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�is work introduces a general framework for the direct numerical simulation

of systems of interacting fermions in one spatial dimension. �e approach is

based on a specially adapted nodal spectral Galerkin method, where the basis

functions are constructed to obey the antisymmetry relations of fermionic wave

functions. An e�cient Matlab program for the assembly of the sti�ness and

potential matrices is presented, which exploits the combinatorial structure of

the sparsity pattern arising from this discretization to achieve optimal run-time

complexity. �is program allows the accurate discretization of systems with

multiple fermions subject to arbitrary potentials, e. g., for verifying the accuracy

of multi-particle approximations such as Hartree–Fock in the few-particle limit.

It can be used for eigenvalue computations or numerical solutions of the time-

dependent Schrödinger equation.

1 introduction

An accurate simulation of interacting many-body fermionic systems is one of the grand chal-

lenges of modern computational physics. A �rst-principles calculation of quantum systems

consisting of even a few fermions is di�cult, as the application of standard �nite di�erence or
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�nite element methods can lead to prohibitively large matrix approximations of the Hamilto-

nian. On the other hand, many-body approximation methods may be inaccurate for systems

with a low number of particles. �is is the case even in a single spatial dimension. One

motivation for solving the multi-particle one-dimensional Schrödinger equation in a quan-

tum well numerically is therefore to verify the accuracy of many-body approximations in

the few-particle limit. Furthermore, one-dimensional wave functions arise in, e. g., electron

transport in semiconductor quantum wires [2, 14] or single-well carbon nanotubes [19].

�ere is a considerable number of publications using approximation methods such as the

Hartree–Fock ormulti-con�guration time-dependentHartree–Fock (MCTDHF)method, the

Hubbardmodel, and the Born–Oppenheimer approximation in reduced-dimensional systems.

In addition, there currently exists a body of work related to simulation of identical particles

in a variety of special cases, where the interaction potential is modeled by a delta function

or by certain singular potentials that are aphysical, but which model physical potentials

such as Coulomb interaction. In some cases, exactly solvable model problems have been

formulated [15].�ere are also programs for the two-electron atomwith �xed nuclear position

[9], and recently, the energy levels of two particles in an in�nite potential well with quadratic

interaction potential have been computed [1].

However, there are comparatively few works on the direct numerical simulation of inter-

acting fermions [24, 5, 4]. Most are based on sparse grid techniques [12, 25, 11] due to the

combinatorial growth in the number of freedom with increasing number of particles. In

comparison, spectral methods are very e�cient in single-particle discretizations – in par-

ticular, exponential convergence can be expected for smooth potentials, – but the resulting

matrices are frequently very dense, which is an obstacle in their application to multi-particle

discretizations.

We therefore propose a nodal spectral Galerkin scheme where the basis functions are

constructed to obey the antisymmetry relations of the fermionic wave function, thereby

drastically reducing the degrees of freedom, increasing the sparsity of the sti�ness matrix,

and diagonalizing the potential matrix. Furthermore, we derive an e�cient algorithm for the

assembly of these matrices that exploits the combinatorial structure of the sparsity patterns

to achieve linear scaling in the number of nonzero entries. We believe the present work is

the �rst general approach that allows solving small systems of one-dimensional interacting

fermions with arbitrary potential terms using the full multi-particle wave function. It should

be noted that due to its generality, the program will not be optimal for some application

models such as those with low regularity; however, it will be useful as a base for adaptations

and optimizations for these speci�c situations.

Since an e�cientMatlab implementation of the proposed approach is by necessity concise

and makes heavy use of various features of Matlab programming – some of which may

be of independent interest – we give a detailed derivation and explanation of the program.

In particular, we present our procedure in steps, �rst presenting the abstract algorithm for

the assembly, followed by its implementation using the linear algebra tools of Matlab, and

�nally the use of vectorization to accelerate the assembly.

�e paper is organized as follows. In the next section, we brie�y state the multi-particle

problem with which we are concerned. Section 3 describes our discretization of the single-
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particle (§ 3.1) and multi-particle (§ 3.2) wave function. �e e�cient assembly of the resulting

sti�ness matrix is the focus of section 4, where we �rst describe the abstract algorithm in

§ 4.1, followed by its e�cient implementation in Matlab in § 4.2. Numerical experiments

illustrating the accuracy and performance of the proposed method are presented in section 5.

2 problem formulation

Let ψ(x, t) = ψ(x1, . . . , xN, t), xi ∈ [−1, 1], denote the multi-particle wave function and

consider the Hamiltonian

H(x, t)ψ(x, t) =

{
−
1

2
∆+

N∑
j=1

(
U(xj, t) +

N∑
k>j

V(xj, xk)

)}
ψ(x, t),

where ∆ = ∂2x1 + · · · + ∂
2
xN
is the N-dimensional Laplacian with appropriate boundary

conditions (e. g., homogeneous Dirichlet or periodic). �e potential U(x, t) is an externally-

applied potential which a�ects each fermion individually, whereas the symmetric interaction

potential V(xj, xk) is determined by the relative locations of the j-th and k-th particle. For

electrons, this potential is Coulombic, i. e.,

V(xj, xk) =
q

|xj − xk|
,

where q is the charge carried by an electron.

�e Hamiltonian occurs in the time-dependent Schrödinger equation

(2.1) i∂tψ(x, t) = H(x, t)ψ(x, t)

or in the eigenvalue problem

(2.2) H(x)ψ(x) = λψ(x)

for the computation of stationary eigenstates of (2.1) for a time-independent potential U(xj).

For the sake of exposition, we focus on (2.2) in the following, even though the method is

equally applicable for the numerical solution of the time-dependent Schrödinger equation

(2.1).

We can identify each composite state of a system of N identical fermions with a tuple

α = (α1, . . . , αN) describing the combination of states of the single particles. Without

interaction, the eigenfunctions ψα(x) for multiple particle systems can be constructed from

Slater determinants (cf., e. g., [20, sec. 1.4]) of the one-particle eigenfunctionsψj(x) [8, § 20.5]:

(2.3) ψα(x) =
1√
N!

∣∣∣∣∣∣∣∣∣
ψα1(x1) ψα2(x1) · · · ψαN(x1)

ψα1(x2) ψα2(x2) · · · ψαN(x2)
...

...
. . .

...

ψα1(xN) ψα2(xN) · · · ψαN(xN)

∣∣∣∣∣∣∣∣∣ .
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(a) ψ1,2,3(x1, x2, x3) (b) ψ1,2,4(x1, x2, x3)

Figure 1: Isosurfaces of eigenfunctions. Red and blue surfaces depict level set where ψ is

exactly half of its maximum or minimum value respectively.

