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Abstract

A robust, user-friendly, and automated method to determine quantum conduc-
tance in quasi-one-dimensional systems is presented. The scheme relies upon an
initial density-functional theory calculation in a specific geometry after which
the ground-state eigenfunctions are transformed to a maximally-localised Wan-
nier function (MLWF') basis. In this basis, our novel algorithms manipulate and
partition the Hamiltonian for the calculation of coherent electronic transport
properties within the Landauer-Buttiker formalism. Furthermore, we describe
how short-ranged Hamiltonians in the MLWEF basis can be combined to build
model Hamiltonians of large (>10,000 atom) disordered systems without loss
of accuracy. These automated algorithms have been implemented in the Wan-
nier90 code [1], which is interfaced to a number of electronic structure codes such
as Quantum-ESPRESSO, Ablnit, Wien2k, STESTA and FLEUR. We apply our
methods to an Al atomic chain with a Na defect, an axially heterostructured
Si/Ge nanowire and to a spin-polarised defect on a zigzag graphene nanoribbon.
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1. Introduction

Nanostructured materials, such as carbon nanotubes and silicon nanowires,
promise advances in wide-ranging device applications such as photonics[2], ther-
moelectrics [3, 4] and biological /chemical sensing[5]. Successful incorporation
of such structures in real devices requires bottom-up approaches to design,
which in turn, require an understanding of electronic transport at the nano
and mesoscales.
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First-principles simulations based on density-functional theory (DFT) are
now well-established as a powerful tool for materials modelling. Their success
is largely due to the high accuracy and computational efficiency that can be
obtained for many classes of materials.

Notwithstanding concerns regarding its ability to describe charge transport
in certain situations [6], DFT combined with the Landauer formulation [7] has
become a standard starting point for evaluating quantum conductance (QC) [8-
17]. Calculations typically adopt a ‘lead-conductor-lead’ geometry (Fig. 1 (top))
whereby the conductor is sandwiched between two contacts, or leads, whose
semi-infinite nature is accounted for by means of surface Green’s functions and
self-energies [18] obtained from standard DFT calculations.

Despite the success of this approach, realistic nanoscale systems, which typ-
ically contain arbitrary distributions of impurities, functionalizations and mod-
ulations of structure and composition are challenging to describe accurately due
to the asymptotic cubic scaling of conventional DFT calculations with respect
to system size.

In this Article, following Lee et al. [14] and Cantele et al. [19], we use a
method based on the transferability of maximally-localised Wannier functions
(MLWFs) [20, 21] in order to overcome the cubic-scaling bottleneck. The nov-
elty of our work lies in the development of robust algorithms for the complete
automation of the often painstaking manipulations required for preparing a
Hamiltonian matrix in the MLWF basis. As a result, high-throughput compu-
tations of QC requiring little user intervention become feasible for disordered
nanoscale systems. Two further important features of our method are (i) that
the MLWF basis is optimally compact, ensuring highly efficient determination
of QC and density of states (DoS), and (ii) that the nearsightedness of the elec-
tronic interactions can be exploited in the MLWF basis by piecing together,
without loss of accuracy, Hamiltonians from DFT calculations on small frag-
ments to form model Hamiltonians of complex nanostructures consisting of tens
of thousands of atoms or more.

The remainder of this paper is structured as follows: Sec. 2 describes briefly
the underlying theory of Landauer transport and MLWFs, the real-space basis
in which the transport calculations are performed; Sec. 3 describes the details
of the implementation of our automated method within the Wannier90 code [1];
in Sec. 4 we present the results of our approach on a number of systems; finally,
Sec. 5 is reserved for our concluding remarks.

2. Theoretical Background

2.1. Landauer Transport

Within the Landauer formalism, it is assumed that there are no dissipative
scattering events on the length scale of the conductor region, such that trans-
mission is coherent, or ballistic. For a single conducting channel at each energy
E, Landauer showed [7] that the zero-bias, zero-temperature conductance G(F)



Left Lead | Conductor | Right Lead

HLﬁ:HLaa HE;HLTD th hCR Principal Layer

A —

[3]2]1]0 [of1]2]5]
H, H, H,

Figure 1: Top: Schematic illustration of the lead-conductor-lead geometry. Bottom: An
illustration of how the leads are split into principal layers with Hamiltonian sub-matrices
labelled according to Eq. (3).

is given by
2¢2
G(E) = >-T(B), 1)
where T'(E) is the probability of transmission through the conducting channel.
In this framework, G(E) is called the gquantum conductance (QC). Extending
this formalism to multiple channels [22-24] one may write
2¢e?

