lengths (a) N = 6, (b) N = 12, (c) N = 24, and (d)
N = 48.

the stretching of the backbone is induced by the chain
length N as well as the grafting density σ, whereas one
observes that the backbone of the bottle-brush polymers
behaves like a SAW with increasing Nb but fixed N . In
Ref. [41, 42], it has been pointed out that the persis-
tence length `p,R which describes the intrinsic stiffness
of bottle-brush polymers can be determined by the mean
square end-to-end distance of the backbone, R2

eb,

〈R2
eb〉 = 2`p,R`bN

2ν
b . (3)

Here `b ≈ 2.7 is the average bond length of polymer
chains for the bond fluctuation model. The snapshots
of conformations of bottle-brush polymers which contain
131 monomers on the backbone and N monomers on each
side chain in a good solvent displayed in Fig. 8 also show
that the backbone becomes stiffer as the side chain length
N increases from 6 to 48.

Another quantity which can be used to examine
whether the system does reach the equilibrium and the
statistics are reliable enough is the mean square end-to-
end distance 〈R2

ec,⊥〉 (or radius of gyration 〈R2
gc,⊥〉) of

the side chains along the backbone in the direction per-
pendicular to the backbone. For bottle-brush polymers
of a flexible backbone, the perpendicular direction is de-
termined by the vector pointing from the grafting site
to the center of mass of the corresponding grafted side
chain. Plotting 〈R2

ec,⊥〉/N2ν against the normalized po-

sition k/(nc − 1) for k = 0, 1, . . ., nc − 1 in Fig. 9, a
plateau appears with tiny fluctuations for 0.2 < k < 0.8
showing that in the interior of bottle-brush polymers the
side chains behave the same for fixed side chain lengths
N as expected after taking the average over sufficiently
many independent samples. The side chains stretch away
more from the backbone as the side chain length N and
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FIG. 9: Rescaled mean-square end-to-end distance of the side
chains in perpendicular direction 〈R2

ec,⊥〉/N2ν (ν = 0.588),
plotted vs. the normalized position k/(nc − 1) in the coordi-
nate system along the backbone (the nc side chains are labeled
by k = 0, 1, . . ., nc − 1). Four choices of side chain length
N = 6, 12, 24, and 48, and three choices of backbone length
Nb = 67, 131, and 259 are included, as indicated. Case (a)
refers to σ = 1, and case (b) to σ = 1/2.

the grafting density σ increases. The decreasing behav-
ior of 〈R2

ec,⊥〉 for the side chains near the two ends of the
backbone obviously arises from the fact that monomers
on these side chains have more freedom to move.

Finally, a comparison of the structure factor S(q) be-
tween the experimental data [9] and our simulation re-
sults [41] is shown in Fig. 10. The normalized structure
factor S(q) is defined by

S(q) =
1

N2
tot

Ntot∑
i=1

Ntot∑
j=1

〈c(~ri)c(~rj)〉
sin(q|~ri − ~rj |)
q|~ri − ~rj |

, (4)

where c(~ri) is an occupation variable, c(~ri) = 1 if the site
~ri is occupied by a bead, and zero otherwise. Note that
an angular average over the direction of the scattering
vector ~q has been performed, and the sums run over all
monomers (all side chains and the backbone). Adjusting
only the number of monomers on the backbone, Nb, and
the number of monomers on each side chain, N , the re-
sults for the bottle-brush polymers of Nb = 259, N = 48,
and σ = 1 are mapped to the data for the experimen-
tal sample of N exp

b = 400, N exp = 62 and σexp ≈ 1
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FIG. 10: Normalized structure factor Sexp(q) plotted vs qRg
for the sample with Nexp

b = 400, Nexp = 22 [9], com-
pared with simulated structure factor S(q) for Nb = 259,
N = 48 [41]. Rg = 30.5 nm obtained from the experimental
data [9] and Rg = 115.8 (lattice spacing) from the simulation
result [41].

when the momentum q is scaled by Rg. Here Rg is the
gyration radius of the whole bottle-brush polymer. In
this case, Rg = 115.8 (lattice spacings) is obtained from
our MC simulations and Rg = 30.5 nm is obtained from
the experimental data. One can immediately translate
1 nm ≈ 3.79 lattice spacing. Clearly, translating the
length units from the large-scale structure (small q be-
havior) and choosing the length of backbone and side
chains correctly, one obtains a faithful description of the
experimental scattering function over the whole q-range
studied.

IV. CONCLUSION

We have presented extensive MC simulations for
bottle-brush polymers under good solvent conditions us-
ing the bond fluctuation model with a newly developed
efficient MC algorithm combining the “L26” moves, the

pivot moves, and an adjustable simulation lattice box
which changes its shape from a very elongated paral-
lelepiped to a cube as the equilibration of the bottle-
brush polymer conformation from an initial stretched
backbone to a coiled conformation proceeds. Using this
fast algorithm to generate a sufficiently large number of
independent configurations in equilibrium, we are able
to obtain high accuracy estimates of the related charac-
teristic length scales for describing the conformational
properties of bottle-brush polymers, such as the end-
to-end distance of a side chain and the backbone, the
persistence length of the backbone, the effective cross-
sectional radius of the whole bottle-brush polymers etc.
From the computer simulations, the scattering intensity
contributed by any part of the bottle-brush polymers are
calculated directly. Therefore, we are also able to com-
pare our simulation result to the experimental data di-
rectly and test those models used in the analysis of ex-
perimental data.

Recently, this algorithm has also been employed suc-
cessfully to study the conformational change of bottle-
brush polymers as they are absorbed on a flat solid sur-
face by varying the attractive interaction between the
monomers and the surface [50]. In our future work, it
will be interesting to see how far this algorithm can be
applied for studying bottle-brush polymers under poorer
solvent conditions.
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