For example, in two dimension, the eigenfunction have the form

ψj,k(x1, x2) =
1√
2
[ψj(x1)ψk(x2) −ψk(x1)ψj(x2)] , j 6= k.

�e eigenfunctions for a three-particle system are

ψi,j,k(x1, x2, x3) =
1√
6

[
ψi(x1)ψ2(x2)ψ3(x3) +ψj(x1)ψk(x2)ψi(x3)

+ψk(x1)ψi(x2)ψj(x3) −ψk(x1)ψj(x2)ψi(x3)

−ψi(x1)ψk(x2)ψj(x3) −ψj(x1)ψi(x2)ψk(x3)
]

for all i 6= j 6= k, which can be visualized by plotting isosurfaces (see Figure 1).

3 discretization

For the numerical simulation, we express (2.2) in weak form and replace the wave function ψ

by an approximation from a �nite-dimensional subspace. We make use of a tensor product

approach, where the multi-particle wave function is written as a product of single-particle

wave functions. Due to the combinatorial explosion of the degrees of freedom with growing

N, it is crucial to select a convenient discretization for a single particle that yields a sparse

basis for the multi-particle case.
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3.1 discretization of single particle

To keep the degrees of freedom for a single particle as low as possible, we work with a nodal

spectral Galerkin discretization, where the eigenvalue problem (2.2) is projected onto the span

of p Lagrange polynomials and the occurring inner products are computed approximately

using either Gauss–Lobatto quadrature (for Dirichlet boundary conditions) or Gauss–Fourier

quadrature (for periodic boundary condition). �is approach is called Galerkin numerical
integration method, and has been shown to be algebraically equivalent to a pseudospectral
method on the same grid [7].

For non-periodic problems, we use the Legendre–Gauss–Lobatto (LGL) nodes

{ξ0, . . . , ξp+1} = {x ∈ Ω : P ′p+1(x) = 0} ∪ {±1},

where Pk(x) is the k-th Legendre polynomial. �e corresponding quadrature weights are

wk =
1

(p+ 1)(p+ 2)

2

[Pp+1(ξk)]2
, k = 0, . . . , p+ 1.

�e Lobatto quadrature is exact for all polynomials up to order 2p+ 1.

�e Lagrange polynomials corresponding to the LGL nodes are

˜̀
j(x) =

p+1∏
k=0
k6=j

x− ξk
ξj − ξk

, j = 0, . . . , p+ 1,

which have the important property of being nodal interpolants, i. e.,

˜̀
j(ξk) = δjk =

{
1 if j = k

0 if j 6= k
.

A key idea in our discretization is to work with the scaled Lagrange polynomials

`j(x) =
1
√
wj
˜̀
j(x),

for which the mass matrix will become the identity. �e derivatives of the Lagrange polyno-

mials are given by [3]

` ′j(ξk) =

{
bj/bk
ξj−ξk

if j 6= k,
−
∑
i 6=j `

′
j(ξi) if j = k,

using the barycentric weights

bj =

p+1∏
k=0
k6=j

ξj − ξk


−1

, j = 0, . . . , p+ 1.
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�e single-particle wave function is then approximated nodally using a linear combinarion

of the Lagrange polynomials {`1, . . . , `p}, thereby excluding the end points and enforcing a

homogeneous Dirichlet condition:

(3.1) ψ(x) ≈
p∑
k=1

ψ̂k˜̀k(x), ψ(±1) = 0.

Substituting (3.1) into the weak form of (2.2) (without interaction potential) yields

p∑
k=1

[
〈` ′j(x), ` ′k(x)〉+ 〈`j(x), U(x)`k(x)〉

]
ψ̂k = λ

p∑
k=1

〈`j(x), `k(x)〉ψ̂k

for all j ∈ {1, . . . , p}. By numerically computing the inner products using Gauss–Lobatto

quadrature, we obtain the single-particle mass matrixM, potential matrix U and sti�ness

matrix K with the entries

Mjk =

p∑
i=1

`j(ξi)`k(ξi)wi = δjk,

Ujk =

p∑
i=1

`j(ξi)`k(ξi)U(ξi)wi = U(ξj)δjk,

Kjk =

p∑
i=1

` ′j(ξi)`
′
k(ξi)wi.

Note that by the nodal basis property of the `j,M is the identity matrix,U is a diagonal matrix

with the potential evaluated at the LGL nodes on the diagonal, and K is a full matrix. Problem

(2.2) is thus reduced to a standard eigenvalue problem for the matrix K+U.

For periodic problems, the approach is similar to the above but simpli�ed. �e periodic

Fourier nodes and quadrature weights are

ξj =
2πj

p
, wj =

√
2π

p
.

�e trigonometric Lagrange polynomials are [23]

`j(x) =
sin(p

2
(x− ξj))

p sin(1
2
(x− ξj))

, j = 0, . . . , p− 1,

which are nodal interpolants at the Fourier nodes. �e explicit form of the sti�ness matrix

elements is then [7, eq. (2.1.52)]

Kjk =

−1
4
(−1)j+kp− (−1)j+k+1

2 sin2( (j−k)π
p )

, j 6= k,
(p−1)(p−2)

12
j = k.

As above,M is the identity matrix and U is a diagonal matrix with elements given by the

potential evaluated at the quadrature nodes.
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3.2 discretization of multiple particles

Motivated by the Slater construction (2.3) of the eigenfunctions, the multi-particle wave

function is discretized using tensor products of N identical single-particle discretizations

with p degrees of freedom each. Introducing a tuple α = (α1, . . . , αN), we can write

ψ(x1, . . . , xN) ≈
∑
α6p

ψ̂αϕα(x1, . . . , xN) :=
∑
α6p

ψ̂α`α1(x1) · · · `αn(xN).

where we have used the convention that α 6 p holds if αj 6 p for all 1 6 j 6 N. A naive

application of this discretization would require the determination of pN unknown coe�cients,

which is clearly impractical for reasonable p andN > 3. However, the degrees of freedom

are greatly reduced by enforcing the anti-symmetry property of the fermionic wave function

arising from the Pauli exclusion principle [20, § 1.4.1], i. e.,

ψ(. . . , xi, . . . , xj, . . .) = −ψ(. . . , xj, . . . , xi, . . .) for all 1 6 i, j 6 N,

A particular consequence of this is that the expansion coe�cient ψ̂α must be zero if at least

two elements of α are equal. �ese symmetries can be expressed using Slater determinants to

construct the trial functions. Speci�cally, for α = (α1, . . . , αN) we set

ϕα(x1, . . . , xN) =

∣∣∣∣∣∣∣
`α1(x1) · · · `αN(x1)
...

. . .
...