G(E) = Tl GelrGE), (2)
where G{CT’G} are the retarded (r) and advanced (a) Green’s functions associated
with the conductor, and I'yy, gy are functions that describe the coupling of the
conductor to the left (L) and right (R) leads.

The standard approach used to determine the QC of nanostructures that
has emerged in recent years employs a localised basis set so that the Hamil-
tonian H of a system in the lead-conductor-lead geometry (Fig. 1 (top)) may
be partitioned unambiguously. A principal layer [25, 26] (PL) is introduced,
which is long enough so that <{Z’|I§I|§Jm> ~ 0 if [m — n| > 2, where (P is the i
basis function in the n'® PL and H is the Hamiltonian operator for the entire
system. By imposing the equality on the Hamiltonian elements, a truncation
error is introduced, which is controlled systematically by increasing the size of
the PL (as will be shown in Sec. 4). The Hamiltonian matrix, with reference to
the bottom panel of Fig. 1, then takes tri-block diagonal form,

H® HIO 0 0 0
HY HO he 00
0 hly He her 0 - |, (3)
0 0 hb, HY HY

0 0 0 HYT HY

where interactions between the first PL of the left or right lead and the conductor
are hrc and hog, respectively; HY and HY are matrices formed by orbitals in



the same PL in the semi-infinite left and right leads, respectively, and H}? and
H%l are matrices formed by orbitals in adjacent PLs in the left and right leads,
respectively. As shown in Eq. (3), these latter four matrices are periodically
repeated to form Hy, and Hp (defined in the bottom panel of Fig. 1).

2.2. Green’s Function Formalism

Knowledge of the seven finite Hamiltonian sub-matrices H g(), H %6, hrc He,
hcr, HY and HY' is sufficient to describe the open system of Fig. 1 and to
calculate the QC from Eq. (2). Following Nardelli [27], in order to determine

Gg’a} and 'y gy, we first consider the Green’s function G of the whole system,
(e— H)G =1, (4)

where € = E +in (n — 0) for G". Since G* = (G™)T, in the following we focus
on G only and suppress the superscript. From Eq. (4) it can be shown that [18]

GC:(E—Hc—EL—ZR)il, (5)

where Y1 = hTLCG%OhLC and Yp = hTCRG%OhCR represent self-energy terms
due to the coupling of the conductor to the leads. G00L7 v are known as surface
Green’s functions and can be computed efficiently via the iterative procedure of
Lopez-Sancho et al. [28]. G¢ is related to the local density of states (DoS) N¢
of the conductor by [18]

No(E) = - ~Im(Tr(Ge (B))). (6)

s

Finally, the coupling functions I'(;, g are given by [18]

Tir,ry = i3 ry — X{0 Ryl (7)

In the special case that the lead and conductor are identical and the entire
lead-conductor-lead system is translationally invariant, the following simplifica-
tions can be made: Hgo = H%O = He, and Hio = hrc = hcr = Hl%l. Such
systems are hereafter referred to as bulk, or pristine, systems and transport
calculations thereupon are referred to as bulk, or pristine, transport calcula-
tions. In our results, we will compare the QC of disordered conductors with the
corresponding bulk, or pristine, QC.

2.8. MLWEF Basis

In a periodic crystal, within the independent particle approximation, elec-
trons are described by bands, or Bloch states |1,x) with band index n and crys-
tal momentum k. An entirely equivalent representation may be constructed in
terms of Wannier functions |w,gr), obtained by Fourier transforming |¢,x) in
the pair of conjugate variables k and R, where R labels the lattice vector of the
real-space cell in which the Wannier function is centered. Unlike Bloch func-
tions, however, Wannier functions may be constructed that are localized in real



space, exhibiting exponential decay in systems with an electronic band-gap [29].
Even in a metal, exponential localisation can be achieved if an appropriate com-
bination of filled and empty states is used[14].

For an isolated band, observables are invariant under a gauge transformation
of the form v, — e®n*1),,,. Different choices of the phase ¢,, however, will
result in different Wannier functions, and can therefore be used as a means of
making the resulting Wannier function as localised as possible. Marzari and
Vanderbilt [20] showed that for a composite, yet isolated group of bands (such
as those found in the valence manifold of an insulator of semiconductor), one
may define a set of generalised Wannier functions

N
1 e
lwnr) = &y /B ZZU,S&‘,2|¢mk>e kR, (8)

where Ur(rlﬁz is a unitary matrix that may be chosen such that the Wannier
functions are mazimally-localised i.e. that the sum of their quadratic spreads

Q=73 [(r")n — ()7, (9)

where (r?), = (wno|r?|wno) and (r), = (Wno|rn|wno), takes the smallest value
possible.

