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Accelerating the Fourier split operator method via graphic s processing units

Heiko Bauke∗ and Christoph H. Keitel†

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

Current generations of graphics processing units have turned into highly parallel devices with general computing
capabilities. Thus, graphics processing units may be utilized, for example, to solve time dependent partial
differential equations by the Fourier split operator method. Inthis contribution, we demonstrate that graphics
processing units are capable to calculate fast Fourier transforms much more efficiently than traditional central
processing units. Thus, graphics processing units render efficient implementations of the Fourier split operator
method possible. Performance gains of more than an order of magnitude as compared to implementations for
traditional central processing units are reached in the solution of the time dependent Schrödinger equation and
the time dependent Dirac equation.

PACS numbers: 02.70.-c, 03.65.Pm

I. Introduction

For several decades, users and developers of high perfor-
mance computing applications could trust on Moore’s law.
The number of transistors that can be placed inexpensively
on an integrated circuit has doubled approximately every two
years. This exponential growth provided the basis for an
ever-increasing computing power of modern central process-
ing units (CPUs). Thus, high performance computing appli-
cations became faster by just trusting on Moore’s law and
waiting for faster CPUs. Thanks to Moore’s law, today’s
desktop computers supply the computational power of the last
decade’s super-computers.

Transistor counts still continue to grow exponentially.
Hardware manufacturers, however, no longer make single
computing units more complex and faster. Clock rates and
execution optimizations have reached their limits. Now hard-
ware manufacturers use the plethora of transistors to put many
computing units on a single chip manufacturing highly paral-
lel computing architectures. There are two major directions
of development, multicore architectures with a few (typically
two to a few dozen in the near future) general purpose comput-
ing units and dedicated accelerators with several hundred or
more computing units with reduced capabilities each as com-
pared to traditional CPUs [1, 2]. These accelerators may be
implemented in field-programmable gate arrays or may be cus-
tom built systems as the Cell Broadband Engine Architecture
or the ClearSpeedTM CSX700 Processor, for example. Graph-
ics processing units (GPUs) with general purpose computing
capabilities brought accelerated computing to the mass mar-
ket. Employing GPUs to perform computations that are tra-
ditionally handled by CPUs is commonly referred to as GPU
computing [3].

Parallel architectures are not new in the high performance
computing community. In the past, many high performance
computing applications employed various kinds of parallel
computing architectures which had been the high-end com-
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puting systems of their time. Today, however, even low-end
consumer computers are parallel systems. The new emerg-
ing ubiquitous parallel architectures indicate a silent paradigm
change in computing or as Herb Sutter [4] pointed out “The
free lunch is over.” In order to exploit the power of modern
hardware architectures it is required to write parallel applica-
tions. The term “computing” becomes synonymous to “paral-
lel computing.”

The purpose of this contribution is to evaluate the Fermi
GPU computing architecture and to demonstrate how an im-
plementation of the Fourier split operator method on GPUs
may boost the performance of the numerical propagation of
time dependent partial differential equations. The remainder
of this paper is organized as follows. In section II we give a
generic description of the Fourier split operator method and
show how to apply it to the time dependent Schrödinger equa-
tion and the time dependent Dirac equation. Section III gives
a very short introduction to the CUDA architecture and de-
scribes our GPU implementation of the Fourier split operator
method while section IV presents performance comparisons.
In section V we illustrate some applications of the Fourier
split operator method.

II. The Fourier split operator method

Let us consider the Cauchy type initial value problem problem

∂w(x, t)
∂t

= Â(t)w(x, t) (1a)

with some possibly time dependent differential operator̂A(t)
acting on the coordinatesx = (x1, x2, . . . , xn) and with the
initial condition

w(x, 0) = w0(x) . (1b)

The functionw(x, t) depends onx and the time coordinatet
and may be real or complex and possibly vector valued. The
Cauchy problem (1) includes, for example, the diffusion equa-
tion, the Focker-Planck equation [5], the current-free Maxwell
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equations [6], the Schrödinger equation, the Pauli equation,
the Dirac equation [7], as well as the Klein-Gordon equa-
tion in the Feshbach-Villars representation [8] or the Black-
Scholes options pricing equation.

Using Dyson’s time ordering operatorT̂ , the formal solu-
tion of (1) is given by

w(x, t) = Û(t, 0)w(x, 0) (2)

with the time-evolution operator [5, 9, 10]

Û(t2, t1) = T̂ exp

(
∫ t2

t1

Â(t′) dt′
)

(3)

that effects the function’s evolution from timet1 to time t2.
For some highly symmetric operatorsÂ(t) in (1), analytic ex-
pressions of the time-evolution operator (3) can be calculated.
However, investigations of many relevant problems require
numerical methods, for example, the Fourier split operator
method, which we will shortly describe in the following para-
graphs.