`α1(xN) · · · `αN(xN)

∣∣∣∣∣∣∣ .
�e Slater determinant can only be nonzero when the indices of each of the Lagrange poly-

nomials are distinct. Furthermore, two basis functions ϕα and ϕβ corresponding to two

tuples α and β are identically equal up to a sign change if α is a permutation of β, where

the sign change is determined by the signature of this permutation. �erefore it su�ces just

to consider tuples α that form an ascending non-repeating N-tuple. Let T denote the set

of all ascending non-repeatingN-tuples, endowed with the lexicographical order, herea�er

denoted by �. We introduce an enumeration

τ : T → {1, . . . ,Np},

which assigns to eachN-tuple α the number of elements in T which are less than or equal

to α with respect to �. Restricting the basis functions to the set {ϕα : α ∈ T} reduces their

number to

Np =

(
p

N

)
=

p!

N!(p−N)!
,

since there areN! possible orderings of eachN-tuple.�is also corresponds to the fact that the

computational domain – theN-dimensional hypercube – can be tessellated intoN! uniform

N-simplices
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Example 3.1. For p = 4 andN = 3, we haveNp = 4 and

T = {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} .

�e basis function corresponding to the tuple α = (1, 3, 4) with τ(α) = 3 is

ϕα(x1, x2, x3) =

∣∣∣∣∣∣
`1(x1) `3(x1) `4(x1)

`1(x2) `3(x2) `4(x2)

`1(x3) `3(x3) `4(x3)

∣∣∣∣∣∣
= `1(x1)`3(x2)`4(x3) + `3(x1)`4(x2)`1(x3) + `4(x1)`1(x2)`3(x3)

− `4(x1)`3(x2)`1(x3) − `1(x1)`4(x2)`3(x3) − `3(x1)`1(x2)`4(x3).

Substituting ψ(x) ≈
∑
β∈T ψ̂βϕβ(x) into the weak form of (2.2) yields

(3.2)
∑
β∈T

[
〈∇ϕα(x),∇ϕβ(x)〉+

N∑
i=1

〈ϕα(x), U(xi)ϕβ(x)〉

+

N∑
i=1

N∑
j=i+1

〈ϕα(x), V(xi, xj)ϕβ(x)〉
]
ψ̂β = λ

∑
β∈T

〈ϕα(x), ϕβ(x)〉ψ̂β

for all α ∈ T. To evaluate the inner products, it is not necessary to construct the Slater

determinants explicitly. We �rst consider the zero-order terms. Since the inner products are

computed by a quadrature rule, we can exploit the nodal basis properties of the tensor product

Lagrange polynomials. Let ξγ = (ξγ1 , . . . , ξγN)
T denote the tensor product quadrature

points andwγ =
∏N
j=1wγj the corresponding quadrature weights. Due to the antisymmetry

properties of the basis functions, it is su�cient to carry out the numerical quadrature on one

simplex instead of on the full tensor product grid. For convenience, we choose the simplex

that is characterized by the condition x1 6 x2 6 · · · 6 xN, such that the quadrature nodes
are given by the set {ξγ : γ ∈ T}. �en we have by applying Laplace’s rule to the �rst column

(noting that αi 6= αj for i 6= j)

ϕα(ξγ) =

∣∣∣∣∣∣∣
`α1(ξγ1) · · · `αN(ξγ1)
...

. . .
...

`αN(ξγN) · · · `αN(ξγN)

∣∣∣∣∣∣∣ =
{
(wγ)

−1/2 if α = γ,

0 else.

Now let j = τ(α) and k = τ(β). �en the corresponding element of the mass matrixM is

given by

Mjk = 〈ϕα(x), ϕβ(x)〉 =
∑
γ∈T

wγϕα(ξγ)ϕβ(ξγ) = δjk,

i. e., the mass matrix is the identity as claimed. �us, (3.2) represents a standard eigenvalue

problem for the matrix K+U+V. (We point out that generically, Galerkin schemes lead

to generalized eigenvalue problems.) �is property is also useful for the numerical solution
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of the time-dependent Schrödinger equation using leap-frog schemes since in this case, no

matrix inversions are required. Similarly, the con�nement potential matrixU has the elements

Ujk =

N∑
i=1

〈ϕα(x), U(xi)ϕβ(x)〉 =
∑
γ∈T

N∑
i=1

U(ξγi)wγϕα(ξγ)ϕβ(ξγ)

=

(
N∑
i=1

U(ξαi)

)
δjk,

such thatU is a diagonal matrix with the con�nement potential evaluated on the quadrature

nodes on the diagonal. �e elements of the interaction potential matrix V are

Vjk =

N∑
n=1

N∑
m=n+1

〈ϕα(x), V(xn, xm)ϕβ(x)〉

=
∑
γ∈T

(
N∑
n=1

N∑
m=n+1

V(ξγn , ξγm)

)
wγϕα(ξγ)ϕβ(ξγ)

=

(
N∑
n=1

N∑
m=n+1

V(ξαn , ξαm)

)
δjk.

We now turn to the elements of the sti�ness matrix,

(3.3) Kjk = 〈∇ϕα(x),∇ϕβ(x)〉 =
N∑
n=1

〈∂xnϕα(x), ∂xnϕβ(x)〉.

Here we cannot use the antisymmetry properties in the same way as before. However, it is

still possible to avoid evaluating the Slater determinants, since the Löwdin rules [17, 18] state

that the inner product of two Slater determinants

A(x) =

∣∣∣∣∣∣∣
a1(x1) · · · aN(x1)
...

. . .
...

a1(xN) · · · aN(xN)

∣∣∣∣∣∣∣ and B(x) =

∣∣∣∣∣∣∣
b1(x1) · · · bN(x1)
...

. . .
...

b1(xN) · · · bN(xN)

∣∣∣∣∣∣∣
can be expressed as

〈A(x), B(x)〉 =

∣∣∣∣∣∣∣
〈a1, b1〉 · · · 〈a1, bN〉
...

. . .
...

〈aN, b1〉 · · · 〈aN, bN〉

∣∣∣∣∣∣∣ .
We can thus write each term in (3.3) in terms of elements of the one-dimensional mass
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(M = I) and sti�ness (K)matrices

(3.4) 〈∂xnϕα(x), ∂xnϕβ(x)〉 =∣∣∣∣∣∣∣
〈`α1 , `β1〉 . . . 〈`α1 , `βn−1〉 〈` ′α1 , `

′
βn
〉 〈`α1 , `βn+1〉 . . . 〈`α1 , `βN〉

...
. . .

...
...

...
. . .

...