When a set of bands is not isolated from the rest of the band structure by a
gap across the Brillouin zone, the bands are said to be connected or entangled.
This is the case in metals and in conduction manifolds of semiconductors and
insulators. In such cases, within a given energy window, the number of bands at
each point in k-space varies and the disentanglement procedure of Souza et al.
[21] is used in order to extract, or disentangle, an optimally-connected subspace
of a given, constant dimension at each k. Once this optimal subspace has been
obtained, the usual localization procedure of Marzari and Vanderbilt [20] may
be applied in order to determine the MLWFs. Once obtained, these provide
a real-space and often intuitive picture of bonding in materials, to the point
that they are now used widely as a post-processing tool in electronic structure
calculations [1].

There are a number of advantages to using MLWFs. First, they span a
much smaller subspace compared to, say, the plane-wave basis in which the
original ground-state electronic structure calculation is performed. The space
of MLWFs is arguably the most compact, minimal manifold possible (1 MLWF
per every band that needs to be described), while still preserving in full the
accuracy of the electronic structure calculation. As a result, matrices in an
MLWF basis can be orders of magnitude smaller in each dimension than in
the original basis, while still reproducing exactly the properties of the ground-
state, thus enabling very eflicient and accurate computation of ground-state
properties, such as interpolated band structures [30]. For example, the band
structure of the valence manifold for silicon is equivalently described by ~3000
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Figure 2: Schematic illustration of the SSG (the single DFT supercell required for automated
QC calculations). The conductor under investigation is flanked on each side by principal layers
PL1, PL2 of the leads and a buffer region B1, B2. The buffer is a length of lead at least as
large as a principal layer whose function is to ensure the disorder of the conductor has no
significant effect on the periodicity of the lead Hamiltonian in PL1 and PL2. Also shown is
the periodic image of PL2 and the regions where each Hamiltonian sub-matrix is derived from
when expressed in the MLWF basis.

plane-waves per atom or 2 MLWFs per atom. Second, since they are localised
in real-space, MLWFs may be used to represent the Hamiltonian of a system
in sparse matrix form. Finally, this sparsity may be exploited in order to build
model Hamiltonians of large, structurally complex systems from Hamiltonians
of smaller fragments.

3. The Single Supercell Geometry

The translational symmetry present in crystals is exploited in electronic
structure calculations by using supercells and periodic boundary conditions
(PBC). A natural basis set to use for such calculations is that of plane-waves
and their benefits for DFT calculations are well-understood [31].

The lead-conductor-lead geometry of Fig. 1, however, is inherently non-
periodic. Therefore, as outlined in Sec. 2, if we are to use PBC for our Landauer
conductance calculations, a transformation to a localised basis set, such as ML-
WFs, becomes essential.

Furthermore, the vast range of structural combinations that one could in-
vestigate means that the change of basis must be coupled to a robust and user-
friendly algorithm that automatically prepares the Hamiltonian obtained from
a calculation on a periodic system for use in the transport calculation so that
high-throughput calculations are possible. The novelty of our work lies in the
automation of these non-trivial manipulations of Hamiltonian matrices and in
streamlining the calculations such that a calculation on only a single supercell
is required; we call this the Single Supercell Geometry (SSG).

The SSG is shown in Fig. 2, whereby a central conductor is sandwiched be-
tween a length of lead on the left and right. The conductor is the disordered
region under investigation and the leads are the contacts whose bulk is peri-
odically repeated ad infinitum in the open (lead-conductor-lead) system. We



split each lead into two parts: the outermost regions must be a PL of lead (PL1
and PL2) and the inner regions a buffer (Bl and B2) such that any disorder
within the electronic structure associated with the conductor is localised within
the region marked Hc. In this respect it is important to converge results with
respect to the size of the buffer regions; we also impose that Bl and B2 must
be at least one PL of lead in length.

By transforming to a MLWF basis, our algorithm uses the SSG to identify
the Hamiltonian sub-matrices required for the transport calculation. Fig. 2
depicts these regions. For the sake of clarity, it is worth highlighting first that
He is in fact built from the contribution of MLWF's within the conductor and
the buffers, and second that the interaction between two adjacent PLs of lead,
H;% and HY!, are built from Hamiltonian matrix elements between MLWFs in
PL1 and the periodic image of PL2. For this reason, we demand that the left
and right leads of the SSG be identical in nature.

