arxiv:1012.3911v1 [physics.comp-ph] 17 Dec 2010

Accelerating the Fourier split operator method via graphic S processing units

Heiko Bauke* and Christoph H. Keitel
Max-Planck-Institut fir Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Current generations of graphics processing units havediirmo highly parallel devices with general computing
capabilities. Thus, graphics processing units may bezatlli for example, to solve time dependent partial
differential equations by the Fourier split operator methocdthis contribution, we demonstrate that graphics
processing units are capable to calculate fast Fouriesfmams much moref@ciently than traditional central
processing units. Thus, graphics processing units rerfileieat implementations of the Fourier split operator
method possible. Performance gains of more than an ordeaghitude as compared to implementations for
traditional central processing units are reached in thetisol of the time dependent Schrodinger equation and
the time dependent Dirac equation.

PACS numbers: 02.70.-c, 03.65.Pm

l. Introduction puting systems of their time. Today, however, even low-end
consumer computers are parallel systems. The new emerg-

. ing ubiquitous parallel architectures indicate a silemagagm
For several decades, users and developers of high peer:rg q P )

. o ) hange in computing or as Herb Sutter [4] pointed out “The
mance computing applications could trust on MOOre’s lawgge 1ynch is over” In order to exploit the power of modern
The nl_meer of transistors that can be pla_ced inexpensivel, . vare architectures it is required to write parallellizpp
on an mteg_rated cwcwt_has doubled ap_proxmately even/ tW ione The term “computing” becomes synonymous to “paral-
years. This exponential growth provided the basis for ang computing.”
ever-increasing computmg_ power of modern centra] Process rpg purpose of this contribution is to evaluate the Fermi
ing units (CPUs). Thus, high performance computing appliy PU computing architecture and to demonstrate how an im-

cations fbec]:ame facsltDeLrJ by !Il_JhSt tlr(ustlngMon l\/!o?res Ia\(/jv a,n lementation of the Fourier split operator method on GPUs
waiting for faster S: anks to Moore's law, today's may boost the performance of the numerical propagation of
desktop computers supply the computational power of ttte Ia%ime dependent partial fierential equations. The remainder

decades_, super-computers. . of this paper is organized as follows. In section Il we give a
Transistor counts still continue to grow exponentially.

Hard ¢ h | ke sinal eneric description of the Fourier split operator method an
ardware manufacturers, however, no longer make singlgy,; oy to apply it to the time dependent Schrédinger equa-
computing units more complex and faster. Clock rates an

) T T on and the time dependent Dirac equation. Section lllgive
execution optimizations have reached their limits. Nowdhar b g 9

fact the pleth ft istors t a very short introduction to the CUDA architecture and de-
ware manufacturers use the plethora of transistors to pyma g ;hag oyr GPU implementation of the Fourier split oparato
computing units on a single chip manufacturing highly paral

el . hi Th or direc method while section IV presents performance comparisons.
efdcom{:)utmg arc |t|e_ctures. h.ere are tvx{ohmayor IFeEioN | section V we illustrate some applications of the Fourier
of development, multicore architectures with a few (typica split operator method.

two to a few dozen in the near future) general purpose comput-
ing units and dedicated accelerators with several hundred o

more computing units with reduced capabilities each as com- . .

pared to traditional CPUs [1, 2]. These accelerators may bll. The Fourier split operator method
implemented in field-programmable gate arrays or may be cus-

tom built systems as the Cell Broadband Engine Architecturg ot s consider the Cauchy type initial value problem proble
or the ClearSpeé¥f CSX700 Processor, for example. Graph-
ics processing units (GPUSs) with general purpose computing

capabilities brought accelerated computing to the mass mar ow(x,t) A(w(x, 1 (1a)
ket. Employing GPUs to perform computations that are tra- o ’

ditionally handled by CPUs is commonly referred to as GPU -
computing [3]. with some possibly time dependentfdrential operatoA(t)

Parallel architectures are not new in the high performanc@cting on the coordinates = (x1, X, ..., X,) and with the
computing community. In the past, many high performancdnitial condition
computing applications employed various kinds of parallel
computing architectures which had been the high-end com- W(X, 0) = Wo(X) . (1b)

The functionw(x, t) depends orx and the time coordinate
and may be real or complex and possibly vector valued. The
* bauke@mpi-hd.mpg.de Cauchy problem (1) includes, for example, th&ulion equa-
" keitel@mpi-hd. mpg.de tion, the Focker-Planck equation [5], the current-free alk
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equations [6], the Schrodinger equation, the Pauli eqoatio space. Expandind (t +17,1) to the third order int and
the Dirac equation [7], as well as the Klein-Gordon equaprovided that the operatok(t) has the form (4), the time-
tion in the Feshbach-Villars representation [8] or the Blac evolution operator (3) can be factorized [9] into

Scholes options pricing equation.