II.1. General outline of the Fourier split
operator method

Fleck et al. [11] introduced the Fourier split operator method
as an explicit time stepping scheme for the solution of the time
dependent scalar Maxwell wave equation in Fresnel approx-
imation. The method is applicable to Cauchy problems (1)
with a differential operator̂A(t) that has the property that it
may be separated into a sum of two operators

Â(t) = Â1(t) + Â2(t) (4)

such thatÂ1(t) can be easily diagonalized in real space while
Â2(t) can be easily diagonalized in Fourier space; a require-
ment that is fulfilled by many partial differential equations
of relevance. Thus, shortly after Feit et al. [12] solved the
Schrödinger equation with a time independent Hamiltonian
numerically by the Fourier split operator method, it became
a standard tool for the propagation of quantum mechanical
wave equations. Later, the method had been generalized to the
Schrödinger equation with a time dependent Hamiltonian [13]
and it was applied to other equations, for example, the Dirac
equation [14–17], the time dependent Gross-Pitaevskii equa-
tion [18], the non-linear Schrödinger equation [19], and the
time dependent Maxwell equations for electromagnetic waves
in random dielectric media [6].

The central idea of the Fourier split operator method is to
approximate the operator (3) by a product of operators that are
diagonal either in real space or in momentum space. LetÔ(t)
denote some possibly time dependent operator and define the
operator

ÛÔ(t2, t1, δ) = exp

(

δ

∫ t2

t1

Ô(t′) dt′
)

, (5)

that depends on the timest1 and t2 and the auxiliary param-
eterδ and let ˆ̃UÔ(t2, t1, δ) denote the operator (5) in Fourier

space. ExpandinĝU (t + τ, t) to the third order inτ and
provided that the operator̂A(t) has the form (4), the time-
evolution operator (3) can be factorized [9] into

Û (t + τ, t) = exp

(∫ t+τ

t
Â(t′) dt′

)

+ O
(

τ3
)

=

ÛÂ1

(

t + τ, t, 1
2

)

ÛÂ2
(t + τ, t, 1) ÛÂ1

(

t + τ, t, 1
2

)

+ O
(

τ3
)

. (6)

Neglecting terms of orderO
(

τ3
)

, equation (6) gives an explicit
second order accurate time-stepping scheme for the propaga-
tion of the functionw(x, t)

w(x, t + τ) =

ÛÂ1

(

t + τ, t, 1
2

)

ÛÂ2
(t + τ, t, 1) ÛÂ1

(

t + τ, t, 1
2

)

w(x, t)+O
(

τ3
)

.

(7)

This scheme translates the difficulty of calculating the action
of operator (3) to the task of calculating the action of (5) for
Ô ≡ Â1 and Ô ≡ Â2, respectively. Strang [20] utilized the
splitting (7) to calculate the action of (5) in real space by a
finite differences scheme. For many Cauchy problems (1),
however, one can find a splitting (4) such that the operator
ÛÂ1

(t + τ, t, δ) is diagonal in real space and̂UÂ2
(t + τ, t, δ) is

diagonal in Fourier space. Thus, the calculation of these op-
erators becomes feasible in the appropriate space and (7) is
calculated via

w(x, t + τ) =

ÛÂ1

(

t + τ, t, 1
2

)

F −1
{

ˆ̃U Â2
(t + τ, t, 1)F

{

ÛÂ1

(

t + τ, t, 1
2

)

w(x, t)
}

}

+ O
(

τ3
)

. (8)

The expressionF {·} in (8) denotes the Fourier transform of
the argument andF −1 {·} the inverse Fourier transform.

In a computer implementation of the Fourier split operator
method, the functionw(x, t) is discretized on a rectangular reg-
ular lattice ofN points and the continuous Fourier transform
is approximated by a discrete Fourier transform. The compu-
tational complexity of propagating the functionw(x, t) from
time t to time t + τ is dominated by the transformation into
Fourier space and back into real space. If these transforms are
accomplished by the fast Fourier transform the computationof
an elementary step of the Fourier split operator method takes
O(N logN) operations.

II.2. Fourier split operator method for the
Schrödinger equation

The Schrödinger equation is an equation of motion for a
complex-valued scalar wave functionΨ(x, t) evolving in a
d-dimensional spacex and in timet. In its most general form,
it describes a non-relativistic spin zero particle of massm and
chargeq in the electromagnetic potentialsφ(x, t) and A(x, t).
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The Schrödinger equation is invariant under Galilean transfor-
mation and reads

i~
∂Ψ(x, t)
∂t

=

(

1
2m

(−~i∇ − qA(x, t))2 + qφ(x, t)
)

Ψ(x, t) . (9)

In order to apply the Fourier split operator method for prop-
agatingΨ(x, t) under the effect of (9), we have to restrict the
vector potential to homogeneous fieldsA(x, t) = A(t); an ap-
proximation that is known as the dipole approximation. Split-
ting the Hamiltonian (9) in dipole approximation into a poten-
tial energy term and a kinetic energy term

i~Â1 = qφ(x, t) , (10a)

i~Â2 =
1

2m
(−~i∇ − qA(t))2 (10b)

separates the spatial dependent parts from spatial derivatives,
which makes the operator̂UÂ1

(t + τ, t, δ) diagonal in real
space andÛÂ2

(t + τ, t, δ) diagonal in momentum space, re-
spectively. The action of̂UÂ1

(t + τ, t, δ) on a real space wave
function is given by

ÛÂ1
(t + τ, t, δ)Ψ(x, t) = exp

(

−δ
i
~

∫ t+τ

t
qφ(x, t′) dt′

)