〈`αN , `β1〉 . . . 〈`αN , `βn−1〉 〈` ′αN , `
′
βn
〉 〈`αN , `βn+1〉 . . . 〈`α1 , `βN〉

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
δα1β1 · · · δα1βn−1 Kα1βn δα1βn+1 · · · δα1βN
...

. . .
...

...
...

. . .
...

δαNβ1 · · · δαNβn−1 KαNβn δαNβn+1 · · · δαNβN

∣∣∣∣∣∣∣ =: det(Knα,β).

Since α and β contain non-repeating elements, every column of Knα,β apart from the n-th

one contains at most one nonzero element (which is equal to 1). �is allows computing the

entries of the sti�ness matrix without evaluation of determinants. Depending on α and β, we

can discriminate between three cases:

1. α = β: In this case, Knα,β is the identity matrix with the n-th column replaced by a

selection of the diagonal entries of the one-dimensional sti�ness matrix K. Applying

Laplace’s rule along the diagonal, we obtain for j = τ(α)

Kjj =

N∑
n=1

〈∂xnϕα(x), ∂xnϕα(x)〉 =
N∑
n=1

Kαnαn .

2. α 6= β, and α and β have at mostN− 2 elements in common. In this case, for every

n ∈ {1, . . . ,N}, there is a column of Knα,β which only contains zeros (speci�cally, the

columnm 6= n for which βm /∈ α). �us, all determinants are zero, and the entry for
j = τ(α) and k = τ(β) is

Kjk = 0.

3. α 6= β, and α and β have exactlyN− 1 elements in common. In this case, there is an

n ∈ {1, . . . ,N} such that βn /∈ α and βi ∈ α for all i 6= n. Conversely, there is exactly
one m ∈ {1, . . . ,N} such that αm /∈ β. Arguing as in case 2, we thus have that the
determinant ofKiα,β is zero for all i 6= n. Consider now Knα,β. Since βi ∈ α holds for all
i 6= n, every column except the n-th contains exactly one nonzero element. �erefore,
there exists a row – speci�cally, them-th row, since δαmβi = 0 for all i 6= n – where
every element except the one in the n-th row is zero. Applying Laplace’s rule to this

row yields a minor which is the (N− 1)× (N− 1) identity matrix, since the remaining

elements in α and β are identical and equally ordered by construction. We thus obtain

for j = τ(α) and k = τ(β)

Kjk =

N∑
i=1

det(Kiα,β) = det(K
n
α,β) = (−1)m+nKαmβn .
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Example 3.2. Returning to Example 3.1 forN = 3 and p = 4, the sti�ness matrix is the sum of
threeN×Nmatrices. Consider the tuples α = (1, 3, 4) and β = (2, 3, 4) with τ(α) = 3 and
τ(β) = 4. �en,

K34 = 〈∂x1ϕα(x), ∂x1ϕβ(x)〉+ 〈∂x2ϕα(x), ∂x2ϕβ(x)〉+ 〈∂x3ϕα(x), ∂x3ϕβ(x)〉

=

∣∣∣∣∣∣
〈` ′1, ` ′2〉 〈`1, `3〉 〈`1, `4〉
〈` ′3, ` ′2〉 〈`3, `3〉 〈`3, `4〉
〈` ′4, ` ′2〉 〈`4, `3〉 〈`4, `4〉

∣∣∣∣∣∣+
∣∣∣∣∣∣
〈`1, `2〉 〈` ′1, ` ′3〉 〈`1, `4〉
〈`3, `2〉 〈` ′3, ` ′3〉 〈`3, `4〉
〈`4, `2〉 〈` ′4, ` ′3〉 〈`4, `4〉

∣∣∣∣∣∣+
∣∣∣∣∣∣
〈`1, `2〉 〈`1, `3〉 〈` ′1, ` ′4〉
〈`3, `2〉 〈`3, `3〉 〈` ′3, ` ′4〉
〈`4, `2〉 〈`4, `3〉 〈` ′4, ` ′4〉

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K12 0 0

K32 1 0

K42 0 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
0 K13 0

0 K33 0

0 K43 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
0 0 K14
0 1 K34
0 0 K44

∣∣∣∣∣∣ = K12.
�is corresponds to case 3 above with n = m = 1, α1 = 1 /∈ β and β1 = 2 /∈ α.

4 assembly of the discrete hamiltonian

In this section, we present our approach for the e�cient assembly of the Galerkin matrices.

�e procedure for the (diagonal) potential matrices and the computation of the diagonal

entries of the sti�ness matrix is straightforward, so we only need to discuss the computation

of the o�-diagonal entriesKjk, j 6= k, of the sti�ness matrix. We �rst introduce and justify the
abstract algorithm in section 4.1. In section 4.2, we discuss its implementation in Matlab.

4.1 abstract algorithm

SinceNp grows factorially with increasingN and p, a naive evaluation of allNp×Np possible
inner products of the form (3.4) is prohibitive. �e crucial step in our approach is therefore a

procedure to compute only the nonzero entries Kjk together with the corresponding indices

j and k. As discussed above, the o�-diagonal entries are precisely those corresponding to

tuples α and β in T which have exactlyN− 1 elements in common. For the sake of brevity,

we call a β ∈ T satisfying this condition connected to α.1 Due to the symmetry of the sti�ness
matrix, it su�ces to consider only connected tuples which satisfy β � α; the set of all such
tuples will be denoted by Iα.

�e set of all connected tuples can in principle be computed by successively removing

an element αm from α and inserting all possible βn /∈ α while ensuring that the result
remains strictly ascending. �e main algorithmic di�culty here is that the di�ering value

need not be in the same position in α and in β (e. g., (1, 2, 4) and (2, 3, 4)), and that we need

to ensure β � α to avoid redundancy. A more e�cient approach is to change the order of
operations by �rst inserting the new element (yielding an (N+ 1)-tuple) and then removing

1�is notation is motivated by the fact that T can be identi�ed with the set of all subsets of {1, . . . , p} having

exactlyN elements. �e graph obtained from these vertices with edges between all vertices corresponding

to subsets havingN− 1 elements in common is known as the Johnson graph, cf. [13].
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all possible elements such that the result is a connected tuple with β � α. In this way, all
β ∈ Iα can be generated without conditional statements. �e procedure for a given α ∈ T

can be summarized as follows (setting αN+1 = p+ 1):

for n = 1, . . . ,N do
for b ∈ {αn + 1, . . . , αn+1 − 1} do

β ′ ← (α1, . . . , αn, b, αn+1, . . . , αN)

form = 1, . . . , n do
β← (β ′1, . . . , β

′
m−1, β

′
m+1, . . . , β

′
N)

Iα ← Iα ∪ {β}

end for
end for

end for
Note that the set in the second loop can be empty, and that it is possible to restrict the �rst

loop a priori to only those values of n for which this set is nonempty. Furthermore, knowing

β, n andm, we can directly compute Kτ(α)τ(β) = (−1)m+nKαmβn without additional e�ort.