Using Dyson'’s time ordering operat@'r, the formal solu- . thr .
tion of (1) is given by U+t = eXp(f At dt') +0(7%) =
t
w(x, t) = U(t, O)w(x, 0) @ Us (t+ 7t 3) 04 (t+ 7t ) U (t+ 7t 3)+O(7) . (6)

with the time-evolution operator [5, 9, 10]
Neglecting terms of ordeéd (73), equation (6) gives an explicit

12 . .
Ot ty) = T At dt’ 3 second order accurate time-stepping scheme for the prepaga
(t2.t) exp(L ®) ) @) tion of the functionw(x, t)

that efects the function’s evolution from timg to time t,.

For some highly symmetric operatohgt) in (1), analytic ex- WX, t+7) =
pressions of the time-evolution operator (3) can be caledla j; (t + 1.1, %) UAz (t+7t1) UA1 (t + 1.t %)W(X, t)+O(T3) .
However, investigations of many relevant problems require @)
numerical methods, for example, the Fourier split operator

method, which we will shortly describe in the following para This scheme translates thefutiulty of calculating the action

graphs. of operator (3) to the task of calculating the action of (5) fo
O = A; andO = Ay, respectively. Strang [20] utilized the
. . . splitting (7) to calculate the action of (5) in real space by a
I.1.  General outline of the Fourier split finite differences scheme. For many Cauchy problems (1),
operator method however, one can find a splitting (4) such that the operator

Uy, (t+7.t.0) is diagonal in real space and} (t+ 7,t,6) is
Fleck et al. [11] introduced the Fourier split operator noeth ~ diagonal in Fourier space. Thus, the calculation of these op
as an explicit ime stepping scheme for the solution of tineti ~ €rators becomes feasible in the appropriate space and (7) is
dependent scalar Maxwell wave equation in Fresnel approgalculated via
imation. The method is applicable to Cauchy problems (1)
with a differential operatoA(t) that has the property that it — w(x,t+7) =
may be separated into a sum of two operators . s .
o R Ug, (t+7t, %)?‘1{UA2 (t+7t2)F (U (t+T,t,%)W(X,t)}}
At) = Au(t) + Ax(t) (4)
< - A _ +0(7%) . (8)
such thatA(t) can be easily diagonalized in real space while

Ae(t) can b.e eas_ily diagonalized in.Fou.rier space, a reqUirthe expressiorr {-} in (8) denotes the Fourier transform of
ment that is fulfilled by many partial fierential equations the argument ang 2 {-} the inverse Fourier transform.

of relevance. Thus, shortly after Feit et al. [12] solved the . . . .
g ) . L e In a computer implementation of the Fourier split operator
Schrddinger equation with a time independent Hamiltonian : L .
method, the functiom/(x, t) is discretized on a rectangular reg-

numerically by the Fourier split operator method, it became | . : ; .
; ._ular lattice ofN points and the continuous Fourier transform
a standard tool for the propagation of quantum mechanical : . .
. : IS approximated by a discrete Fourier transform. The compu-
wave equations. Later, the method had been generalized to ﬂt]ational complexity of propagating the functiov, t) from
Schrddinger equation with a time dependent Hamiltoniaip [13 piexity ot propagating ’
and it was applied to other equations, for example, the Dira
equation [14-17], the time dependent Gross-Pitaevskiaequ
tion [18], the non-linear Schrodinger equation [19], and th
time dependent Maxwell equations for electromagnetic wave
in random dielectric media [6].

The central idea of the Fourier split operator method is to
approximate the operator (3) by a product of operators tieat a
diagonal either in real space or in momentum spaceQ(6t  [1.2.  Fourier split operator method for the
denote some possibly time dependent operator and define the Schrédinger equation
operator

timet to timet + 7 is dominated by the transformation into
Fourier space and back into real space. If these transfaems a
accomplished by the fast Fourier transform the computation
an elementary step of the Fourier split operator methodstake
O(Nlog N) operations.

A LI The Schrddinger equation is an equation of motion for a
Usl(tz. 11, 6) = exp(éft O(t)dt) ’ ®) complex-valuegd sce?lar wave functigh(x, t) evolving in a
' d-dimensional spacr and in timet. In its most general form,
that depends on the timésandt, and the auxiliary param- jt describes a non-relativistic spin zero particle of masand
eters and IetUé(tz, t1,6) denote the operator (5) in Fourier chargeq in the electromagnetic potentiaigx, t) and A(Xx, t).
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The Schrodinger equation is invariant under Galilean faans  two component (for one-dimensional systems) or four compo-
mation and reads nent (for two- or three-dimensional systems) complex-edlu
vector function. The Dirac equation for a particle of mass

ihw = and charge moving in the electromagnetic potentialé, t)
ot 1 andA(x, t) is given by
A T v 2
o CAIV = GAX, )" + a¢(x. O | F(x.1) . (9) LOVXY
In order to apply the Fourier split operator method for prop- gt
agating¥(x, t) under the &ect of (9), we have to restrict the . ' 5
vector potential to homogeneous fieldgx, t) = A(t); an ap- C_ @i _'ha_ri — AR D]+ ab(x. D) + mcB | H(x, 1)
proximation that is known as the dipole approximation. tSpli =1 (14)
ting the Hamiltonian (9) in dipole approximation into a pote
tial energy term and a kinetic energy term with the matricesy; andg and the speed of lightin vacuum

