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Abstract

We present results for application of block BiCGSTAB algorithm modified by the QR decomposition and the SAP
preconditioner to the Wilson-Dirac equation with multipleright-hand sides in lattice QCD on a 323 × 64 lattice at
almost physical quark masses. The QR decomposition improves convergence behaviors in the block BiCGSTAB
algorithm suppressing deviation between true residual andrecursive one. The SAP preconditioner applied to the
domain-decomposed lattice helps us minimize communication overhead. We find remarkable cost reduction thanks
to cache tuning and reduction of number of iterations.
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1. Introduction

Lattice QCD simulations initiated 30 years ago stand
finally at the point where one can obtain results of phys-
ical observables at the physical up, down and strange
quark masses [1]. The next steps would be refinement
of the results reducing the systematic errors and chal-
lenge to computationally difficult problems, e.g. calcu-
lation of disconnected diagrams. A main difficulty in
lattice QCD simulations is that solution of Dirac equa-
tion, which have to be repeated many times both in
configuration generation and measurement of physical
observables on given configurations, is computationally
expensive near the physical up and down quark masses.
In the measurement of physical observables, however,
computational cost may be reduced by block Krylov
subspace methods [2], since its expensive part is the
multiple right-hand side problem. (This is not the case
for configuration generation.) One can expect that block
Krylov subspace methods make convergence faster with
the aid of better search vectors generated from wider
Krylov subspace enlarged by number of right-hand side
vectors in comparison with non-blocked method. An-
other possible ingredient to improve performance is an
efficient use of memory bandwidth in implementation
of block matrix-vector multiplication.

Since the Dirac matrix in lattice QCD is non-
Hermitian, we might expect the block BiCGSTAB al-
gorithm [3] is applicable in a straightforward way. One
problem in block Krylov subspace methods, however,
is that the true residual stops decreasing at some point,
while the recursive one continues to decrease. Recently,
three of the authors have proposed a new algorithm
named block BiCGGR, which showed significant im-
provement for this problem [4, 5, 6].

In this paper we improve block BiCGSTAB algo-
rithm with two modifications. First one is the QR
decomposition, which is known to improve the nu-
merical accuracy in block CG [2, 7] and also use-
ful for block BiCGSTAB algorithm [8]. Second one
is Schwarz alternating procedure (SAP) preconditioner
proposed by Lüscher [9], which is applied to the
domain-decomposed lattice. We can minimize commu-
nication overhead with the SAP preconditioner.

This paper is organized as follows. In Sec. 2 we
explain the algorithmic details of the modified block
BiCGSTAB with SAP preconditioner. We present the
results of the numerical test in Sec. 3. Conclusions and
discussions are summarized in Sec. 4.
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2. Algorithm

2.1. Modified Block BiCGSTAB

We consider to solve the linear systems with the mul-
tiple right-hand sides expressed as

AX = B , (1)

whereA is anN×N complex sparse non-Hermitian ma-
trix. X andB areN × L complex rectangular matrices
given by

X =
(

x(1), . . . , x(i), . . . , x(L)
)

, (2)

B =
(

b(1), . . . , b(i), . . . , b(L)
)

. (3)

In the case of the Wilson-Dirac equation the matrix di-
mension is given byN = Lx × Ly × Lz × Lt × 3 × 4
with Lx × Ly × Lz× Lt the volume of a hypercubic four-
dimensional lattice.L is the number of the right-hand-
side vectors which is called source vectors in lattice
QCD. L is 12 in the simplest case andO(10)− O(100)
(perhaps more in some case) for the stochastic method.

The matrix-vector multiplication for the Wilson-
Dirac equation is written as

Aφ =
Lx×Ly×Lz×Lt
∑

x=1

(φx − κηx) , (4)

ηx =

4
∑

µ=1

[

(1− γµ)Ux,µ̂φx+µ̂ + (1+ γµ)U
†

x−µ,µ̂φx−µ̂

]

, (5)

whereφx andηx contain 12 complex numbers at sitex,
γµ are the gamma matrices,Ux,µ̂ are link variables of
SU(3) matrix andκ is hopping parameter. Computa-
tion of ηx requires 13201 floating point number opera-
tions and 360 words per site. This means the value of
Flops/Byte is about 0.9 (0.45) in the single (double) pre-
cision. It should be difficult to obtain high performance
on recent computer architecture.

In block Krylov subspace methods, Eq. (5) can be
expressed as

η
(i)
x =

4
∑

µ=1

[

(1− γµ)Ux,µ̂φ
(i)
x+µ̂ + (1+ γµ)U

†

x−µ,µ̂φ
(i)
x−µ̂

]

,

(6)

with i = 1, . . . , L. An important point is that same 8 link
variables around sitex are used in common forφ(i) with
i = 1, . . . , L and their size is just 576 (1152) bytes in the

11296 flops ifγµ is non-relativistic representation.
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Figure 1: Flops/Byte as a function ofL for standard (black circle)
andO(a)-improved (red square) Wilson-Dirac operators in the single
precision.

single (double) precision, which are small enough to be
retained in low level cache, for example L1 cache (if
there is). This allows us more efficient usage of cached
data than repeatingL independent matrix-vector multi-
plications. Figure 1 illustrates how Flops/Byte increases
asL is enlarged. For an effective use of cache, we ar-
range loop for the index ofi (i = 1, . . . , L) in the most
inner level withi running first in memory allocation for
vectors.