Ψ(x, t)

(11)
and the action of the Fourier space operatorˆ̃U Â2

(t + τ, t, δ) to
a wave function in Fourier space

Ψ̃(p, t) = F {Ψ(x, t)} =

1
(2π~2)d/2

∫

Ψ(x, t) exp(−i p · x/~) dd x (12)

reads

ˆ̃U Â2
(t + τ, t, δ) Ψ̃(p, t) =

exp

(

−δ
i
~

∫ t+τ

t

1
2m

(

p− qA(t′)
)2 dt′

)

Ψ̃(p, t) . (13)

Note that it is crucial for the application of the Fourier split
operator method that the vector potentialA(t) does not depend
on the spatial coordinatex. The expansion of the Hamiltonian
of the Schrödinger equation (9) for a particle in an arbitrary
vector potentialA(x, t) contains the term (iq~/m)A(x, t) · ∇,
that is spatially dependent and contains spatial derivatives,
too, coupling momentum and coordinate space. Coupling be-
tween momentum and coordinate space is absent for vector
potentials in dipole approximation but also, for example, for
the vector potential of a linearly polarized plane wave with
A(x, t) = (A1(x3, t), 0, 0) [17].

II.3. Fourier split operator method for the
Dirac equation

In contrast to the Schrödinger equation, the Dirac equation[7]
describes a relativistic spin half particle and it is invariant un-
der Lorentz transformation. A Dirac wave functionΨ(x, t) is a

two component (for one-dimensional systems) or four compo-
nent (for two- or three-dimensional systems) complex-valued
vector function. The Dirac equation for a particle of massm
and chargeq moving in the electromagnetic potentialsφ(x, t)
andA(x, t) is given by

i~
∂Ψ(x, t)
∂t

=

















c
d

∑

i=1

αi

(

−i~
∂

∂ri
− qAi(x, t)

)

+ qφ(x, t) + mc2β

















Ψ(x, t)

(14)

with the matricesαi andβ and the speed of lightc in vacuum
andAi(x, t) denoting theith component of the vector potential
A(x, t). The matricesαi, β obey the algebra

α2
i = β

2 = 1 , αiαk + αkαi = 2δi,k , αiβ + βαi = 0 . (15)

This algebra determines the matricesαi andβ only up to uni-
tary transforms. In numerical applications, we adopted the
so-called Dirac representation with

α1 =





























0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0





























, α2 =





























0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0





























,

α3 =





























0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0





























, β =





























1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1





























.

(16)

For one-dimensional systems, the Dirac representation re-
duces to

α1 =

(

0 1
1 0

)

, β =

(

1 0
0 −1

)

. (17)

In order to apply the Fourier split operator method to the
Dirac equation (14), we split the Hamiltonian into an interac-
tion part and a free particle part

i~Â1 = c
d

∑

i=1

αi (−qAi(x, t)) + qφ(x, t) , (18a)

i~Â2 = c
d

∑

i=1

αi

(

−i~
∂

∂ri

)

+ mc2β (18b)

and calculateÛÂ1
(t + τ, t, δ) and ˆ̃U Â2

(t + τ, t, δ) in the follow-
ing way.

The operator̂UÂ1
(t + τ, t, δ) may be determined by splitting

Â1 further into

Â1 = Â1,1 + Â1,2 (19)

with

i~Â1,1 = qφ(x, t) , (20a)

i~Â1,2 = c
d

∑

i=1

αi (−qAi(x, t)) . (20b)
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BecauseÂ1,1 andÂ1,2 commute we may factorize the operator
ÛÂ1

(t + τ, t, δ) into

ÛÂ1
(t + τ, t, δ) = ÛÂ1,1

(t + τ, t, δ) ÛÂ1,2
(t + τ, t, δ) (21)

with the diagonal operator

ÛÂ1,1
(t + τ, t, δ)Ψ(x, t) = exp

(

−δ
i
~

∫ t+τ

t
qφ(x, t′) dt′

)

Ψ(x, t) .

(22)
The operatorÛÂ1,2

(t + τ, t, δ), however, involves matrix expo-
nentials, which may be calculated by taking into account the
Dirac algebra (15). Exponentials ofαi are obtained by sum-
ming the exponential-function’s Taylor sum explicitly. Intro-
ducing some auxiliary complex numbersai we find

exp

















i
d

∑

i=1

aiαi

















=

∞
∑

k=0

1
k!

















i
d

∑

i=1

aiαi

















k

=

∞
∑

k=0

(−1)k

(2k)!

















d
∑

i=1

aiαi

















2k

+ i
d

∑

i=1

aiαi

∞
∑

k=0

(−1)k

(2k + 1)!

















d
∑

i=1

aiαi

















2k

=

∞
∑

k=0

(−1)k

(2k)!























√

√

√

d
∑

i=1

a2
i























2k

+i
d

∑

i=1

aiαi

∞
∑

k=0

(−1)k

(2k + 1)!