A andA;(x, t) denoting théth component of the vector potential
A qi&(x, 0 (102) A(x,t). The matricesy;, 8 obey the algebra

. ~ e . _ 2

hhz = 2m( AV = GA(1) (100) ?=p=1, aiax+axai =20k, af+pai=0. (15)

separates the spatial dependent parts from spatial deesat s gligebra determines the matricesand only up to uni-
which makes the operatdd (t+.t,0) diagonal in real  tary transforms. In numerical applications, we adopted the
space andJy, (t + 7,t,6) diagonal in momentum space, re- so-called Dirac representation with

spectively. The action dﬁ& (t+ 7.t,6) on a real space wave

function is given by 0001 0 0 0-i
t I 0010 0o = 00i O
N B i N e 1=1o10 0" 2710 i 0 of"
UAl(t+r,t,6)‘P(x,t)_exp( 572 q¢(x,t)dt)‘P(x,t) 1000 © 00 0
_ , . (11) 0010 100 0 (16)
and the action of the Founerspaceoperalgzr(t+r,t,6) to 00 0-1 01 0 O
a wave function in Fourier space =11 0 0 ol B= 00-1 0
0-100 00 0 -1

P(p.t) = F ((x. 1) =
1 , g For one-dimensional systems, the Dirac representation re-
) f‘}’(x,t) exp(-ip-x/h) d°x (12)  Jucesto

S I
Ug (t+7.t.6)P(pt) = _ _
ot _In order to apply the Fourier split operator method to the
exp(_(gl_ f — (p-gA(t))? dt’) P(p,t). (13) Dirac equation (14), we split the Hamiltonian into an intera
hJy  2m tion part and a free particle part
Note that it is crucial for the application of the Fourierispl d
operator method that the vector poten#igt) does not depend inAg = CZ ai (~GAI(X, 1) + Ge(x, 1) , (18a)
on the spatial coordinate The expansion of the Hamiltonian —
of the Schrédinger equation (9) for a particle in an arbytrar d
vector potentialA(x, t) contains the term @iz/m)A(x,t) - V, inAy = CZ a; (—ihi) +mc28 (18b)
that is spatially dependent and contains spatial deriegtiv — ori
too, coupling momentum and coordinate space. Coupling be- R
tween momentum and coordinate space is absent for vectand calculatetﬂ,&1 (t+7,1,0) andUA2 (t+7t,06) in the follow-
potentials in dipole approximation but also, for exampte, f ing way.
the vector potential of a linearly polarized plane wave with The operatoﬂAl (t + 7,t,6) may be determined by splitting

A(x, 1) = (Au(xs,1),0,0) [17]. A further into
Al = A]_’]_ + Al’z (19)
11.3.  Fourier split operator method for the with
Dirac equation R
inAL1 = gp(x,1), (20a)

In contrast to the Schrddinger equation, the Dirac equdtipn A d
describes a relativistic spin half particle and it is inaatiun- iAo = CZ ai (—gAI(X, 1)) . (20b)
der Lorentz transformation. A Dirac wave functi#iix, t) is a i=1
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BecauseAl 1 andAlz commute we may factorize the operator The operatotjA2 (t2, t1, 6) equals the time evolution opera-
UA (t+71t,0)into tor of the free particle Dirac Hamiltonian. In Fourier spdtce
R R has the form
UA1 (t+7t0)=Us, t+7t0)Us, (t+7.10) (22)

. d
5 i
with the diagonal operator Ug, (t+1.t,0) = exp[—érg [CZ aipi + mczﬂ)] . (27
i=1

H t+7
UA“ (t+7,1,0)P(x1) = exp(_g'_ qé(x, t') dt’ | P(x, 1) . wherep; denotes théth component of the momentum vector
' h Ji p. In order to calculate the operator exponential in (27) we

(22)  haveto diagonalize the operator
The operatoUA (t+7,t,6), however, involves matrix expo-

nentials, which | may be calculated by taking into account the s d

Dirac algebra (15). Exponentials af are obtained by sum- ihAy = CZ aip; + me?B (28)
ming the exponential-function’s Taylor sum explicitly.tio- i=1

ducing some auxiliary complex numbexsve find by introducing the scalars

a S k ) 1+ 1 1/2
exp[l Zaiai] = Z P [I Zaia’i] d:(p) = >* W ) (29)

