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CHICOM: A code of tests for comparing unweighted

and weighted histograms and two weighted histograms
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Abstract

A Fortran-77 program for calculating test statistics to compare weighted
histogram with an unweighted histogram and two histograms with weighted
entries is presented. The code calculates test statistics for cases of histograms
with normalized weights of events and unnormalized weights of events.

Keywords: homogeneity test, fit Monte Carlo distribution to data,
comparison experimental and simulated data, data interpretation

PROGRAM SUMMARY

Program Title: CHICOM
Journal Reference:
Catalogue identifier:
Licensing provisions: none
Programming language: Fortran-77
Computer: Any Unix/Linux workstation or PC with a Fortran-77 compiler.
Classification: 4.13, 11.9, 16.4, 19.4
External routines/libraries used: FPLSOR (M103) [1] and BRENT [2]
Nature of problem: The program calculates test statistics for comparing two
weighted histograms and an unweighted histogram with a weighted one.
Solution method: Calculation of test statistics is done according formulas presented
in Ref. [3].
Running time: 0.001 sec for 5 bins histogram.
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1. Introduction

A histogram with m bins for a given probability density function p(x) is
used to estimate the probabilities pi that a random event belongs in bin i:

pi =

∫

Si

p(x)dx, i = 1, . . . , m. (1)

Integration in (1) is carried out over the bin Si and
∑m

1
pi = 1. A histogram

can be obtained as a result of a random experiment with the probability
density function p(x).

A frequently used technique in data analysis is the comparison of two dis-
tributions through the comparison of histograms. The hypothesis of homo-
geneity [1] is that the two histograms represent random values with identical
distributions. It is equivalent to there existing m constants p1, ..., pm, such
that

∑m

i=1
pi = 1, and the probability of belonging to the ith bin for some

measured value in both experiments is equal to pi.
Let us denote the number of random events belonging to the ith bin of the

first and second histograms as n1i and n2i, respectively. The total number of
events in the histograms are equal to nj =

∑m

i=1
nji, where j = 1, 2.

As shown in [1] the statistic

1

n1n2

m
∑

i=1

(n2n1i − n1n2i)
2

n1i + n2i

(2)

has approximately a χ2
m−1 distribution if hypothesis of homogeneity is valid.

Weighted histograms are often obtained as a result of Monte-Carlo simu-
lations. References [2, 3, 4] are examples of research on high-energy physics,
statistical mechanics, and astrophysics using such histograms.
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To define a weighted histogram let us write the probability pi (1) for a
given probability density function p(x) in the form

pi =

∫

Si

p(x)dx =

∫

Si

w(x)g(x)dx, (3)

where
w(x) = p(x)/g(x) (4)

is the weight function and g(x) is some other probability density function.
The function g(x) must be > 0 for points x, where p(x) 6= 0. The weight
w(x) = 0 if p(x) = 0, see Ref. [5]. Because of the condition

∑

i pi = 1 further
we will call the above defined weights normalized weights as opposed to the
unnormalized weights w̌(x) which are w̌(x) = const · w(x).

The histogram with normalized weights was obtained from a random
experiment with a probability density function g(x), and the weights of the
events were calculated according to (4). Let us denote the total sum of the
weights of the events in the ith bin of the histogram with normalized weights
as

Wi =

ni
∑

l=1

wi(l), (5)

where ni is the number of events at bin i and wi(l) is the weight of the lth
event in the ith bin. The total number of events in the histogram is equal
to n =

∑m

i=1
ni, where m is the number of bins. The quantity p̂i = Wi/n

is the estimator of pi with the expectation value E [p̂i] = pi. Note that in
the case where g(x) = p(x), the weights of the events are equal to 1 and the
histogram with normalized weights is the usual histogram with unweighted
entries.

Let us introduce notations need for the description of tests for comparing
histograms:

• Wji =
∑nji

l=1wji(l) – the total sum of the weights of the events in the
ith bin of the jth the histogram with normalized weights;

• rji =
∑nji

l=1wji(l)/
∑nji

l=1w
2
ji(l) – estimator of the ratio of moments in

the ith bin of the jth histogram with normalized weights.
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And the same quantities we introduce for the histograms with unnormalized
weighted entries:

• W̌ji =
∑n2i

l=1
w̌ji(l)

• řji =
∑nji

l=1 w̌ji(l)/
∑nji

l=1 w̌
2
ji(l)

Notice that Wji = nji and rji = 1 for histograms with unweighted entries.
Three types of statistics used for comparing histograms are presented at

Ref [6].
Histograms with normalized weighted entries.

Let us introduce the statistic

1X
2
k =

2
∑

j=1

1

nj

∑

i 6=k

rjiW
2
ji

pi
+

2
∑

j=1

1

nj

(nj −
∑

i 6=k rjiWji)
2

1−
∑

i 6=k rjipi
−

2
∑

j=1

nj . (6)

with the sums in (6) extending over all bins i except one bin k. In the equation
(6), the probabilities pi are unknown, and estimators p̂i of the probabilities
are found by minimization of (6). We denote by 1X̂

2
k the value of 1X

2
k after

substitution of the estimators p̂i into (6). As shown in [6], the statistic

1X
2 = Med {1X̂

2
1 , 1X̂

2
2 , . . . , 1X̂

2
m} (7)

approximately has a χ2
m−1 distribution if the hypothesis of homogeneity is

valid.
Histograms with unnormalized weighted entries.