√

√

√

d
∑

i=1

a2
i























2k

= cos























√

√

√

d
∑

i=1

a2
i























+ i
d

∑

i=1

aiαi

















d
∑

i=1

a2
i

















−1/2

sin























√

√

√

d
∑

i=1

a2
i























,

(23)

where we have used

















d
∑

i=1

aiαi

















2k

=



































d
∑

i=1

aiαi

















2
















k

=

















d
∑

i=1

a2
i α

2
i +

d
∑

i=1

i−1
∑

j=1

aia j(αiα j + α jαi)

















k

=























√

√

√

d
∑

i=1

a2
i























2k

.

(24)

For convenience, let us define

Āi(x, t) =
∫ t+τ

t
Ai(x, t′) dt′ (25a)

and

Ā(x, t) =

√

√

√

d
∑

i=1

Āi(x, t)2 , (25b)

then we get with (23)

ÛÂ1,2
(t + τ, t, δ)Ψ(x, t) =

















cos
(

−
δc
~

Ā(x, t)
)

+ i
d

∑

i=1

Āi(x, t)
Ā(x, t)

αi sin
(

−
δc
~

Ā(x, t)
)

















Ψ(x, t) .

(26)

The operatorÛÂ2
(t2, t1, δ) equals the time evolution opera-

tor of the free particle Dirac Hamiltonian. In Fourier spaceit
has the form

ˆ̃U Â2
(t + τ, t, δ) = exp

















−δτ
i
~

















c
d

∑

i=1

αi pi + mc2β

































, (27)

wherepi denotes theith component of the momentum vector
p. In order to calculate the operator exponential in (27) we
have to diagonalize the operator

i~ ˆ̃A2 = c
d

∑

i=1

αi pi + mc2β (28)

by introducing the scalars

d±(p) =















1
2
±

1

2
√

1+ p2/(mc)2















1/2

, (29)

the unitary matrix

û(p) = d+(p) + d−(p)
d

∑

i=1

pi

|p|
β · αi . (30)

and its Hermitian adjointu†(p). The matrixû(p)i~ ˆ̃A2u†(p) is
diagonal [21] and it reads for two- or three-dimensional sys-
tems

û(p)i~ ˆ̃A2û†(p) =





























E(p) 0 0 0
0 E(p) 0 0
0 0 −E(p) 0
0 0 0 −E(p)





























, (31)

with

E(p) =
√

m2c4 + p2c2 . (32)

Thus, the Fourier space operator (27) simplifies to

ˆ̃U Â2
(t + τ, t, δ) Ψ̃(p, t) =

û(p)†





























e−iE(p)τ/~ 0 0 0
0 e−iE(p)τ/~ 0 0
0 0 eiE(p)τ/~ 0
0 0 0 eiE(p)τ/~





























û(p)Ψ̃(p, t) . (33)

For the one-dimensional Dirac equation where the vector
potential reduces to a scalarA1(x, t) and the wave function
Ψ(x, t) has only two components the operatorsÛÂ1,2

(t + τ, t, δ)

andÛÂ2
(t + τ, t, δ) have to form

ÛÂ1,2
(t + τ, t, δ)Ψ(x, t) =

(

cos
(

−
δc
~

Ā1(x, t)
)

+ iα1 sin
(

−
δc
~

Ā1(x, t)
))

Ψ(x, t) (34)

and

ˆ̃U Â2
(t + τ, t, δ) Ψ̃(p, t) =

û(p)†
(

e−iE(p)τ/~ 0
0 eiE(p)τ/~

)

û(p)Ψ̃(p, t) . (35)
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III. GPU implementations of the
Fourier split operator method

III.1. GPU computing

As we have outlined in Section II, the Fourier split operator
method consists of three elementary steps, the applicationof
the two operatorŝUÂ1

and ˆ̃U Â2
plus the calculation of the fast

Fourier transform and its inverse. All these three steps may
be parallelized. The application of̂UÂ1

or ˆ̃U Â2
is embarrass-

ingly parallel—each grid point can be updated independently
from others—and also the fast Fourier transform may be par-
allelized efficiently [22].

Scalable parallel performance, however, is difficult to at-
tain on traditional CPU systems due to the imbalance of high
CPU speed and relatively slow memory. The Fourier split op-
erator method in particular is inherently memory bandwidth
bounded because the application ofÛÂ1

or ˆ̃U Â2
requires only

O(N) operations and the calculation of the Fourier transform
takesO(N logN), whereN denotes the number of grid points.
Its low computational complexity is a very beneficial feature
of the Fourier split operator method but it also means that
there is no or little potential data reuse making the memory
bandwidth a limiting factor.

GPU computing [2, 3] may help to overcome these limita-
tions. Due to its massively parallel architecture, GPUs reach
a peak performance in floating point number operations that
is more than one order of magnitude higher than the peak per-
formance of current CPUs. GPUs also provide higher maxi-
mal memory bandwidth. Intel’s CoreTM 7 CPUs, for example,
reach up to 25.6 GB/s memory bandwidth while NVIDIA’s
TeslaTM M2050 and M2070 computing processors—which
are based on GPU technology—offer up to 148 GB/s mem-
ory bandwidth, see also Table 1. Modern GPUs attain their
impressive computational performance figures without signif-
icantly exceeding the power consumption of high-end CPUs.
In fact, GPUs and other accelerators provide the best floating
point performance per watt of current high performance com-
puting architectures.