]2" the unitary matrix
aj

@I ) H & [1 ) i(P) = d.(p) + d-(p) Z Bp-ar. (30)
oo (_1)k d ) . d o (_1)k d ) |p|
= ;O (2K)! ; al ; aic kZ:;) (2k +1)! ; & and its Hermitian adjoint™(p). The matrixu”(p)ih,&zuT(p) is

diagonal [21] and it reads for two- or three-dimensional sys

d d Y2 d tems
RIS I P o o

0
0 E(p O 0
0

Al DA AT (1) =
(23) G(p)inA0"(p) = 0 0 -E(p (31)
where we have used 0 0 0 -E(p
g oK g ok with
[zl: aﬂi] - {[zl: aai] ] E(p) = \Jmect + 2. (32)
I= 1=
d 4 i K S 2k Thus, the Fourier space operator (27) simplifies to
= 2 .2+ + = 2 s ~
{;alan ; 1=1a| (i “J“I)] [ ;aw] Ug (t+7.t,0)¥(pt) =
(24) e_iE(p)T/h 0 0 0
P 0 elE@Pvr g 0 |. .~
For convenience, let us define a(p) 0 0 oo o [UPF(RD. (33)
_ ter 0 0 0 éEP/n
i = i(x, ) dt’ 2 . . . .
A ¢ Al U)dt (252) For the one-dimensional Dirac equation where the vector
potential reduces to a scal&g(x,t) and the wave function
and ¥(x t) has only two components the operatdys, (t + 7. t, )
y andUy, (t +.t,6) have to form
A( _ A 2 R
A = ; AGCD?, (25b) Us, (t+7.t,0) ¥(x 1) =
oC — . . oC —
then we get with (23) (cos(-Aux D) +iaasin(- Ak D) wx - (34)
Ug, (t+7.8,6)¥(x. t) = and
cos(—d—cAT(x, t)) +i A'(X t)a. sm(——A(x t)) Y(x,t). Ug, (t+7.6.0)¥(p. 1) :‘
h £ A(X, 1) g IE(P)T/h

(26) O(p)f( 0 éagﬁh)ﬂ(p)‘i'(p,t). (35)



l.  GPU implementations of the TABLE 1: Comparison of some technical key features of the high-

Fourier li r r meth end consumer graphics card NVIDIA GeForce GTX 480 and the
ourier sp t ope ato ethod computing processor module Tesla M2050 (source: NVIDIA).

GeForce GTX 480 Tesla M2050

l11.1. GPU computing

Processor cores 480 448

Processor core clock 1.40 GHz 1.15GHz
As we have outlined in Section I, the Fourier split operator Memory 1.5GB 3GB
method consists of three elementary steps, the applicafion Memory clock 1.848GHz  1.546 GHz
the two operatorl;AJA1 andL]A2 plus the calculation of the fast Memory bandwidth 177GR  148GBs
Fourier transform and its inverse. All these three steps may Power consumption ~ 250 W < 225W

be parallelized. The application bAfAl or UA2 is embarrass-
ingly parallel—each grid point can be updated indepenglentl

from others—and also the fast Fourier transform may be pafy graphics hardware by NVIDIA but provides more flexibil-
allelized eficiently [22]. ity than OpenCL or DirectCompute. OpenCL is the platform

Scalable parallel performance, however, iffidilt to at-  jndependent but has no support for-€and DirectCompute
tain on traditional CPU systems due to the imbalance of higRyorks only on Microsoft Windows systems.

CPU speed and relatively slow memory. The Fourier split 0p- The term CUDA also refers to some GPU architectures by
erator method in particular is inheArentImeemory bandwidthihe hardware manufacturer NVIDIA. The latest CUDA GPU
bounded because the applicationlyf or Uz, requires only  architecture is called Fermi. It features up to 512 computin
O(N) operations and the calculation of the Fourier transformcores which are organized in 16 streaming multiprocesdors o
takesO(N log N), whereN denotes the number of grid points. 32 cores each. Each of the 32 cores of a streaming multipro-
Its low computational complexity is a very beneficial featur cessor executes the same instruction dfedént data sets at

of the Fourier split operator method but it also means thathe same time. Therefore, GPUs belong to the ctasgle In-
there is no or little potential data reuse making the memorytruction, Multiple Data streams (SIMD) in Flynn’s taxonomy
bandwidth a limiting factor. [24].