The Hamiltonian sub-matrices attained from partitioning the total Hamilto-
nian require a number of operations performed on them before they can be input
into transport calculations. First, we need to re-order the MLWFs in real-space
so that every unit cell in PL1, PL2, B1 and B2 has a consistent sequence of ML-
WFs. This is because the Hamiltonian corresponding to the semi-infinite leads
is constructed from sub-matrices extracted from the SSG Hamiltonian in the
MLWEF basis. The connection matrix H}° is constructed from the Hamiltonian
matrix elements between MLWF's in PL1 and the periodic image of PL2, whereas
HY is constructed from PL1 only. These two matrices are then duplicated along
the block off-diagonal and block diagonal, respectively, of the Hamiltonian of
Eq. (3). In doing so, the implicit assumption is that the sequence of MLWF's
in the rows and columns of the Hamiltonian sub-blocks are the same, which in
general is not true. To overcome this problem we use the positions of the MLWF
centres in real-space to order the elements of the Hamiltonian sub-matrices: the
MLWFs in each unit cell of lead are arranged first according to their position
along one direction perpendicular to the transport direction, then in the other
perpendicular direction, and finally along the transport direction itself. This
ensures that the sub-matrices can be used consistently to build the Hamiltonian
of Eq. (3).

The shape of MLWF's are often chemically intuitive and display atomic-like
or bonding/anti-bonding orbitals. Thus if more than one MLWF exists with
precisely the same centre, as may happen with d-like MLWF's on a transition
metal site, a second level of ordering based on the orbital character of the
MLWEF is performed, employing a technique we have developed using spatially-
dependent integrals to deduce a unique signature for each MLWF (see Appendix
A).

In addition to the ordering of the MLWFs, a second consistency criterion
must also be imposed. The issue stems from the fact that, although MLWFs
are always found to be real, they remain undetermined upto an overall sign,
or parity. As with the issue of ordering the MLWFs, the procedure of building
the Hamiltonian from sub-matrices implicitly assumes that the MLWFs in PL2
have the same parity pattern as those in PL1, which in general is not true.



To address this issue, we enforce a consistent parity pattern at the level
of the unit cell of lead onto the ordered Hamiltonian sub-matrices (PL1, B1,
B2 and PL2). The parities of the MLWFs in the leftmost unit cell of lead in
the SSG supercell are used as the template. By assessing the relative parity of
MLWFsSs in this unit cell compared to translationally equivalent MLWF's in the
other unit cells of the PLs and buffer regions, the pattern is enforced throughout
by multiplying by 41, as appropriate. The relative parities are determined by
using the unique signature associated with each MLWEF.

We outline three caveats that apply to the current implementation of the
SSG method: (i) the Bloch states used as input for determining the MLWF
basis in the SSG are calculated at the I'-point only; (ii) the lattice vectors of
the SSG must form a orthorhombic set and the direction of conduction must be
in the z, y or z direction. (iii) the system under investigation must be quasi-one-
dimensional (although the extension to bulk leads would be relatively simple to
implement. )

3.1. Calculation Procedure

We now outline our general method, this is shown schematically in Fig. 3.
First we must determine the number of unit cells that make up a PL. Con-
sider a supercell of lead with 2n 4+ 1 unit cells along the conduction direction,
whose Hamiltonian in the MLWF basis is found from a I'-point DFT calcula-
tion in PBC. The value of n is chosen such that Hamiltonian matrix elements
between MLWFs in the central unit cell and the left-most unit cell are less than
a certain threshold, which is usually set to be around 10 meV. In practice, for
computational efficiency, instead of a I'-point supercell calculation, we apply
Bloch’s theorem to reduce the supercell to a single unit cell, and perform the
DFT calculation on a regular grid of k-points in the conduction direction. This
calculation is also used to calculate the bulk, or pristine, QC which is used for
validation purposes (see Sec. 4).

Next, the extent of the buffer is determined by assessing the convergence
of electronic structure in PL1 and PL2 with respect to its size. If the disorder
present in the conductor region is short-ranged, then often a single PL of lead
in B1 and B2 is sufficient. This point is illustrated in Fig. 4: we see that beyond
a few unit cells from a defect (hydrogen functionalization in a (3,3) carbon
nanotube), the on-site Hamiltonian matrix elements of the MLWF's recover their
bulk value. Once the extent of the buffer and PLs have been determined, the
SSG supercell may be built and its Bloch eigenstates found from a conventional
DFT calculation. This calculation is usually performed in two steps. First, a
self-consistent calculation at enough k-points to converge the charge density,
followed by a non-self-consistent calculation at the I'-point only, using the self-
consistent charge density as an input.