III.2. CUDA parallel architecture and
programming model

GPU computing is enabled by programming models that pro-
vide a set of abstractions that enable to express data paral-
lelism and task parallelism. These programming models are
typically implemented by equipping a sequential general pur-
pose programming language, as for example C or Fortran,
with extensions for parallel programming and providing an
application programming interface. OpenCL [23], Microsoft
DirectCompute and CUDA by NVIDIA are the most popu-
lar programming models for GPU computing. For our imple-
mentation of the Fourier split operator method we chose the
CUDA programming model (version 3.2) which works only

TABLE 1: Comparison of some technical key features of the high-
end consumer graphics card NVIDIA GeForce GTX 480 and the
computing processor module Tesla M2050 (source: NVIDIA).

GeForce GTX 480 Tesla M2050

Processor cores 480 448
Processor core clock 1.40 GHz 1.15 GHz
Memory 1.5 GB 3 GB
Memory clock 1.848 GHz 1.546 GHz
Memory bandwidth 177 GB/s 148 GB/s
Power consumption ≈ 250 W ≤ 225 W

for graphics hardware by NVIDIA but provides more flexibil-
ity than OpenCL or DirectCompute. OpenCL is the platform
independent but has no support for C++ and DirectCompute
works only on Microsoft Windows systems.

The term CUDA also refers to some GPU architectures by
the hardware manufacturer NVIDIA. The latest CUDA GPU
architecture is called Fermi. It features up to 512 computing
cores which are organized in 16 streaming multiprocessors of
32 cores each. Each of the 32 cores of a streaming multipro-
cessor executes the same instruction on different data sets at
the same time. Therefore, GPUs belong to the classSingle In-
struction, Multiple Data streams (SIMD) in Flynn’s taxonomy
[24].

GPU accelerator cards come in two different flavors, tradi-
tional graphics cards, as the NVIDIA GeForce GTX 480, and
dedicated computing processors, as the NVIDIA Tesla M2050.
Table 1 compares some technical key features of these two
cards. Both are based on the so-called Fermi architecture but
differ, for example, in memory and clock rates. According to
this table, the dedicated computing processor M2050 seems to
be inferior to the GTX 480. However there are two important
features that qualify the M2050 for high performance comput-
ing applications. It has larger memory with error correction
and full double precision performance. In consumer Fermi
GPUs as the GTX 480, the number of double precision float-
ing point operations that may be carried out per clock cycle
is reduced by a factor of four as compared to dedicated GPU
computing processors based on the Fermi architecture.

A GPU has its own memory. This means, before one can
run a GPU computation the input data has to be transferred
from the computer’s main memory (also called host memory)
to the GPU device memory. GPU computations are carried
out in device memory and final results will be transferred back
into host memory. Memory transfer is a relatively slow op-
eration. Therefore, one should reduce the number of mem-
ory transfers to reach high performance. The CUDA archi-
tecture provides three different kinds of host memory, non-
pinned, pinned, and mapped memory. Memory transfers with
pinned memory are faster than memory transfers with non-
pinned memory. However, allocating pinned memory is slow.
Mapped memory allows a GPU to work directly on data in
host memory. Thus, with mapped memory there is no need
to copy data but a GPU will access data in mapped memory
not as fast as in device memory. We will study the impact of
memory transfer in section IV.1.
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FIG. 1: Wall clock time to compute a one-dimensional (left panel) and two-dimensional (right panel) fast Fourier transform of complex-valued
double precision arrays of sizeN andN × N, respectively. Computations are done in place, that is, theinput data is overwritten by the output.
TimesTCPU andTGPU denote time for computation utilizing a single CPU core (Intel Core i7 CPU at 2.93 GHz) and the FFTW3 library and a
GeForce GTX 480 GPU and the CUFFT library, respectively. In the GPU case, measurements were carried out including and excluding data
transfer between host memory (nonpinned or pinned) and GPU memory. Mapped memory resides on the host eliminating the need for data
transfer.

III.3. Implementation

We have developed highly tuned codes for the Fourier split
operator method that allow us to propagate Schrödinger wave
functions and Dirac wave functions in one and two dimen-
sions. For each equation and each dimension we implemented
a conventional non-parallel CPU code as well as a CUDA
code that performs all computations on a GPU. To carry out
the fast Fourier transform CPU codes utilize the FFTW3 li-
brary [25]. The GPU codes employ the CUFFT library for
fast Fourier transforms and comprise light-wight kernels that
accomplish the action of the operatorsÛÂ1

and ˆ̃U Â2
for each

grid point in parallel.