Pseudocode for modified block BiCGSTAB algo-
rithm is described in Algorithm 2.1. Note that precon-
ditioner M at lines 4.2 and 4.6 in Algorithm 2.1 must
be implemented by a stationary iterative method in this
algorithm since the common preconditioning should be
applied to all right-hand sides, though nonstational it-
erative methods are often used in lattice QCD [10].
The orthogonalization ofP improves numerical accu-
racy since each span works effectively to search approx-
imated solutions. We employ modified Gram-Schmidt
method for the QR decomposition. Even when non-
block BiCGSTAB fails to converge, modified block
BiCGSTAB may converge by adding dummy right-hand
side vectors if they can play a supplementary role [8].
We also present a memory saving version in Algo-
rithm 2.2.

2.2. Preconditioning

In this work we employ theO(a)-improved2 Wilson
fermions. After Jacobi preconditioning (division ofI +

2The leading cut-off error in terms of the lattice spacinga is re-
moved.
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Algorithm 2.1: Modified Block BiCGSTAB(A,M, B, ǫ)

1 initial guessX ∈ CN×L

2 R= B− AX

3 P = R

4 chooseR̃ ∈ CN×L

while maxi(|r(i)|/|b(i)|) ≤ ǫ

do
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4.1 QR decompositionP = Qγ, P← Q

4.2 U = MP

4.3 V = AU

4.4 solve(R̃HV)α = R̃HR for α
4.5 T = R− Vα

4.6 S = MT

4.7 Z = AS

4.8 ζ = Tr(ZH
k Tk)/Tr(ZH

k Zk)
4.9 X← X + Uα + ζS

4.10 R= T − ζZ

4.11 solve(R̃HV)β = −R̃HZ for β
4.12 P← R+ (P− ζV)β

5 return (X)

Algorithm 2.2: Memory Saving Version(A,M, B, ǫ)

1 initial guessX ∈ CN×L

2 R= B− AX

3 P = R

4 chooseR̃ ∈ CN×L

while maxi(|r(i)|/|b(i)|) ≤ ǫ

do
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4.1 QR decompositionP = Qγ, P← Q

4.2 U = MP

4.3 V = AU
4.4 solve(R̃HV)α = R̃HR for α
4.5 R← R− Vα

4.6 X← X + Uα

4.7 S = MR
4.8 Z = AS

4.9 ζ = Tr(ZH
k Rk)/Tr(ZH

k Zk)
4.10 X← X + ζS

4.11 R← R− ζZ
4.12 solve(R̃HV)β = −R̃HZ for β
4.13 P← R+ (P− ζV)β

5 return (X)

clover term), the matrixA is decomposed as the follow-
ing 2× 2 blocked matrix form,

A =
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, (7)

where the subscriptE andO denote the even and odd
domains, respectively. The SAP preconditionerMS AP is
computed as

MS AP= K
NS AP
∑

j=0

(1− AK) j ,

K =








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
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

,

(8)

whereBEE (BOO) is an approximation forA−1
EE (A−1

OO)
obtained by SSOR method [11]

BEE = (1− ωUEE)−1
[

NS S OR
∑

j=0

(1− AS S OR
EE ) j

]

(1− ωLEE)−1 ,

(9)
with

AS S OR
EE =

1
ω

[

(1− ωLEE)−1 + (1− ωUEE)−1

+ (ω − 2)(1− ωLEE)−1(1− ωUEE)−1
]

.

(10)

LEE is the forward hopping term andUEE is the back-
ward one. We perform SAP preconditioning in the sin-
gle precision for effective use of memory bandwidth and
network bandwidth between nodes.

It is known that “sloppy” precision can be used in
right preconditioning, but not in left one. Suppose cal-
culation ofS = MT at line 4.6 in Algorithm 2.1 is per-
formed with “sloppy” precision ink-th iteration. Nu-
merical errors forSk, Zk, ζk andXk+1 may be expressed
as

Sk → S′k = Sk + δSk , (11)

Zk → Z′k = AS′k , (12)

ζk → ζ′k = ζk + δζk , (13)

Xk+1 → X′k+1 = Xk + Ukαk + ζ
′
kS
′
k . (14)

These yield

R′k+1 = Rk − Vkαk − ζ
′
kZ
′
k

= Rk − AUkαk − ζ
′
kAS′k

= B− AXk − A(Ukαk + ζ
′
kS
′
k)