In addition, β need not be saved a�er calculating τ(β), since βn = b by construction.

It remains to argue that this procedure generates every β ∈ Iα exactly once. Let α ∈ T be

given and β be generated as above for n ∈ {1, . . . ,N} andm ∈ {1, . . . , n}.

First, since αn < b < αn+1 holds, β
′ is a strictly ascending (N + 1)-tuple. Deleting any

element then results in a strictly ascendingN-tuple. Hence, β ∈ T holds.

Observe now that by construction, α and β have exactly N − 1 elements in common

(speci�cally, αi for all i 6= m), and that αm = β ′m /∈ β and βn = b /∈ α since m 6 n.

Furthermore, either βm = b > αm (ifm = n) or βm = αm+1 > αm (else) is satis�ed. Since

βi = αi for i < m, we have that β � α and hence β ∈ Iα. Conversely, for every β connected

to α, there existm,n ∈ {1, . . . ,N} with αm /∈ β and βn /∈ α. Ifm > n, then βi = αi for all

i < n and βn+1 = αn (otherwise αn 6= αm cannot be an element of β, a contradiction to
β ∈ Iα). Since α and β are strictly ascending tuples, we have that βn < βn+1 = αn holds,

which implies β ≺ α, so β /∈ Iα. We can therefore assumem 6 n. Ifm < n, we have

αn = βn−1 < βn < βn+1 = αn+1

and hence b = βn appears in the second loop. On the other hand,m = n implies βn−1 =

αn−1 and thus αn−1 < βn 6 αn is possible (otherwise we argue as above that b = βn
occurs). However, this would imply that β � α (since βi = αi for i < n), and thus again

β /∈ Iα. Hence, any β ∈ Iα will be generated by the above procedure. Finally, form 6 n,

the connected tuple β is uniquely determined by the pair (m,n) and the value βn = b, and

therefore each β ∈ Iα occurs only once in the procedure.

Example 4.1. Consider the caseN = 4 and p = 7 and take the tuple α = (1, 2, 4, 5). �e only
possible points of insertion are to the right of index n = 2 and n = 4. For n = 2, we can only
insert b = 3 to obtain a strictly ascending tuple β ′ = (1, 2, 3, 4, 5). By successively deleting β ′1
and β ′2, we obtain (2, 3, 4, 5) and (1, 3, 4, 5). For n = 4, we can insert b = 6 and b = 7 a�er
α4, so that a�er deletion of β ′m, 1 6 m 6 n, we obtain

(2, 4, 5, 6), (1, 4, 5, 6), (1, 2, 5, 6), (1, 2, 4, 6)
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and

(2, 4, 5, 7), (1, 4, 5, 7), (1, 2, 5, 7), (1, 2, 4, 7),

respectively. It is easy to verify that these are indeed all connected tuples which are lexicographi-
cally greater than α.

�e complete procedure to generate the o�-diagonal entries of the sti�ness matrix is given

as Algorithm 1, where we again set αN+1 = p+ 1. (Note thatm = n is possible, in which case

βm−1 = αm−1 andβm = b hold.)�is algorithm can be further accelerated by precomputing

for each α the set Gα of possible insertion indices n and the range of valid b for such n.

Algorithm 1 Generating o�-diagonal entries of sti�ness matrix
1: for α ∈ T do
2: Compute set Gα = {n : αn+1 > αn + 1}

3: for n ∈ Gα do
4: for b ∈ {αn + 1, . . . , αn+1 − 1} do
5: form = 1, . . . , n do
6: β← (α1, . . . , αm−1, αm+1, . . . , αn, b, αn+1, . . . , αN)

7: Kτ(α)τ(β) ← (−1)m+nKαmb
8: end for
9: end for
10: end for
11: end for

4.2 implementation

We now discuss speci�c details of the Matlab implementation of our approach, which is

given in Appendix A.

�e one-dimensional Legendre–Gauss–Lobatto nodes and weights are computed from

their recursion coe�cients [16]. Speci�cally, the nodes are the ordered eigenvalues of the

matrix

J =


0 b1
b1 0 b2

. . .
. . .

. . .

bp 0 bp+1
bp+1 0

 , bk =


k√
4k2−1

k = 1, . . . , p,√
p+1
2p+1

k = p+ 1.

Computing the eigenvalue decomposition J = VXV> (with the eigenvectors ordered cor-

responding to increasing eigenvalue), we obtain the Lobatto nodes as ξj = Xjj and the

corresponding weights aswj = (V1j)
2. �e sti�ness matrix K is computed using an e�cient

implementation of the barycentric formulation [3]. In the periodic case, K can be computed
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using the discrete Fourier transform (DFT) as K = FDF−1, where F is the DFT matrix andD

is a diagonal matrix with entries

Djj =

{
(j− 1)2 j < p

2
+ 1,

(p− j)2 j > p
2
,

which computes the secondderivative in the coe�cient representation (see function computeLGL

in the code).

�e lexicographically ordered tuples in T are represented as a matrix T ∈ NNp×N, where
each row contains an ascending non-repeatingN-tuple, such that the j-th rowof T corresponds

to τ−1(j) andαi = Tτ(α),i. �is matrix can be generated inMatlabwith the single command

T = nchoosek(1:p,N). �e con�nement and interaction potential matrices U and V can

then be easily assembled using the sparse command and Matlab’s sparse indexing (see line

19–21, noting that xi(T(i,j)) = ξαj if i = τ(α)). For V, we use again nchoosek to generate

a matrix containing all pairs of interacting particles (see line 6) and arrayfun to parallelize

the evaluation of the interaction potential at the quadrature nodes.

Using T , it is also straightforward to compute the matrix representation of {Gα : α ∈ T},

which has the entries

Gjk = gj(τ
−1(j)), gn(α) =

{
αn+1 − αn − 1 for n = 1 . . .N− 1,

p− αN for n = N,

by taking the di�erence of consecutive rows of a suitably augmentedmatrix T (see lines 10–11).

Givenm, n and the inserted value b, the value of the sti�ness matrix entry corresponding

to the connected tuples α and β can be easily obtained from the one-dimensional sti�ness

matrix (see line 41). By looping over all rows of T , we consider each α ∈ T in ascending

lexicographical order, and thus never need to explicitly compute the column index j = τ(α). It

remains to �nd the column index k = τ(β) of the entry Kjk. While it is possible to construct

an explicit formula for τ(β), this would be needlessly expensive. Similarly, using Matlab’s

find and the matrix T would lead to poor scaling of the algorithm. We thus proceed in two

steps: First, we assign a unique integer (a hash) to each β via the mapping

τ# : T → {1, . . . ,Np(p−N)N−1}, β 7→
N∑
j=1

βj(p−N)j−1.