GPU computing [2, 3] may help to overcome these limita- GPU accelerator cards come in twdfdrent flavors, tradi-
tions. Due to its massively parallel architecture, GPUsghea tional graphics cards, as the NVIDIA GeForce GTX 480, and
a peak performance in floating point number operations thadedicated computing processors, as the NVIDIA Tesla M2050.
is more than one order of magnitude higher than the peak pefable 1 compares some technical key features of these two
formance of current CPUs. GPUs also provide higher maxieards. Both are based on the so-called Fermi architecture bu
mal memory bandwidth. Intel's Cot¥ 7 CPUs, for example, differ, for example, in memory and clock rates. According to
reach up to 25.6 GB memory bandwidth while NVIDIAs this table, the dedicated computing processor M2050 seems t
TesldM M2050 and M2070 computing processors—whichbe inferior to the GTX 480. However there are two important
are based on GPU technology#er up to 148 GB mem- features that qualify the M2050 for high performance comput
ory bandwidth, see also Table 1. Modern GPUs attain theiing applications. It has larger memory with error correctio
impressive computational performance figures withoutisign and full double precision performance. In consumer Fermi
icantly exceeding the power consumption of high-end CPUSGPUs as the GTX 480, the number of double precision float-
In fact, GPUs and other accelerators provide the best flpatining point operations that may be carried out per clock cycle
point performance per watt of current high performance comis reduced by a factor of four as compared to dedicated GPU
puting architectures. computing processors based on the Fermi architecture.

A GPU has its own memory. This means, before one can
run a GPU computation the input data has to be transferred
2. CUDA parallel architecture and from the compu'ger’s main memory (also calleq host memory)
. to the GPU device memory. GPU computations are carried
programming model out in device memory and final results will be transferreddac
into host memory. Memory transfer is a relatively slow op-
GPU computing is enabled by programming models that preeration. Therefore, one should reduce the number of mem-
vide a set of abstractions that enable to express data paraky transfers to reach high performance. The CUDA archi-
lelism and task parallelism. These programming models artecture provides three fiierent kinds of host memory, non-
typically implemented by equipping a sequential general pu pinned, pinned, and mapped memory. Memory transfers with
pose programming language, as for example C or Fortrapjnned memory are faster than memory transfers with non-
with extensions for parallel programming and providing anpinned memory. However, allocating pinned memory is slow.
application programming interface. OpenCL [23], Micrdsof Mapped memory allows a GPU to work directly on data in
DirectCompute and CUDA by NVIDIA are the most popu- host memory. Thus, with mapped memory there is no need
lar programming models for GPU computing. For our imple-to copy data but a GPU will access data in mapped memory
mentation of the Fourier split operator method we chose th@ot as fast as in device memory. We will study the impact of
CUDA programming model (version 3.2) which works only memory transfer in section IV.1.
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FIG. 1: Wall clock time to compute a one-dimensional (left panetj amo-dimensional (right panel) fast Fourier transform ofiplex-valued
double precision arrays of sid¢andN x N, respectively. Computations are done in place, that isingnt data is overwritten by the output.
TimesTcpy andTgpy denote time for computation utilizing a single CPU coreéli@ore i7 CPU at 2.93 GHz) and the FFTW3 library and a
GeForce GTX 480 GPU and the CUFFT library, respectivelyhen&PU case, measurements were carried out including aheleg data
transfer between host memory (nonpinned or pinned) and GBitdary. Mapped memory resides on the host eliminating thd faredata
transfer.

l11.3.  Implementation starts to outperform a CPU in calculating a fast Fouriergran
form, which is for our hardware setup at data sets of ab&ut 2

We have developed highly tuned codes for the Fourier splifomplex numbers.

operator method that allow us to propagate Schrodinger wave For GPU computations, one may use nonpinned, pinned, or
functions and Dirac wave functions in one and two dimenMapped memory on the host. If one includes the time to copy
sions. For each equation and each dimension we implementétita from host memory to device memory and back again after
a conventional non-parallel CPU code as well as a cupathe calculation of the Fourier transform in the measurement
code that performs all computations on a GPU. To carry outhen the time depends on the kind of memory. Pinned mem-
the fast Fourier transform CPU codes utilize the FFTW3 [i-0rY is faster than nonpinned memory. Mapped memory elim-
brary [25]. The GPU codes employ the CUFFT library for inates the need to copy data between host and device, how-
fast Fourier transforms and comprise light-wight kernblstt ~ €Ver, performing the fast Fourier transform on device memor

accomplish the action of the operatdﬁgl andUAz for each  Plus copying is usually faster than calculating it in mapped
grid point in parallel. host memory without data transfer. Only for one-dimendiona