Transformation to the MLWF basis, Hamiltonian-matrix preparation, and
transport calculations may then be performed. The automated algorithms de-
scribed above, which are implemented in the Wannier90 [1] code are designed so
these steps are performed sequentially, with little or no intermediary user input.
A natural validation of the results may be performed whereby the disordered
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Figure 3: A flow diagram depicting the key steps in our calculation procedure.
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Figure 4: Illustration of the inherent electronic nearsightedness in a (3,3) carbon nanotube
functionalised with a single hydrogen atom. The white-gray spheres represent the atoms of
the structure while the colored spheres represent the deviations from the “bulk” values of the
on-site Hamiltonian matrix elements for each MLWF. The size of colored spheres is another
indication of the deviation of the matrix element from its “bulk” value. The smaller the
sphere, the smaller the deviation.

conductor region of the SSG is replaced by a section of pristine lead: identical
results should be achieved with the bulk calculation.

8.2. Combination of multiple defects

Moving from a Bloch to a Wannier representation is not only a means by
which to represent electronic structure in a very compact manner. It also opens
the possibility to exploit the real-space nature of the basis to build very large
systems — systems so large that a conventional DFT calculation would be in-
tractable.

The fact that electronic nearsightedness becomes explicitly manifest in the
MLWF basis, as highlighted in Fig. 4, allows them to be used to build the
Hamiltonian matrix of a large structure from the smaller Hamiltonian matrices
of its constitutive sub-systems.

In order to illustrate the method, consider the schematic lead-conductor-lead
system shown in Fig. 5 in which the conductor region has two identical defects
separated by a region of lead material in the form of a buffer (B1’ and B2').
We could calculate the QC of this structure by making a SSG with the whole
conductor (regions X and Y). However, we may exploit the nearsightedness
of the MLWF basis to find a more computationally efficient approach. If the
effect of the defects is localised (in the sense that the local electronic structure
and geometry at the junction between B1’ and B2’ is sufficiently similar to
that seen in the leads), then we may construct the Hamiltonian for the system
with two defects (Fig. 5) from information gathered from one SSG calculation
containing just a single defect (Fig. 6). Since this system is smaller, there is a
clear advantage in terms of computational cost for the initial DFT calculation.

The Hamiltonian of the conductor in the two-defect system may be written

as
Hx Hxy )

He = 10

¢ (H;(Y Hy ( )

where X, Y and XY represent blocks of Hamiltonian matrix elements among
MLWFs in region X, among MLWF's in region Y, and between MLWF's in these
two regions, respectively.
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Figure 5: Schematic for a SSG with a conductor containing two identical defects. We identify
two regions in the conductor, X and Y.

Z
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Figure 6: Schematic for a SSG with a conductor Z containing one defect.

Given the geometry of the system, and the nearsightness of the electronic
structure, blocks Hx and Hy should be quite close in terms of their matrix
elements. Moreover, because of the constraint that a buffer is at least as large
as a lead principal layer, we expect the non-zero matrix elements of Hxy to
correspond closely to the overlaps between the two adjacent principal layers.
This observation stems from the very definition of a principal layer. As a con-
sequence, we can construct a close approximation to Ho by using the matrices
extracted from a SSG calculation of the structure shown in Fig. 6. In this ap-
proximation, blocks Hx and Hy are replaced with Hz, and Hxvy is replaced by
the overlap matrix between two principal layers of lead (namely H;, see Fig.

2), i.e.,
H; HD
He ~ 5 . 11
o (Hi“ i (1)

An example of this approach is demonstrated in Sec. 4 for a defected silicon
nanowire.

The approach described above is general and may be applied to any number
of isolated defects in the conductor region. In this way, Hamiltonians for systems
of almost arbitrary size may be constructed with first-principles accuracy from
one DFT calculation in a SSG with a single defect. We note in passing the
importance that the MLWF's parities are consistent between different regions of
the system. As mentioned in Sec. 3, the parities need to be checked and made
consistent to allow seamless connections between Hamiltonian sub-matrices, a
task that is automatic in the present approach.

Furthermore, the Hamiltonian of a conductor with more than one type of
defect may be constructed by combining matrix elements from separate SSG
calculations. In this latter case, care must be taken in order to align the Fermi
energies of the two (or more) distinct calculations. This is the consequence of
the lack of an absolute reference for the electrostatics in PBCs, which can lead
to Fermi energies that are shifted by a constant.
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Additionally, building a large-scale structure with tens of defects and tens of
thousands of atoms can be a painstaking task. In order to simplify this process,
we have designed a utility package to the Wannier90 code that helps the user
create these large scale structures. From a single Wannier90 calculation in the
SSG geometry, both randomised and custom-made structures can be built with
ease. An illustration of the use of that functionality is given in the fourth
example of Sec. 4.