�is is a linear mapping from NN to N and can thus be represented as a 1 × N matrix
h (called hash in the code, see line 14). We then construct a lookup table of size NT :=

Np(p−N)N−1 which contains for every i ∈ {1, . . . ,NT } either the value of τ(β) if i = τ
#(β)

or zero if i is not in the range of τ#. Since onlyNp elements are nonzero, it can be e�ciently

represented inMatlab as a sparsematrix (called lookup in the code) and quickly constructed

using the sparse command (see line 16). For given β, the column index k = τ(β) of the

corresponding sti�ness matrix entry can then be obtained cheaply by computing dex = βh

(with β interpreted as a row vector in NN) and setting k = lookup(dex) (see lines 38 and

40).
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It is possible to accelerate the computation further bymaking use of Matlab’s vectorization

capability. Given α, n andm, we can compute a vector b of possible values to insert a�er the

index n by setting b = (αn + 1, . . . , αn−1)
T ∈ Ns. We then consider the block of all possible

β ∈ Iα generated for these values of n andm as a matrix B ∈ Ns×N with entries

Bjk =


αk if k < m or k > n,

αk+1 ifm 6 k < n,

bj if k = n.

�e corresponding hash values τ#(bk) are then given by the (s×N) by (N×1)matrix-vector
product Bh. Since for all k 6= n, we have Bik = Bjk for all 1 6 i, j 6 s, B is a rank-two matrix
and can be written as

B = 1B1(I− ene
T
n) + be

T
n,

where 1 = (1, . . . , 1)T ∈ NN, B1 is the �rst row of B, I is the identity matrix, and en is the
n-th canonical unit vector. Hence, the matrix product can be computed as the sum of two

terms:

Bh = 1B1(I− ene
T
n)h+ beTnh = 1(B

[n]
1 h

[n]) + bhn,

where the superscript [n] denotes deletion of the n-th element. Here, the whole �rst term and

the vector hn in the second term are independent ofm and b and can thus be precomputed

(see lines 33 and 38). Additionally, since the elements of B needed for the �rst term are known

elements of α, it is in fact not necessary to construct B. Rather, T can be used for this purpose,

using a precomputed set of masks rInd which contain the indices 1, . . . ,m− 1,m+ 1, . . . ,N

for eachm (see line 13).

Finally, since n is �xed andm is incremented by one in each loop, the sign of the sti�ness

matrix entry alternates, starting with (−1)n+1. �is vector can be precomputed as well (see

line 35).

5 numerical experiments

All computations were performed on an eight-core Intel Xeon X5560 (2.8 GHz) workstation

with 24 GBytes of RAM using Matlab R2011a.

Figure 2 shows the sparsity pattern of the sti�ness matrix corresponding to the chosen

discretization, where the elements Kjk from each dimension xi is color coded depending on

the removal indexm in the tuple α = τ−1(j) connected to β = τ−1(k). Note the recursive

structure of the sparsity pattern, where the pattern forN = 4 contains copies of the pattern

forN = 3 and decreasing p as diagonal blocks.

We next address the accuracy of the spectral discretization by comparing computed eigen-

values of the sti�nessmatrix (with homogeneousDirichlet conditions) to the exact eigenvalues.
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(a)N = 3, p = 8 (b)N = 3, p = 10 (c)N = 4, p = 10

Figure 2: Sparsity pattern of sti�ness matrix for di�erent problem parameters. Shown are the

nonzero entries, where the contribution from di�erent dimensions is color coded

(blue: x1, green: x2, red: x3, cyan: x4).

Each eigenvalue for N non-interacting particles corresponding to an eigenfunction ψα is

constructed from single-particle eigenvalues [8, § 20.5] via

λα =
π2

4

N∑
j=1

α2j .

Speci�cally, the �rst two eigenvalues (as sorted by ascending magnitude) are

λ1 = λ(1,...,p) =
π2

4

N∑
i=1

i2 =
π2

24
N(N+ 1)(2N+ 1),

λ2 = λ(1,...,p−1,p+1) =
π2

4

N−1∑
i=1

i2 + (N+ 1)2 =
π2

24
(2N+ 1)(N2 +N+ 6).

�ese values are compared with the eigenvalues of the sti�ness matrix obtained by the com-

mand

K = assembleFermiMatrix(p,N,@(x) 0,@(x) 0,’dirichlet’);

which are computed by a Krylov method using Matlab’s built-in eigs. Figure 3 shows the

di�erence between the exact and computed �rst two eigenvalues forN = 2, 3, 4 as a function

of p ∈ {2N, . . . , 25}. Since the multi-particle eigenstates are Slater determinants of di�erent

single-particle eigenstates, the resolution of the multi-particle eigenstate is completely deter-

mined by the resolution of all component eigenstates. For example, the �rst eigenstate for

N = 3 particles corresponds to the tuple (1, 2, 3), while the second eigenstate forN = 2 parti-

cles corresponds to (1, 3). Hence, the error in both cases is dominated by the resolution of the

third single-particle eigenfunction ψ3. In practice, this can be exploited for determining the

value of p which will su�ciently resolve the highest appearing eigenfunction by investigating

the single-particle case only.
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10−6
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N = 2, λ1
N = 2, λ2
N = 3, λ1
N = 3, λ2
N = 4, λ1
N = 4, λ2

Figure 3: Error in �rst two eigenvalues of

Laplacian (discrete vs. exact) forN

particles and p basis functions per

particle.

Since to the best of our knowledge, no exact solutions of the multi-particle problem with

globally smooth interaction potentials are known, we test the accuracy in the presence of

interaction potentials by plotting the di�erence between the computed eigenvalues and those

computed for the �nest discretization. �e order of convergence can be observed when the

di�erence between the low order and high order approximations is su�ciently large. Figure 4a

shows the convergence history for the interaction potential V(xj, xk) = cos(xj − xk), no

con�nement potential and periodic boundary conditions, corresponding to the command

[K,U,V] = assembleFermiMatrix(p,N,@(x) 0,@(x) cos(x(1,:)-x(2,:),’periodic’);

For N = 2, this potential models the interaction between two ground state electrons in a

helium atom (see, e. g., [10, § 148]). Figure 4b illustrates the convergence for an attractive

Gaussian e�ective potential V(xj, xk) = − exp(−10(xj − xk)
2) (cf. [22, 21]), con�nement

potential U(xj) = xj and homogeneous Dirichlet conditions. �e matrices can be obtained

with the command

[K,U,V] = assembleFermiMatrix(p,N,@(x) x,@(x) ...