Fourier transforms of intermediate size carrying out thst fa
Fourier transform in mapped host memory requires less time
than performing the same task on device memory plus data
IV. Performance results transfer or using a (nonparallel) CPU implementation.
We took also fast Fourier transform performance measure-
) ments for a Tesla M2050 computing processor. Despite the
IV.1.  Fast Fourier transform fact that the M2050 can perform four times more double pre-
cision operations per clock cycle than the consumer GPU
The overall performance of the Fourier split operator meétho GeForce GTX 480, the Fourier transform performance of the
is mainly determined by the performance of the fast Fourieffesla M2050 is slightly lower than for the GeForce GTX 480.
transform. Thus, we compare in Figure 1 the wall clock timeFor a two-dimensional Fourier transform of a 4088096 ar-
Tcputhat is required to calculate the fast Fourier transform orray, for example, the Tesla M2050 reached only about 95 % of
a CPU with the timé gpy to perform the same task on a GPU. the GeForce GTX 480 GPU performance. For smaller arrays
For not too small problems the GPU outperforms the CPUhe performance élierence was even larger. This may be inter-
significantly. With our hardware setup (Intel Core i7 CPU atpreted as that the fast Fourier transform performance iadou
2.93 GHz with a GeForce GTX 480 GPU) we got a speedugy the GPU’s memory bandwidth rather than by its floating
up to a factor of about 30. For small problems, however, thgpoint performance.
overhead of starting and coordinating parallel CUDA theead  Our findings for the fast Fourier transform performance are
prevents to archive good fast Fourier transform perforreancconsistent with the results presented in the literaturefeiRe
on GPUs. There is a critical problem size where the GPUence [26] reports a performance gain up to a factor of about
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FIG. 2: Speedufcpu/Tepu for propagating a wave function over 128 time steps as aifomct the grid size. The left panel depicts results
for the one-dimensional Schrodinger equation of a gridNalata points while the right panel shows results for the timethsional Dirac
equation of a grid o x N data points. Performance measurements carried out onnielsardware as in Figure 1 and in double precision.

11in calculating two-dimensional single precision fastifer ~ one considers the individual steps of the Fourier split oper
transforms on a NVIDIA GeForce 9800 GX2 GPU[27] in- ator method, then one finds that the speedup for the appli-
stead on a conventional CPU. In [22] a 8- to 40-fold improvecation of Uz andUj, reaches between 50 to about 100 for
ment was archived over highly tuned CPU routines by usingarge systems (more than abod® grid points). For the fast
an algorithm that iciently exploits GPU shared memory.  pqyrier transform, however, we get a speedup of only about
To sum up, the CUFFT GPU implementation of the fast3g |imiting the overall speedup to about 40 for large systems
Fourier transform is capable to outperform traditional CPUyich is siill a significant improvement over the CPU imple-
implementations by more than one order of magnitude. Dat@,entation. Results for the two-dimensional Schrédingeseq
transfer between host memory and device memory poses @y, and the one-dimensional Dirac equation are not shown
non-negllg|ble_over.head and should be avoided if possible g, Figure 2 because they are qualitatively very similar to
reduced by using pinned memory. the two-dimensional Dirac equation and the one-dimensiona
Schrédinger equation, respectively.

IV.2. Fourier split operator method

In order to determine the speedup that may be attained by. Applications

switching from a CPU implementation to a GPU implementa-

tlog ff thg_ Fou“.ef sp:lg operator method,kw;a propﬁgated ON81 this section we will show some applications of our Fourier
?n i V;'O' |m1e2n85|t9na taussm(rj] W?IVG p?cf?hs 'gah gamomc pgblit operator GPU codes for the solution of the time depen-
ential over Ime Steps under ot the SChrodinger e nt pirac equation. With conventional CPU codes [16],¢hes
equation (9) and the Dirac equation (14), receptively. Wame kinds of applications would require more than an order of
sured magnitude more computing time or may not be performed in

e the overall time to propagate 128 time steps (In the cas@n admissible amount of time. For our numerical simulation
of GPU computations, this includes data transfer betweeW® adopt the atomic unit system (a. u.) that is established on

after the last step.), stant and the absolute value of the electron’s charge aasts b

o the time to perform the fast Fourier transform plus its in-units.

verse,
e the time to apply the operattl; in position space, and

e the time to apply the operattﬂr,;2 in Fourier space V.1. Evolution of a free Gaussian wave

for various grids of sizeN and N x N. Figure 2 shows packet

the speeduplcpu/Tepyu for these four dierent tasks for
the one-dimensional Schrédinger equation and for the twoA d-dimensional wave packet may be formed by superimpos-
dimensional Dirac equation as a function of the grid size. Ifing plane waves solutions of the Dirac equation with defined



Dirac wave packet at timé = 0.0125a.u. is illustrated in
FIG. 3. The position of the initial probability density’s ma
imum corresponds to the initial center of mass at the center
of the coordinate system. The wave packet’s center of mass
moves in accordance with classical predictions with v&joci

[pl/(m+y/1+ p?/(mc)2) ~ 38a. u. along the-axis. Due to the

finite speed of light [28], however, shock fronts emergedtav
ing approximately with the speed of light into the forwardian
backward directions. The maxima of the probability density
no longer coincide with the center of mass. See [29, 30] for
an investigation of similar relativisticfiects.

y/a.u.