IV. Performance results

IV.1. Fast Fourier transform

The overall performance of the Fourier split operator method
is mainly determined by the performance of the fast Fourier
transform. Thus, we compare in Figure 1 the wall clock time
TCPU that is required to calculate the fast Fourier transform on
a CPU with the timeTGPU to perform the same task on a GPU.
For not too small problems the GPU outperforms the CPU
significantly. With our hardware setup (Intel Core i7 CPU at
2.93 GHz with a GeForce GTX 480 GPU) we got a speedup
up to a factor of about 30. For small problems, however, the
overhead of starting and coordinating parallel CUDA threads
prevents to archive good fast Fourier transform performance
on GPUs. There is a critical problem size where the GPU

starts to outperform a CPU in calculating a fast Fourier trans-
form, which is for our hardware setup at data sets of about 212

complex numbers.
For GPU computations, one may use nonpinned, pinned, or

mapped memory on the host. If one includes the time to copy
data from host memory to device memory and back again after
the calculation of the Fourier transform in the measurements
then the time depends on the kind of memory. Pinned mem-
ory is faster than nonpinned memory. Mapped memory elim-
inates the need to copy data between host and device, how-
ever, performing the fast Fourier transform on device memory
plus copying is usually faster than calculating it in mapped
host memory without data transfer. Only for one-dimensional
Fourier transforms of intermediate size carrying out the fast
Fourier transform in mapped host memory requires less time
than performing the same task on device memory plus data
transfer or using a (nonparallel) CPU implementation.

We took also fast Fourier transform performance measure-
ments for a Tesla M2050 computing processor. Despite the
fact that the M2050 can perform four times more double pre-
cision operations per clock cycle than the consumer GPU
GeForce GTX 480, the Fourier transform performance of the
Tesla M2050 is slightly lower than for the GeForce GTX 480.
For a two-dimensional Fourier transform of a 4096× 4096 ar-
ray, for example, the Tesla M2050 reached only about 95 % of
the GeForce GTX 480 GPU performance. For smaller arrays
the performance difference was even larger. This may be inter-
preted as that the fast Fourier transform performance is bound
by the GPU’s memory bandwidth rather than by its floating
point performance.

Our findings for the fast Fourier transform performance are
consistent with the results presented in the literature. Refer-
ence [26] reports a performance gain up to a factor of about
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FIG. 2: SpeedupTCPU/TGPU for propagating a wave function over 128 time steps as a function of the grid size. The left panel depicts results
for the one-dimensional Schrödinger equation of a grid ofN data points while the right panel shows results for the two-dimensional Dirac
equation of a grid ofN × N data points. Performance measurements carried out on the same hardware as in Figure 1 and in double precision.

11 in calculating two-dimensional single precision fast Fourier
transforms on a NVIDIA GeForce 9800 GX2 GPU[27] in-
stead on a conventional CPU. In [22] a 8- to 40-fold improve-
ment was archived over highly tuned CPU routines by using
an algorithm that efficiently exploits GPU shared memory.

To sum up, the CUFFT GPU implementation of the fast
Fourier transform is capable to outperform traditional CPU
implementations by more than one order of magnitude. Data
transfer between host memory and device memory poses a
non-negligible overhead and should be avoided if possible or
reduced by using pinned memory.

IV.2. Fourier split operator method

In order to determine the speedup that may be attained by
switching from a CPU implementation to a GPU implementa-
tion of the Fourier split operator method, we propagated one-
and two-dimensional Gaussian wave packets in a harmonic po-
tential over 128 time steps under the effect of the Schrödinger
equation (9) and the Dirac equation (14), receptively. We mea-
sured

• the overall time to propagate 128 time steps (In the case
of GPU computations, this includes data transfer between
host memory and device memory before the first step and
after the last step.),
• the time to perform the fast Fourier transform plus its in-

verse,
• the time to apply the operator̂UÂ1

in position space, and

• the time to apply the operator̃̂U Â2
in Fourier space

for various grids of sizeN and N × N. Figure 2 shows
the speedupTCPU/TGPU for these four different tasks for
the one-dimensional Schrödinger equation and for the two-
dimensional Dirac equation as a function of the grid size. If

one considers the individual steps of the Fourier split oper-
ator method, then one finds that the speedup for the appli-
cation of ÛÂ1

and ˆ̃U Â2
reaches between 50 to about 100 for

large systems (more than about 218 grid points). For the fast
Fourier transform, however, we get a speedup of only about
30 limiting the overall speedup to about 40 for large systems,
which is still a significant improvement over the CPU imple-
mentation. Results for the two-dimensional Schrödinger equa-
tion and the one-dimensional Dirac equation are not shown
in Figure 2 because they are qualitatively very similar to
the two-dimensional Dirac equation and the one-dimensional
Schrödinger equation, respectively.

V. Applications

In this section we will show some applications of our Fourier
split operator GPU codes for the solution of the time depen-
dent Dirac equation. With conventional CPU codes [16], these
kinds of applications would require more than an order of
magnitude more computing time or may not be performed in
an admissible amount of time. For our numerical simulation
we adopt the atomic unit system (a. u.) that is established on
the Bohr radius, the electron’s mass, the reduced Planck con-
stant and the absolute value of the electron’s charge as its base
units.

V.1. Evolution of a free Gaussian wave
packet

A d-dimensional wave packet may be formed by superimpos-
ing plane waves solutions of the Dirac equation with defined
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FIG. 3: Probability density of a Dirac wave packed with narrow
asymmetric momentum distribution at timet = 0.0125 a. u., see text
for specific parameters. Due to the finite speed of light, the wave
packet splits into two shock fronts traveling into oppositedirections.

momentump, viz.