= B− AX′k+1 ,

(15)
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which satisfies the exact relation between approximate
solutions and residuals in (k + 1)-th iteration. For the
case that bothU = MP at line 4.2 andS = MT at line
4.6 are computed with “sloppy” precision one can also
reproduce the above relation with the following formu-
lae:

Uk → U′k = Uk + δUk , (16)

Vk → V′k = AU′k , (17)

αk → α′k = αk + δα , (18)

Tk → T′k = Rk − V′kα
′
k , (19)

Sk → S′′k = Sk + δS , (20)

Zk → Z′′k = AS′′k , (21)

ζk → ζ′′k = ζk + δζ , (22)

Xk+1 → X′′k+1 = Xk + U′kα
′
k + ζ

′′
k S′′k . (23)

3. Numerical test

3.1. Choice of parameters

We test modified block BiCGSTAB employing a so-
called “local source”,B = [e1, ..., eL], with L = 12 for
color-spin components. We use statistically indepen-
dent 10 configurations generated at almost the physical
point,κud = 0.137785 andκs = 0.136600, in 2+1 flavor
lattice QCD with the nonperturbativelyO(a)-improved
Wilson quark action and the Iwasaki gauge action [12]
at β = 1.9 on a 323 × 64 lattice [1]. We choose the
hopping parameterκ = 0.137785 for the Wilson-Dirac
equation andNS AP = 5 with 8× 8× 8× 8 domain size
for the SAP preconditioning following Ref. [1]. Param-
eters for SSOR method are also fixed withNS S OR= 1
and ω = 1.26. The stopping criterion is set to be
maxi(|r(i)|/|b(i)|) ≤ ǫ with ǫ = 10−14.

3.2. Test environment

Numerical test is performed on 16 nodes of a
large-scale cluster system called T2K-Tsukuba. The
machine consists of 648 compute nodes providing
95.4Tflops of computing capability. Each node con-
sists of quad-socket, 2.3GHz Quad-Core AMD Opteron
Model 8356 processors whose on-chip cache sizes are
64KBytes/core, 512KBytes/core, 2MB/chip for L1, L2,
L3, respectively. Each processor has a direct connect
memory interface to an 8GBytes DDR2-667 memory
and three hypertransport links to connect other pro-
cessors. All the nodes in the system are connected
through a full-bisectional fat-tree network consisting
of four interconnection links of 8GBytes/sec aggre-
gate bandwidth with Infiniband. For numerical test
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Figure 2: Representative case for residual norm as a function of num-
ber of iteration withL = 1, 2, 3, 4,6, 12.

we modify the lattice QCD simulation program LD-
DHMC/ver1.04b12.31 developed by PACS-CS Collab-
oration [13].

3.3. Results

Figure 2 shows a representative case for residual
norm as a function of number of iterations for modified
block BiCGSTAB. We observe one of important fea-
tures of block Krylov subspace methods that the num-
ber of iterations required for convergence decreases as
the block sizeL is increased.

L × 12/L time[s] T(gain) NMVM NM(gain)

1× 12 3827(755) 1 17146(3326) 1

2× 6 2066(224) 1.9 12942(1379) 1.3

3× 4 1619(129) 2.4 10652(832) 1.6

4× 3 1145(99) 3.3 9343(835) 1.8

6× 2 1040(87) 3.7 7888(663) 2.2

12× 1 705(70) 5.4 6106(633) 2.8

Table 1:L dependence for time, gain factor of time, number of matrix-
vector multiplication and its gain factor. Central values are given for
gain factors.

The results are summarized in Table 1. Second col-
umn is total time to solve the Wilson-Dirac equation for
all 12 colour-spin components at one local source. In
case ofL = 6, for example, 12 right-hand side vec-
tors are divided into two blocks:B1 = [e1, ..., e6] and
B2 = [e7, ..., e12]. Third column is gain factor of time
compared withL = 1 case. Fourth and fifth columns are
number of matrix-vector multiplication (NMVM) and
its gain factor, respectively. Modified block BiCGSTAB
with L = 12 is about 5 times faster thanL = 1 case. The
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iteration number is reduced by a factor of three. Addi-
tional speed-up by a factor of two is obtained by cache
tuning. This is roughly consistent with the enhancement
of Flops/Byte from 1.05 atL = 1 to 1.95 atL = 12 plot-
ted in Fig. 1.

4. Conclusions

In this paper, we have carried out numerical test for
block BiCGSTAB with two modifications of the QR
decomposition and the SAP preconditioner in lattice
QCD at almost physical quark masses. The QR de-
composition successfully removes the problem in block
BiCGSTAB that is the deviation between the true and
the recursive residuals. We find remarkable cost reduc-
tion at largeL due to smaller number of iterations and
efficient cache usage. Further gain could be expected in
calculations of disconnected diagram and reweighting
factor, where larger value ofL is required. One con-
cern is that numerical cost for modified Gram-Schmidt
method increases asO(L2).
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