4. Applications

We present now a number of examples using the method described in Sec. 2.
The aim is to illustrate its robustness in a range of applications: beginning
with a defected atomic chain, and building complexity via a heterostructured
nanowire and a spin-polarised graphene nanoribbon. Finally, we provide an
example to validate the use of SSG Hamiltonian fragments in the construction
of model Hamiltonians for larger systems. All DFT calculations are performed
with the Quantum-ESPRESSO package[32] and with (unless otherwise stated)
norm-conserving pseudopotentials.[33]

4.1. Atomic Al Chain

First, we consider the QC of an Al chain with a single Na atom substitutional
defect. The construction of the SSG is performed with care: a suitable PL
length must first be decided upon by assessing the rate of the decay of the
matrix elements of the Hamiltonian between MLWF's. Additionally, the defect
is expected to have a large effect on the electronic structure, thus the buffer size
must also be carefully chosen.

To assess the length of a PL we use the method outlined in the Sec. 3.1,
whereby the Hamiltonian in the MLWF basis of a single unit cell of lead is de-
termined at many k-points. We perform the DFT calculation on a single unit
cell (consisting of one Al atom), with a regular grid of 32 k-points along the ex-
tended direction. The total energy is converged to 107! eV using a 500 eV en-
ergy cut-off, exchange and correlation are described by the PBE functional[34].
The unit cell is 2.47 A long in the conduction direction, with 10 A separating
periodic images in the transverse directions. We proceed to the determination
of the MLWF basis by disentangling three Wannier functions from 30 bands.

Fig. 7 shows the decay of the interaction between MLWFs by averaging
the on-site Hamiltonian elements (wyo|H|w,r) between equivalent MLWFs in
different unit cells labelled by the primitive lattice vector R (black solid line).
The maximum matrix element (red crosses) gives the maximum error incurred
due to truncation of the interaction if the PL were to be cut at that unit cell. In
this case, the PL is chosen to be eight unit cells long, such that the maximum
truncation error is approximately 11 meV and the average error is 9 meV.

A buffer size of one PL plus three unit cells is chosen for the SSG such that
on relaxation the RMS difference in the position of the MLWF centres from their
ideal bulk position in the rightmost unit cell of PL1 is less than 5 x 1073 A.

12
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Figure 7: Decay of the Hamiltonian elements (wno|H|w,r) between increasingly distant Al
unit cells in units of the primitive lattice vector. Cell averaged elements are shown in black
(error bars show a standard deviation); the largest Hamiltonian values between unit cells
increasingly distant from R = 0 are shown by red crosses. The dashed line highlights the
chosen PL size (see text).

The SSG therefore consists of a total of 39 atoms. Performing the transport
calculation provides the QC and DoS shown in Fig. 8 (red, dashed; centre and
right panels, respectively). For comparison, the bulk band structure, QC and
DoS (black; left, centre and right panels, respectively) are also shown. In the
bulk case there are clear contributions from the s band and two degenerate p
bands to the QC: these are both significantly reduced in the defected case, with
conductance close to zero at lower energies. This may be interpreted as the
hybridization of the s orbital associated with the Na to adjacent Al p orbitals.

4.2. Si/Ge Nanowire Heterostructures

We now increase the complexity of the SSG system by considering a thin
(0.39 nm radius) Si nanowire in the (110) direction with a Ge heterostructure
inserted as a defect. The DFT calculations detailed in this example (and those
on the nanowires of in Sec. 4.4) are performed within the LDA and with an
energy cutoff of 400 eV. We begin with a single cell for the lead (8 Si atoms, 8
H atoms) (see Fig. 9 (top)) and perform a DFT calculation with 20 k-points,
allowing atomic positions and lattice parameter in the conduction direction to
relax. Forces are converged to 5 meV/ A. Once the ground-state is found, we
transform to the MLWF basis and assess the PL length in the usual manner.
Fig. 10 displays the decay of the Hamiltonian matrix elements as a function of
increasingly distance, using the same notation as Fig. 7. With four unit cells in
a PL the average truncation error is below 2 meV.

A SSG is built by repeating the single unit cell of Si and inserting 5 copies
of a similarly relaxed Ge unit cell (see Fig. 9, bottom panel). Without further
relaxations of the geometry, it was found that a single PL was sufficient to
converge the electronic structure in PL1 and PL2 to that of a bulk lead. Hence
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Figure 8: Left: Band structure of the single cell, single Al atom bulk transport calculation.
Centre: QC comparison of bulk (black, solid) and defected SSG (red, dashed) systems. Right:
DoS comparison of bulk and defected SSG.

W
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Figure 9: Top: Front and side view of single Si cell used for PL determination and bulk
transport calculations. Bottom: Supercell of the Si/Ge nanowire for use in the SSG method.
Red, cyan and magenta represent H, Si and Ge atoms respectively.

our SSG consisted of 16 Si unit cells with five Ge unit cells sandwiched at their
centre (Fig. 9, bottom panel). Using our automated routines, this 336 atom
unit cell provides the valence QC and DoS shown in Fig. 11 (red, dashed lines;
centre and right panels, respectively). The bandstructure, QC and DoS of the
pristine silicon nanowire are also shown (black solid lines; left, centre and right
panels, respectively). The drop-off in conductance just below the Fermi level
is due to localization of the highest occupied molecular orbital within the Ge
quantum well.