Ψpacked(x) =
1

(2π~)d/2

∫

ρ(p) exp

(

ix · p
~

)

dd p (36)

The quantityρ(p) determines the momentum distribution. For
a two-dimensional Gaussian distribution with mean momen-
tum p̄ and momentum widthsσ f in forwards direction andσs

in sidewards direction the functionρ(p) reads

ρGaussian(p) = u(p)
1

(2π)1/2|Σ|1/4
exp

(

−
(p− p̄)TΣ−1(p− p̄)

4

)

,

(37)
whereu(p) denotes a column of the matrix ˜u(p) (30) (selecting
one the four momentum eigenstates with momentump) and
with the matrix

Σ−1 = R















1/σ2
f 0

0 1/σ2
s















R−1 (38)

and

R =













cos(φ) − sin(φ)
sin(φ) cos(φ)













and tanφ =
p̄y

p̄x
. (39)

The evolution of the probability density of a relativis-
tic Dirac wave packet differs significantly from the non-
relativistic theory of the Schrödinger equation, where a Gaus-
sian wave packet broadens but remains its Gaussian shape for
all times and the maximum of the probability density trav-
els with the same speed as the motion of the center of mass
does. We consider the propagation of a relativistic Gaussian
Dirac wave packet in two dimensions with asymmetric mo-
mentum widthsσ f = 200 a. u. andσs = 20 a. u., a mean
momentum ¯p = (40 a. u., 0 a. u.), positive energy and spin
up. This corresponds to a rather narrow initial wave packet.
The probability density of this two-dimensional relativistic

Dirac wave packet at timet = 0.0125 a.u. is illustrated in
FIG. 3. The position of the initial probability density’s max-
imum corresponds to the initial center of mass at the center
of the coordinate system. The wave packet’s center of mass
moves in accordance with classical predictions with velocity
| p̄|/(m

√

1+ p̄2/(mc)2) ≈ 38 a. u. along thex-axis. Due to the
finite speed of light [28], however, shock fronts emerge travel-
ing approximately with the speed of light into the forward and
backward directions. The maxima of the probability density
no longer coincide with the center of mass. See [29, 30] for
an investigation of similar relativistic effects.

V.2. Eigenstates

Propagating a trail wave functionΨ(x, t) in a time independent
potential fromt = 0 to some later timet = T allows us to
determine the potential’s eigenenergies [12] by calculating the
autocorrelation function

χ(t) =
∫

Ψ(x, 0)∗Ψ(x, t) dd x . (40)

The Fourier transform of the autocorrelation function

χ̃(E) =
∫ T

0
χ(t)(1− cos(2πt/T )) exp(itE/~) dt (41)

exhibits pronounced peaks at the eigenenergies provided that
the initial trial function is not orthogonal to some eigenfunc-
tion. Once we have determined an eigenenergyE from the
spectrum ˜χ(E), the potential’s eigenfunctionΨE(x) (assum-
ing there is no degeneracy) with eigenenergyE results from
the integral

ΨE(x) ∼
∫ T

0
Ψ(x, t)(1− cos(2πt/T )) exp(iEt/~) dt . (42)

For one- or two-dimensional model systems it is common
practice to mimic the Coulomb potential

VC(x) = −eφ(x) = −
Ze2

4πε0|x|
(43)

by a soft-core potential

Vsc(x) = −eφ(x) = −
Ze2

4πε0
√

x2 + (ζ/Z)2
. (44)

In (43) and (44)e denotes the elementary charge,Z the atomic
number,ε0 the vacuum permittivity, andζ the soft-core param-
eter.

If one replaces the three-dimensional Coulomb potential
(43) by a lower dimensional soft-core potential (44), it is often
appropriate to choose the soft-core parameterζ such that both
potential share the same groundstate energy. In Schrödinger
theory, the Coulomb potential (43) has a groundstate energyof
−mc2(αZ)2/2, where we have introduced the electron massm
and the fine structure constantα = e2/(4πε0~c). Numerically
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FIG. 4: Relativistic corrections to the ground state energyE0 for
the two-dimensional soft-core potential (44) withζ = 0.791 and
the three-dimensional soft-core potential for different values of the
atomic numberZ. In the non-relativistic Schrödinger theory, both
potentials share approximately the same ground state energy of
−mc2(αZ)2/2.

we find that forζ ≈ 1.4133 the one-dimensional soft-core po-
tential has approximately the same groundstate energy as the
three-dimensional Coulomb potential with the same atomic
number. In two dimensions, one has to setζ ≈ 0.791 in order
to mach the groundstate energies. These statements hold for
all Z.

In Dirac’s quantum theory, the groundstate energy of the
three-dimensional Coulomb potential (43) ismc2

√

1− (αZ)2

and the soft-core parameter that matches the groundstate en-
ergies depends onZ, however, it is close to the values for
the Schrödinger case. The Dirac groundstate energy of the
Coulomb potential equals the Schrödinger groundstate energy
plus the rest mass energymc2 and relativistic corrections pro-
portional inZ4, viz.

mc2
√

1− (αZ)2 = mc2 − mc2 (αZ)2

2
− mc2 (αZ)4

8
+ . . . (45)

We determined the Dirac groundstate energyE0 of the two-
dimensional soft-core potential (44) withζ = 0.791 as a func-
tion of the atomic numberZ with high numerical accuracy
and found that relativistic corrections to the two-dimensional
soft-core-potential’s groundstate energy are weaker thanfor
the three-dimensional Coulomb potential as shown in Fig. 4.