-exp(-10*(x(1,:)-x(2,:))).^2,’dirichlet’);

When the variable coe�cients are smooth functions, spectral methods exhibit exponential

convergence, and this can be observed here.

�e convergence for the Coulomb potential V(xj, xk) = |xj − xk|
−1
with homogeneous

Dirichlet conditions and con�nement potential U(xj) = xj is shown in Figure 5, correspond-

ing to the command

[K,U,V] = assembleFermiMatrix(p,N,@(x) x,@(x) 1./abs(x(1,:)-x(2,:)), ...

’dirichlet’);

In this case, the variable coe�cient is not even bounded, so only algebraic convergence can

be expected (cf. [6, Chap. 2]). In this case, the convergence order is quadratic, and thus at

least equal to orders that can be achieved, e. g., with second order �nite di�erences.
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(a) V(xj, xk) = cos(xj − xk)
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(b) V(xj, xk) = − exp(−10(xj − xk)
2)

Figure 4: Error in �rst eigenvalue of Hamiltonian for smooth interaction potentials (discrete

vs. �nest discretization) forN particles and p basis functions per particle.
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Figure 5: Error in �rst eigenvalue of Hamil-

tonian for Coulombic interaction

potential (discrete vs. �nest dis-

cretization) forN particles and p

basis functions per particle.

Table 1: Time for assembly of Hamiltonian depending on number of particles N. For each

value ofN and p = 3N, the numberNp of basis functions, the numberNK of nonzero

entries in the sti�ness matrix and the complete assembly time (in seconds, average of

10) are shown.

N 2 3 4 5 6 7 8

NP 15 84 495 3003 18564 116280 735471

NK 135 1596 16335 153153 1355172 11511720 94875759

t 0.007 0.009 0.068 0.586 5.125 41.965 336.840
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Finally, the e�ciency of our program is indicated by Table 1, which shows the total assembly

time of the Coulombic Hamiltonian (averaged over ten runs) as a function of the number

of particles. We �x p = 3N to ensure an accuracy of at least 10−3 in the eigenvalues of the

sti�ness matrix for all consideredN (cf. Figure 3). Besides the assembly time, we also show

the numberNp of degrees of freedom and the numberNK of nonzero entries of the sti�ness

matrix. As can be seen, the assembly time scales roughly linearly (disregarding cache e�ects

for smallN) with the number of nonzero entries, which is the optimal rate to be expected.

6 conclusion

Wehave presented a general framework for simulating systems of one-dimensional interacting

fermions based on a nodal spectral Galerkin method together with an e�cient Matlab code

for the assembly of the discretized Hamiltonian. �e accuracy of the discretization and

the performance of the assembly method was illustrated by computing the energy levels of

several systems with di�erent potentials. When a smooth interaction potential is a reasonable

model, the method exhibits exponential convergence. �e Coulomb potential, however, has

a singularity, and the low regularity causes the method to converge only quadratically. A

suitable change of variables to desingularize the problem and regain spectral accuracy is the

subject of future work. In principle, the proposed approach can be extended to two and three

spatial dimensions, even though such problems are not feasible on current desktop machines.

Nevertheless, we expect that the spectral discretization will be even more useful in the pursuit

of this goal.
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a matlab code2

1 function [K,U,V] = assembleFermiMatrix(p,N,Ufun,Vfun,bc)
2 %% Precompute
3 [xi,K1d] = computeLGL(p,bc); % 1D Legendre-Gauss-Lobatto quadrature points
4 diagK1d = diag(K1d); % diagonal elements of 1D stiffness matrix
5

6 d = nchoosek(1:N,2); % all pairs of interacting particles
7 T = nchoosek(1:p,N); % matrix of nD basis elements tuples
8 Np = size(T,1); % number of nD basis elements
9 Nk = NpN/2(p-N); % number of nonzero off-diagonal entries in K
10 Ta = [T ones(Np,1)(p+1)]; % precompute: augment T to account for G_N
11 G = diff(Ta,1,2)-1; % precompute: length of gaps in alpha
12 vN = 1:Np; % precompute: vector (1,...,Np)
13 rInd = triu(ones(N,N-1))+ones(N,1)(1:(N-1)); % indices after removal of m
14 hash = (p-N).^(N-1:-1:0)’; % assign unique id to each basis element
15 dict = T hash; % dictionary for fast lookup of basis elements
16 lookup = sparse(dict,ones(Np,1),vN,dict(Np),1); % lookup via sparse index
17

18 %% Compute potential terms
19 Vc = arrayfun(@(j)Vfun(xi(T(:,d(j,:)))),1:size(d,1),’UniformOutput’,false);
20 V = sparse(vN,vN,sum(cat(2,Vc{:}),2),Np,Np); % interaction potential
21 U = sparse(vN,vN,sum(Ufun(xi(T)),2),Np,Np); % confinement potential
22

23 %% Compute stiffness matrix
24 row = zeros(Nk,1); % preallocate vector of row indices of K
25 col = zeros(Nk,1); % preallocate vector of column indices
26 val = zeros(Nk,1); % preallocate vector of entries
27 indstart = 0; % running index for above vectors
28

29 for j = 1:(Np-1) % loop over all tuples: j = tau(alpha)
30 for n = vN(G(j,:)>0) % insert at all indices n in G_alpha
31 bLength = 1:G(j,n); % number of possible values for b (vector)

2If your pdf viewer supports �le annotations, you can extract the code by clicking . It can also be down-

loaded from http://www.uni-graz.at/~clason/codes/assembleFermiMatrix.m.
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function [K,U,V] = assembleFermiMatrix(p,N,Ufun,Vfun,bc)

%ASSEMBLEFERMIMATRIX Assembly of discretized many-particle Hamiltonian.

%   [K,U,V] = ASSEMBLEFERMIMATRIX(P,N,UFUN,VFUN,BC) assembles the stiffness

%   and potential matrices for a spectral discretization of the Schroedinger

%   equation on [-1,1] for N interaction fermions with P basis functions per

%   particle. UFUN and VFUN are function handles descrbing the confinement

%   and interaction potential, respectively. BC is a string specifying the

%   boundary conditions; supported are 'Dirichlet' (homogeneous) and 

%   'periodic'. Returned are the stiffness matrix K, confinement potential

%   matrix U and interaction potential matrix V.