4.8. Spin-polarised graphene nanoribbon

In this third example, we look at a spin-polarised graphene nanoribbon func-
tionalised with a single hydrogen atom. As with the previous examples, we start
with a calculation on a single unit cell. Our system is a zigzag nanoribbon of
length 2.46 A with a width of 9.27 A. A regular grid of 20 k-points is used in
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Figure 11: QC (centre panel) and DoS (right

panel) for pristine Si nanowire (solid, black
lines) and axially heterostructured Si/Ge nanowire (dashed, red lines). The bandstructure of

the pristine silicon nanowire is also shown (left panel).
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Figure 12: Interpolated band structure (up spins) for a pristine zigzag graphene nanoribbon
(black solid lines), and “exact” band structure in the complete plane-wave basis set given by
the electronic structure code (red dots). The Fermi energy is set to 0 eV.

the conduction direction and the supercell is built such that a vacuum region
of 10 A lies between periodic images. A cutoff of 400 eV for the kinetic energy
and 4500 eV for the charge density is used together with a PBE exchange and
correlation functional and ultrasoft pseudopotentials[35]. Both the atomic posi-
tions and the unit cell length were fully relaxed; individual forces are less than
18 meV/A.

We must specify a starting non-zero magnetization such that the self-consistent
loop converges to a magnetic state (in this case we restrict ourselves to a ferro-
magnetic state, even though the ground state is anti-ferromagnetic [36]). Next,
a non-self consistent calculation is used to compute the band energies for both
“up” and “down” spins. It is important at this stage to compute a sufficient
number of bands to capture the entire m manifold, otherwise the disentangle-
ment of the conduction manifold would be meaningless. In our calculations, we
used 30 bands and we kept all the bands up to —0.5 €V in the frozen window
for the disentanglement procedure.

The quality of the disentanglement may be assessed by comparing the inter-
polated band structure provided by Wannier90 to the full band structure given
by the electronic structure code (for this ferromagnetic state, both spin types
have an almost identical band structure except around the Fermi level). As can
be seen from Fig. 12, the match between the Wannier interpolation (solid lines)
and the “true” band structure (dots) is excellent. We see that the interpolated
band structure describes perfectly conduction states upto about 2.5 eV above
the Fermi energy.

Satisfied with the MLWF transformation, the PL size is assessed in the
manner described earlier. Choosing a PL size of four unit cells (with a maximum
truncation error of less than 46 meV) is sufficient for this example.

The SSG consists of 4 unit cells of lead in both the PL1, PL2, B1 and B2
regions. Two unit cells form the conductor region (see Fig. 13), upon which a
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Figure 13: Top and side view of the SSG structure used to compute the quantum conductance
of both “spin up” and “spin down” channels. Carbon atoms are yellow and hydrogen is shown
in red. The overall supercell consists of 18 unit cells of lead and an extra hydrogen, which
totals 181 atoms.

hydrogen atom is placed at an approximate C-H bond length above one of the
carbon atoms. The whole system is fully relaxed both for atomic positions and
supercell length in the direction of conduction. The force convergence criteria,
cutoffs and energy convergence criteria are similar to the ones used in the single
lead unit cell case above.

After relaxing the structure, the next step is to perform a spin-polarised DFT
calculation followed by a non-self consistent calculation to extract the “up” and
“down” band energies at I'. The QC is calculated in the usual manner for each
spin channel separately with Wannier90. The result for the spin-dependent QC
is shown in Fig. 14.

We see on the graph that at the Fermi level the quantum conductance of
the system is slightly spin-polarised with a majority of “up” spins. Applying a
slightly negative bias, we see that the system can be close to 100% spin-polarised.
The opposite spin polarization can be achieved with a slightly positive bias.

4.4. Doubly Defected Si Nanowire

This final example demonstrates an extension to the SSG method whereby
the sub-Hamiltonians it creates are manipulated and combined to construct
model Hamiltonians of larger systems (see Sec. 3.2). All DFT calculations out-
lined here are performed within the LDA, at the I" point, with the same energy
cut off and tolerances described in Sec. 4.2.