V.3. Free wave packed scatting at a light
pulse

At high laser intensities, charged particles in electromagnetic
waves are not only affected by the electric field component but
also by the magnetic field component. At intensities larger
than about 55m~ω2/(cµ0q2), the Lorentz force becomes rel-
evant and at intensities above 0.1m2c2ω2/q2 also relativistic
effects have to be taken into account [31], hereω denotes the
laser’s angular frequency andµ0 the vacuum permeability.

We simulated the two-dimensional motion of a free wave
packed in a laser pulse with the electromagnetic fields

E(x, t) = E0 sin(k · x − ωt) f j,l(k · x − ωt) , (46a)

B(x, t) =
E0

c
sin(k · x − ωt) f j,l(k · x − ωt) (46b)

with an envelope functionf j,l(η) of j half cycles with a linear
turn-on ramp and a linear turn-off ramp ofl half cycles and a
constant plateau in between, viz.

f j,l(η) =







































(η + jπ)/(lπ) if − j ≤ η/π ≤ − j + l,

1 if − j + l ≤ η/π ≤ −l,

−η/(lπ) if −l ≤ η/π ≤ 0,

0 else

(46c)

and |k| = 2π/λ = ω/c and E0 ⊥ k. Figure 5 shows the
wave-function’s probability density at different times for a free
wave packed scatting at a strong laser pulse traveling alongthe
x-direction and having an overall length of eight half cycles
and turn-on/off ramps of two half cycles. Its field strength is
|E0| = 3000 a. u. and its wave lengthλ = 40 a. u. The electric
field component accelerates the wave packet back and forth
along they-direction, while the Lorenz force causes a drift
into thex-direction.

V.4. Ionization

In our fourth example, we consider ionization in ultra-strong
and ultra-short laser pulses. The Dirac ground state wave
packet of a soft-core potential (44) withZ = 32 andζ = 0.791
is excited by an external laser pulse (46) with wavelength
λ = 10 a. u. and peak electric field strength|E0| = 3072 a. u..
We consider a short laser pulse of four half-cycles including a
tun-on and a turn-off half-cycle. Figure 6 shows the electron
density after the laser pulse has passed the atomic core. In
the setup, we have chosen here, the laser travels from left to
right and the electric field points into they-direction, acceler-
ating the wave packet into the positivey-direction in the first
and third half-cycles and into the negativey-direction during
the second and fourth half-cycles. The Lorenz force causes an
acceleration into the laser’s propagation direction. The strong
interference patters in Fig. 6 form by the interaction of wave-
function’s different components traveling into different direc-
tions.

Note the huge wave function spreading during the ioniza-
tion. While the ground state wave function has a width of
about 1/32 a.u., the wave function after ionization spreads
over several atomic units as shown in Fig. 6. Wave function
spreading poses a major challenge in the numerical simulation
of light matter interaction at high intensities limiting the sim-
ulations to very short time scales where the size of the wave
function remains of manageable size. The simulation of the
ionization process of Fig. 6 to only about ten minutes using
our GPU Fourier split operator implementation. Thus, the sim-
ulation of even longer interactions with laser pulses of longer
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FIG. 5: Free wave packed scatting at a strong laser pulse. The false color plots show the wave-packet’s probability density at different points
in time t. The solid gray line indicates the center of mass trajectory. The laser pulse travels from left to right. See text for detailed parameters.
Note that the computational grid follows the center of mass motion.

FIG. 6: A wave-function’s probability density after ionization from
the ground state of a soft-core potential (44) by a ultra-strong laser
pulse, see text for details.

wave lengths has become feasible by our GPU implementa-
tion.

VI. Conclusions and outlook

In this contribution we evaluated GPUs as a massively paral-
lel computing architecture for the solution of time dependent
partial differential equations by means of the Fourier split op-
erator method. The computational complexity of the Fourier
split operator method is dominated by the computational com-
plexity of the fast Fourier transform. We demonstrated that
GPUs reach much better performance in computing the fast
Fourier transform than current CPUs. Depending on the prob-
lem size, the performance gain may exceed one order of mag-
nitude as compared to sequential CPU implementations. Thus,
the Fourier split operator method may be implemented very
efficiently on GPU architectures as we demonstrated for the
time dependent Schrödinger equation and the time dependent
Dirac equation. The combination of a highly parallel architec-
ture with a high-throughput memory makes graphics process-
ing units a very attractive architecture for implementing the
Fourier split operator method. Best performance is attained if
all steps of the Fourier split operator method are carried out
by the GPU avoiding data transfer between host memory and
GPU memory.

The fast Fourier transform is a core building block for
the solution of partial differential equations as well as of
many other problems from computational physics, signal pro-
cessing, tomography, computational finance and other fields.
Thus, we expect that also these problems may be solved much
more efficiently on GPU architectures than on conventional
CPUs. Taking into account that GPU computing is a rather
young field it is supposed that there is still plenty potential for
GPU technology and codes to mature further and to find new
applications.
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