2 V.2. Eigenstates
W(r)W(r)

. ) . ) Propagating a trail wave functiok(x, t) in atime independent
FIG. 3: Probability density of a Dirac wave packed with narrow

. S . potential fromt = O to some later tim¢ = T allows us to
asymmetric momentum distribution at tirhe- 0.0125 a. u., see text determine the potential's eigenenergies [12] by cal he
for specific parameters. Due to the finite speed of light, tagewn P 9 9 y caloodetf

packet splits into two shock fronts traveling into oppositections. autocorrelation function

x(t) = f Y(x, 0)"¥(x, t) dx. (40)

momentump, viz.
1 ix- p The Fourier transform of the autocorrelation function
Wpacked X) = W f (P eXp(T) ddp (36) T

x(EB) =f x(® (1 - cos(2rt/T)) exp(tE/R) dt (42)
The quantity(p) determines the momentum distribution. For 0

a two-dimensional Gaussian distribution with mean momenexhibits pronounced peaks at the eigenenergies provided th
tum pand momentum widths in forwards direction ands  the initial trial function is not orthogonal to some eigenéu

in sidewards direction the functigi{p) reads tion. Once we have determined an eigenendtgyom the
_— spectrumy(E), the potential’s eigenfunctioWg(x) (assum-

_ _ 1 (_(p— P X (p- 5)) ing there is no degeneracy) with eigenenekgyesults from

PGaus&aﬁ p) = U( p) exp ’ i
(2r)lr2Z /4 4 the integral
(37)

whereu(p) denotes a column of the mattixp) (30) (selecting T _
one the four momentum eigenstates with momenpyrand Pe(x) ~ fo (%, (1 — cos(zt/T)) exp(iEt/n) dt.  (42)

with the matrix
For one- or two-dimensional model systems it is common

-1 _ R(l/g'% l/0 2] R (38) practice to mimic the Coulomb potential
g
° ze?
and Ve(X) = —ep(x) = - p— (43)
R (cgs@) - sin(¢)] and  tan = P (39) by a soft-core potential
sin(@) cosg) Px 22
VsdX) = —ep(x) = - (44)

The evolution of the probability density of a relativis- 4ﬂgom'
tic Dirac wave packet diers significantly from the non-
relativistic theory of the Schrédinger equation, where agsa In (43) and (44e denotes the elementary chargdhe atomic
sian wave packet broadens but remains its Gaussian shape farmbergq the vacuum permittivity, angdthe soft-core param-
all times and the maximum of the probability density trav-eter.
els with the same speed as the motion of the center of mass If one replaces the three-dimensional Coulomb potential
does. We consider the propagation of a relativistic Ganssia(43) by a lower dimensional soft-core potential (44), itfiea
Dirac wave packet in two dimensions with asymmetric mo-appropriate to choose the soft-core paramgserch that both
mentum widthso; = 200a.u. andrs = 20a.u., a mean potential share the same groundstate energy. In Schrddinge
momentump = (40a.u,0a.u.), positive energy and spin theory, the Coulomb potential (43) has a groundstate erwrgy
up. This corresponds to a rather narrow initial wave packet-mc?(aZ)?/2, where we have introduced the electron mass
The probability density of this two-dimensional relatiiis  and the fine structure constant= €/(4nsohic). Numerically
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201 We simulated the two-dimensional motion of a free wave
packed in a laser pulse with the electromagnetic fields
0 00000 4 g ¢ 4 , o
§ 0 .
3 20l ° o ] ¢ o E(x,t) = Egsin(k - X — wt) fj (k- X — wt), (46a)
an Eo .
g —40 © B(x.t) = ?0 sin(k - x — wt) fj(k - X — wt) (46b)
A o
£ 60}
N: _sol © | with an envelope functioffi(r7) of j half cycles with a linear
|§ turn-on ramp and a linear turrfdamp ofl half cycles and a
5 ~100¢ ° constant plateau in between, viz.
~— 0 two-dimensional soft-core potential
~120F 5 three-dimensional Coulomb ial ol ; e i
three-dimensional Coulomb potential (77 + Jﬂ')/(|ﬂ') if -j< 77/71' <-j+ |’
~140 8712 16 20 24 28 32 36 40 44 48 52 56 60 64 1 if —j+1<n/m<-l,
z fii(n) = . (46¢)
—n/(Ix) if -1 <n/m<0,
FIG. 4: Relativistic corrections to the ground state eneEgyfor 0 else

the two-dimensional soft-core potential (44) wigh= 0.791 and

the three-dimensional soft-core potential foffelient values of the and|k| = 27/1 = w/c andEo L k. Figure 5 shows the

atomic numbeiZ. In the non-relativistic Schrodinger theory, both wave-function’s probability density atfiierent times for a free

potentials share approximately the same ground state yerdrg wave packed scatting at a strong laser pulse traveling dlang

-mc*(aZ)?/2. x-direction and having an overall length of eight half cycles
and turn-oyoff ramps of two half cycles. Its field strength is

|Eol = 3000 a. u. and its wave length= 40 a. u. The electric

we find that for/” ~ 1.4133 the one-dimensional soft-core po-ge )y component accelerates the wave packet back and forth
tential has approximately the same groundstate energyeas .ﬂalong they-direction, while the Lorenz force causes a drift

three-dimensional Coulomb potential with the same atomi TR
number. In two dimensions, one has to &et 0.791 in order ‘into thex-direction.
to mach the groundstate energies. These statements hold for
all Z.