Let us introduce the statistic

2X
2
k =

2
∑

j=1

s2kj
nj

+ 2

2
∑

j=1

skj, (8)

where

skj =

√

∑

i 6=k

řjipi
∑

i 6=k

řjiW̌ 2
ji/pi −

∑

i 6=k

řjiW̌ji. (9)

Again estimators p̂i of unknown probabilities pi are found by minimization of
(8). We denote by 2X̂

2
k the value of 2X

2
k after substitution of the estimators

p̂i into (8). As shown in [6], the statistic

2X
2 = Med {2X̂

2
1 , 2X̂

2
2 , . . . , 2X̂

2
m} (10)
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approximately has a χ2
m−2 distribution if the hypothesis of homogeneity is

valid.
Histograms with normalized and unnormalized weighted entries.

Let us introduce the statistic

3X
2
k =

1

n1

∑

i 6=k

r1iW
2
1i

pi
+

1

n1

(n1 −
∑

i 6=k r1iW1i)
2

1−
∑

i 6=k r1ipi
− n1 +

s2k2
n2

+ 2sk2. (11)

We denote by 3X̂
2
k the value of 3X

2
k after substitution of the estimators p̂i

into (11). As shown in [6], the statistic

3X
2 = Med {3X̂

2
1 , 3X̂

2
2 , . . . , 3X̂

2
m} (12)

approximately has a χ2
m−2 distribution if the hypothesis of homogeneity is

valid.
The chi-square approximation is asymptotic. This means that the critical

values may not be valid if the expected frequencies are too small. The use
of the chi-square test is inappropriate if any expected frequency is < 1, or
if the expected frequency is < 5 in > 20% of the bins for either histogram.
This restriction observed in the usual chi-square test [7] is quite reasonable
for the proposed test.

Information for readers. Recently, another paper dedicated to weighted
histograms has been published in ”Computer Physics Communication“, see
Ref. [9]. The same author has presented a program for goodness of fit test for
histograms with weighted and unweighted entries. The test is used in a data
analysis for comparison theoretical frequencies with frequencies represented
by histogram.

2. Computer program

CHICOM is a subroutine which can be called from the Fortran programs
for calculating test statistics 1X

2, 2X
2 and 3X

2.

Usage

CALL CHICOM(AEX,ERAEX,NEV,AMC,ERAMC,NMC,NCHA,MODE,STAT,NDF,IFAIL)

Input Data

5



AEX – one dimensional real array of first weighted histogram content

ERAEX – one dimensional real array of histogram content for entries of first
histogram with squares of weights.

NEV – number of events in the first histogram n1

AMC – one dimensional real array of second weighted histogram content

ERAMC – one dimensional real array of histogram content for entries of sec-
ond histogram with squares of weights.

NMC – number of events in the second histogram n2

NCHA – number of bins m

MODE – equal 1 for both histograms with normalized weights, equal 2 for
both histograms with unnormalized weights equal 3 for first histogram with
normalized weights and the second with unnormalized weights

Output data

STAT – test statistic

NDF – number of degree of freedom l of the χ2
l distribution if hypothesis H0

is true (will be l = m− 1 or l = m− 2)

IFAIL – will be > 0 if calculation is not successful.

3. Test run

We take a distribution:

p(x) ∝
2

(x− 10)2 + 1
+

1

(x− 14)2 + 1
(13)

defined on the interval [4, 16] and representing two so-called Breit-Wigner
peaks [8]. Three cases of the probability density function g(x) are considered
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g1(x) = p(x) (14)

g2(x) = 1/12 (15)

g3(x) ∝
2

(x− 9)2 + 1
+

2

(x− 15)2 + 1
(16)

Distribution g1(x) (14) results in a histogram with unweighted entries,
while distribution g2(x) (15) is a uniform distribution on the interval [4, 16].
Distribution g3(x) (16) has the same form of parametrization as p(x) (13),
but with different values for the parameters.

Three cases were considered:

First histogram Second histogram
№ type of weight weight type of weight weight
1 normalized p(x)/g1(x) = 1 normalized p(x)/g1(x) = 1
2 unnormalized 0.5p(x)/g2(x) unnormalized 2p(x)/g3(x)
3 normalized p(x)/g1(x) = 1 unnormalized 0.5p(x)/g3(x)

For each case histograms with 5 bins were created by simulation 500 en-
tries for first histogram and 1000 entries for the second one. The results of
the calculations are presented below.

Test 1

INPUT

AEX 11.0000 58.0000 234.0000 102.0000 95.0000

ERAEX 11.0000 58.0000 234.0000 102.0000 95.0000

NEV 500

AMC 30.0000 119.0000 439.0000 182.0000 230.0000

ERAMC 30.0000 119.0000 439.0000 182.0000 230.0000

NMC 1000

NCHA 5

MODE 1
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OUTPUT

STAT 4.7391 (p-value = 0.3151)
NDF 4

IFAIL 0

Test 2

INPUT

AEX 9.3018 22.8871 122.0670 51.6786 46.2622

ERAEX 0.8026 7.7173 142.7876 27.7087 28.5724

NEV 500

AMC 68.9455 213.5029 898.8528 397.7258 419.0171

ERAMC 108.3022 229.3163 3697.7102 1455.0262 699.6888

NMC 1000

NCHA 5

MODE 2

OUTPUT

STAT 1.9111 (p-value = 0.5911)
NDF 3

IFAIL 0

Test 3

INPUT

AEX 17.0000 53.0000 225.0000 101.0000 104.0000

ERAEX 17.0000 53.0000 225.0000 101.0000 104.0000

NEV 500

AMC 14.2303 53.9921 204.9794 111.6337 101.1128

ERAMC 5.4897 14.5935 198.6223 103.7259 40.9275

NMC 1000

NCHA 5

MODE 3

OUTPUT
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STAT 1.4431 (p-value = 0.6955)
NDF 3

IFAIL 0
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