The system we aim to describe is shown in Fig. 15 (top): a Si nanowire
with two single cells of Ge separated by a length of Si. This system may be
thought of in two ways: first, as a Si nanowire with a single defect containing
the two cells of Ge and the separating Si cells; and second as doubly defected
Si nanowire, with each defect being a single cell of Ge. These two perspectives
lead to two methods by which we can determine the QC. The first suggests a
SSG calculation in which the conductor region contains the two Ge defects. The
resulting QC is see in solid black in Fig. 15 (bottom). This is compared to the
QC derived from a calculation in which the multiple defect method described
in Sec. 3.2 is used.

For the doubly defected case, we perform a SSG calculation on a Si nanowire
with a single Ge cell defect and use the Hamiltonians provided to build a Hamil-
tonian of the larger system in question (Fig. 15 (top)). The QC from this
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Figure 14: Spin-dependant QC close to the Fermi level. One can clearly see that depending
on the applied bias, a spin-polarised current can be induced in this system.

calculation is seen in dashed red in Fig. 15 (bottom). The two calculations
agree remarkably well, validating the premise of nearsightedness discussed ear-
lier. Since the computational expense of conventional DFT methods scales as
O(N3), where N is the number of atoms in the supercell, the multiple de-
fect method represents a significant step forward to describe realistic system
sizes with first-principles accuracy, and can be used to construct faithful model
Hamiltonians for systems that contain tens of thousands of atoms[37, 38].

5. Conclusions

In this paper we have presented a user-friendly and automated approach to
calculate the quantum conductance and density of states in quasi-one-dimensional
systems. The method converts the Bloch eigenstates of a single DFT calcula-
tion, within our single supercell geometry, to a basis of MLWFs. In this basis we
determine the electronic transport properties by automatically extracting the
Hamiltonian sub-matrices required for the transport calculation. To illustrate
the robustness, wide applicability and efficiency of our method, we have pre-
sented calculations on an atomic Al wire, a spin-polarised graphene nanoribbon,
and axially heterostructured Si/Ge nanowires. Furthermore, we have shown how
the transport properties of meso-scale conductors that are beyond the current
capabilities of conventional first-principles electronic structure calculations can
be calculated with first-principles accuracy by exploiting the transferability of
MLWFs as building blocks of large model Hamiltonians.
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Figure 15: Top: Si nanowire with two Ge heterostructure defects. The system is investigated
by manipulating the Hamiltonian of a single defect (multiple defect method) and directly using
a SSG. Red, cyan and magenta atoms are H, Si and Ge respectively. Bottom: Comparison of
QC for the two methods, showing excellent agreement.
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Appendix A. MLWF Signatures

Here we detail the set of spatially-dependent integrals that we use to deter-
mine a signature for each MLWF. These signatures are used for two purposes.
First, they enable a sorting algorithm to distinguish between MLWFs of differ-
ent shapes with similar centers. Thus they may be ordered consistently over
between unit cells — a key requirement for our approach. Secondly, they are used
to determine the relative parity of MLWFs so that a consistent parity-pattern
may also be enforced.

We begin with the integral



where V' is the volume of the cell, q is a vector in reciprocal space and r. is
the centre of Wannier function w,(r) (we assume sampling at I'-point only).
One may write wy, (r) = > Umntm(r), where u,,(r) is the periodic part of the
Bloch wavefunction at band m. Uy, is the unitary matrix found in Eq. (8) that
minimises the spread of the Wannier functions. u,,(r) can be written in terms
of its discrete Fourier transform @y, (G), um(r) = Y. g @m(G)e'ST. Thus, the
integral in Eq. (A.1) may be written as

L(q) = e rae Z Umnﬁ:n(q)v (A.2)

where q is a G-vector of the form [b; + mbs + nbs, where {I,m,n} € Z and
{b1,ba, b3} are the reciprocal lattice vectors. Equating real and imaginary
parts of Eq. (A.1) and Eq. (A.2), one may write

(@) = 3 [ wn(e)costa- (v = xo) dr

e tare Z mn oy, ] (A.3)

= Re

and

I™(q) V/ wy(r)sin(q - (r —r.)) dr

=1Im [e fare Z mnl, 1 (A.4)

Since most DFT codes compute 4,,(G), obtaining any set of I, incurs negligible
computational expense.
The set of integrals that are used to determine a signature are given by

= —/ Wy (r) sin® (im (x — xc)> sin” (i_:(y — yc)) sin” <i—7:(z - zc)) dr

‘ (A.5)

where r. = (2¢,¥e, 2c), V = LyLyL., a,8,v € {0,1,2,3} and a + 5 + v < 3.
Each of the resulting 20 integrals may be written as linear combinations of
those outlined in Eqs. (A.3) and (A.4). The signature of the MLWF is thus
given by the 20-element unit vector of these integrals. Dot products between

two MLWFs’ signatures reveal in a compact form their relative shape and parity.
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