In Dirac’s quantum theory, the groundstate energy of theV'4'
three-dimensional Coulomb potential (43)6? /1 — (@Z)? S
and the soft-core parameter that matches the groundstate &p our fourth example, we consider ionization in ultra-sgo
ergies depends of, however, it is close to the values for and ultra-short laser pulse_ss. The Dirac ground state wave
the Schrodinger case. The Dirac groundstate energy of thacket of a soft-core potential (44) with= 32 and; = 0.791
Coulomb potential equals the Schrédinger groundstateggner iS €xcited by an external laser pulse (46) with wavelength

plus the rest mass energy? and relativistic corrections pro- 4 = 10a.u. and peak electric field strengify| = 3072 a.u..
portional inZ?, viz. We consider a short laser pulse of four half-cycles inclgdin

tun-on and a turn4® half-cycle. Figure 6 shows the electron

2 4 : .
2 T (a7 = me - m2 @8’ _ (@) density after the laser pulse has passed the atomic core. In
M V1-(a2)" = 2 me 8 e (49) the setup, we have chosen here, the laser travels from left to

We determined the Dirac groundstate enekgyof the two- right and the electric figld points inFq tlyladire.ctio_n, accgler-
dimensional soft-core potential (44) with= 0.791 as a func- ating the wave packet Into the p03|t|yej|_rec_t|on n the f_|rst
tion of the atomic numbeZ with high numerical accuracy and third half-cycles and into the negatgelirection during
and found that relativistic corrections to the two-dimensil 1€ second and fourth half-cycles. Th_e Lorenz force causes a
soft-core-potential’s groundstate energy are weaker than acceleration into the laser’s propagation direction. Tthang

the three-dimensional Coulomb potential as shown in Fig. 4_interf_erencg patters in Fig. 6 form by 'ghe i_ntera_ction O.f @av
function’s diferent components traveling intofidirent direc-

tions.
Note the huge wave function spreading during the ioniza-
tion. While the ground state wave function has a width of
pulse about ¥32a.u., the wave function after ionization spreads
over several atomic units as shown in Fig. 6. Wave function
At high laser intensities, charged particles in electrongdig ~ spreading poses a major challenge in the numerical siroalati
waves are not onlyféected by the electric field component but of light matter interaction at high intensities limitingetisim-
also by the magnetic field component. At intensities largeulations to very short time scales where the size of the wave
than about 56viw?/(cupg?), the Lorentz force becomes rel- function remains of manageable size. The simulation of the
evant and at intensities abovel®Pc’w?/g? also relativistic  ionization process of Fig. 6 to only about ten minutes using
effects have to be taken into account [31], herdenotes the our GPU Fourier split operator implementation. Thus, the si
laser’s angular frequency apg the vacuum permeability. ulation of even longer interactions with laser pulses ofjlem

lonization

V.3. Free wave packed scatting at a light
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FIG. 5: Free wave packed scatting at a strong laser pulse. The falseptots show the wave-packet’s probability density @fedent points
in timet. The solid gray line indicates the center of mass trajectbing laser pulse travels from left to right. See text for detbparameters.
Note that the computational grid follows the center of mastion.

2 VI. Conclusions and outlook
1 In this contribution we evaluated GPUs as a massively paral-
lel computing architecture for the solution of time departde
10 partial diferential equations by means of the Fourier split op-

erator method. The computational complexity of the Fourier
split operator method is dominated by the computationalcom
plexity of the fast Fourier transform. We demonstrated that
GPUs reach much better performance in computing the fast
Fourier transform than current CPUs. Depending on the prob-
lem size, the performance gain may exceed one order of mag-
nitude as compared to sequential CPU implementations., Thus
the Fourier split operator method may be implemented very
efficiently on GPU architectures as we demonstrated for the
-4 time dependent Schrddinger equation and the time dependent
Dirac equation. The combination of a highly parallel arebit
-5 ture with a high-throughput memory makes graphics process-
ing units a very attractive architecture for implementihg t
Fourier split operator method. Best performance is atthihe
all steps of the Fourier split operator method are carrietd ou
by the GPU avoiding data transfer between host memory and
GPU memaory.
FIG. 6: A wave-function’s probability density after ionizatiorofn The fast Fourier transform is a core building block for
the ground state of a soft-core potential (44) by a ultrargrlaser  he solution of partial dferential equations as well as of
pulse, see text for details. many other problems from computational physics, signal pro
cessing, tomography, computational finance and other fields
Thus, we expect that also these problems may be solved much
more dficiently on GPU architectures than on conventional
CPUs. Taking into account that GPU computing is a rather
young field it is supposed that there is still plenty potdritia
GPU technology and codes to mature further and to find new
applications.

y/a.u.
G
log,, (¥(r)"¥(r))

x/a.u.
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