%

%   Example:

%      [K,U,V] = assembleFermiMatrix(8, 3, @(x) x, @(x) (x(:,1)-x(:,2)).^2, 'dirichlet');



%   July 7, 2011

%   Christian Clason (christian.clason@uni-graz.at)

%   Greg von Winckel (gregory.von-winckel@uni-graz.at)



%% Precompute

[xi,K1d] = computeLGL(p,bc); % 1D Legendre-Gauss-Lobatto quadrature points

diagK1d  = diag(K1d);        % diagonal elements of 1D stiffness matrix



d  = nchoosek(1:N,2);      % all pairs of interacting particles

T  = nchoosek(1:p,N);      % matrix of nD basis elements tuples

Np = size(T,1);            % number of nD basis elements

Nk = Np*N/2*(p-N);         % number of nonzero off-diagonal entries in K

Ta = [T ones(Np,1)*(p+1)]; % precompute: augment T to account for G_N

G  = diff(Ta,1,2)-1;       % precompute: length of gaps in alpha

vN = 1:Np;                 % precompute: vector (1,...,Np)

rInd = triu(ones(N,N-1))+ones(N,1)*(1:(N-1)); % indices after removal of m

hash = (p-N).^(N-1:-1:0)'; % assign unique id to each basis element

dict = T * hash;           % dictionary for fast lookup of basis elements

lookup = sparse(dict,ones(Np,1),vN,dict(Np),1); % lookup via sparse index



%% Compute potential terms

Vc = arrayfun(@(j)Vfun(xi(T(:,d(j,:)))),1:size(d,1),'UniformOutput',false);

V  = sparse(vN,vN,sum(cat(2,Vc{:}),2),Np,Np);  % interaction potential

U  = sparse(vN,vN,sum(Ufun(xi(T)),2),Np,Np);   % confinement potential



%% Compute stiffness matrix

row = zeros(Nk,1);               % preallocate vector of row indices of K

col = zeros(Nk,1);               % preallocate vector of column indices

val = zeros(Nk,1);               % preallocate vector of entries

indstart = 0;                    % running index for above vectors



for j = 1:(Np-1)                 % loop over all tuples: j = tau(alpha)

    for n = vN(G(j,:)>0)         % insert at all indices n in G_alpha

        bLength = 1:G(j,n);      % number of possible values for b (vector)

        b = T(j,n) + bLength;    % values to be inserted at beta_n

        hash1 = hash(rInd(n,:)); % common part of hash for beta_i, i != n

        hash2 = hash(n)*b;       % beta_n = b

        sgn = (-1).^(n+1:-1:2);  % sign of K_jk: (-1)^(m+n)

        for m = 1:n              % remove at all indices m <= n

            ind = indstart + bLength;           % index of entries to set

            dex = T(j,rInd(m,:))*hash1 + hash2; % id of beta

            row(ind) = j;                       % j = tau(alpha)

            col(ind) = lookup(dex);             % k = tau(beta)

            val(ind) = sgn(m)*K1d(T(j,m),b);    % K_jk

            indstart = ind(end);                % increment running index

        end

    end

end



Ko = sparse(row,col,val,Np,Np);                 % off-diagonal entries of K

Kd = sparse(vN,vN,sum(diagK1d(T),2),Np,Np);     % diagonal entries of K

K  = Kd + Ko + Ko';                             % stiffness matrix

% end function fermion_setup



function [xi,K] = computeLGL(p,bc)

switch lower(bc)

    case 'periodic'

        xi = 2*pi*(0:p-1)'/p;

        K  = fft(ifft(diag([0:floor(p/2) floor((p-1)/2:-1:1)].^2)).');

    case 'dirichlet'

        p2 = p+2;

        b  = sqrt([(1:p).^2./(4*(1:p).^2-1) (p+1)/(2*p+1)])';

        [V, X] = eig(diag(b,1) + diag(b,-1));

        [x, ord] = sort(diag(X));

        V  = V(:,ord)';

        w  = 2*V(:,1).^2;

        xi = x(2:end-1);

        X  = x*ones(1,p2);

        Xdiff = X-X'+eye(p2);

        W = (1./prod(Xdiff,2))*ones(1,p2);

        D = W./(W'.*Xdiff);

        D(1:(p2+1):(p2^2)) = 1-sum(D);

        D  = -D'*diag(1./sqrt(w));

        Di = D(:,2:end-1);

        K  = Di'*diag(w)*Di;

    otherwise

        error(['Boundary condition "' bc '" is not implemented.'])

end

% end function computeLGL



Christian Clason
Attachment containing Matlab code

http://www.uni-graz.at/~clason/codes/assembleFermiMatrix.m


32 b = T(j,n) + bLength; % values to be inserted at beta_n
33 hash1 = hash(rInd(n,:)); % common part of hash for beta_i, i != n
34 hash2 = hash(n)b; % beta_n = b
35 sgn = (-1).^(n+1:-1:2); % sign of K_jk: (-1)^(m+n)
36 for m = 1:n % remove at all indices m <= n
37 ind = indstart + bLength; % index of entries to set
38 dex = T(j,rInd(m,:))hash1 + hash2; % id of beta
39 row(ind) = j; % j = tau(alpha)
40 col(ind) = lookup(dex); % k = tau(beta)
41 val(ind) = sgn(m)K1d(T(j,m),b); % K_jk
42 indstart = ind(end); % increment running index
43 end
44 end
45 end
46

47 Ko = sparse(row,col,val,Np,Np); % off-diagonal entries of K
48 Kd = sparse(vN,vN,sum(diagK1d(T),2),Np,Np); % diagonal entries of K
49 K = Kd + Ko + Ko’; % stiffness matrix
50 % end function fermion_setup
51

52 function [xi,K] = computeLGL(p,bc)
53 switch lower(bc)
54 case ’periodic’
55 xi = 2pi(0:p-1)’/p;
56 K = fft(ifft(diag([0:floor(p/2) floor((p-1)/2:-1:1)].^2)).’);
57 case ’dirichlet’
58 p2 = p+2;
59 b = sqrt([(1:p).^2./(4(1:p).^2-1) (p+1)/(2p+1)])’;
60 [V, X] = eig(diag(b,1) + diag(b,-1));
61 [x, ord] = sort(diag(X));
62 V = V(:,ord)’;
63 w = 2V(:,1).^2;
64 xi = x(2:end-1);
65 X = x ones(1,p2);
66 Xdiff = X-X’+eye(p2);
67 W = (1./prod(Xdiff,2))ones(1,p2);
68 D = W./(W’.Xdiff);
69 D(1:(p2+1):(p2^2)) = 1-sum(D);
70 D = -D’diag(1./sqrt(w));
71 Di = D(:,2:end-1);
72 K = Di’diag(w)Di;
73 otherwise
74 error([’Boundary condition "’ bc ’" is not implemented.’])
75 end
76 % end function computeLGL
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