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Abstract

In this paper we develop a stochastic boundary conditions (SBC) for
event-driven molecular dynamics simulations of a finite volume embedded
within an infinite environment. In this method, we first collect the statistics
of injection/ejection events in periodic boundary conditions (PBC). Once
sufficient statistics are collected, we remove the PBC and turn on the SBC.
In the SBC simulations, we allow particles leaving the system to be truly
ejected from the simulation, and randomly inject particles at the boundaries
by resampling from the injection/ejection statistics collected from the current
or previous simulations. With the SBC, we can measure thermodynamic
quantities within the grand canonical ensemble, based on the particle number
and energy fluctuations. To demonstrate how useful the SBC algorithm is,
we simulated a hard disk gas and measured the pair distribution function,
the compressibility and the specific heat, comparing them against literature
values.
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1. Introduction

Molecular dynamics is an important tool for understanding material as
well as thermodynamics behaviour of a system. It solves Newton’s laws of
motion for the trajectories of the particles inside a given system [1, 2]. At
present, state-of-the art MD simulations can be carried out for 1010 − 1011
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particles over 103 nodes [3, 4]. However, this is still many orders of magni-
tude away from truly macroscopic systems, which have O(1023) microscopic
variables. Depending on which physical quantities we want to measure from
the simulations, finite size effects can be important. These can arise as a
result of the finite number of particles simulated, and also from the presence
of boundaries. The most common way to deal with MD simulations of fi-
nite systems is to impose periodic boundary conditions (PBC) [1, 2, 5, 6].
With PBC, the primary simulation box is surrounded by images of itself, and
whenever a particle exits the simulation box, an identical particle reenters
the box through the opposite end. Thus the ejection of particles is correlated
with the injection of another particle at the opposite end. This is very differ-
ent from what we expect of an observation windows embedded in an infinite
system.

Earlier attempts to remove the artificial PBC correlations can be clas-
sified into four categories. The first category is based on the concept of a
heat bath. In Cicotti and Tenenbaum’s simulation, particles are injected as
in PBC, but with different velocities sampled from a Maxwell-Boltzmann
distribution [7, 8]. This method breaks the correlation of momenta between
ejected and injected particles, but position correlation still remains. In con-
trast, the stochastic changes in momenta occur throughout the simulation
volume in Andersen’s method [9]. Random particles are chosen to suffer
stochastic collisions with time intervals between successive collisions sam-
pled from a Poisson distribution, and the resultant velocities sampled from
a Maxwell-Boltzmann distribution. Another method based on the concept
of heat bath was proposed by Berendsen [10]. In this method, the simulated
system is coupled to a heat bath at constant temperature. Heat flow in and
out of the system at a rate proportional to the difference between its kinetic
temperature and the heat bath temperature. The velocities of particles in the
system are then rescaled according to the heat that flows in. Except for the
method by Cicotti and Tenenbaum, these heat bath methods are designed
for simulating only equilibrium quantities, and not dynamic quantities.

The second category consists of grand canonical molecular dynamics (GCMD)
simulations. Cagin and Pettit [11, 12] developed a deterministic GCMD by
writing down the Lagrangian of the system with the number of particles n as
one of the continuous variables. The fractional part of n is then introduced
as a fractional particle, while the integer part of n represents full particles.
The rate of change of the number of particles ṅ is then derived from the
Lagrangian, along with the rates of change of momenta, as the equations of
motion of the system. When the fractional particle becomes a full one, a new
particle is added to the system; and when the fractional particle decreases
to zero, it is deleted and another particle is chosen as the fractional particle.
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To make the simulated dynamics as smooth as possible, the addition and the
deletion of the particles are done at the region where the potential energy is
the closest to the previously added or deleted particle. Newly added parti-
cles are assigned zero velocities. Unlike in a real system where exchange of
particles takes place only at the boundaries, the removal and addition of new
particles in Cagin and Pettit’s approach takes place within the interior of the
system. Although it provides a straightforward simulation of grand canonical
ensembles, it is difficult to use the method to study systems where particle
exchange at the boundary is important e.g., gas exchange between two me-
dia. Another method, described by Heffelfinger and Van Swol [13], provides
an answer to this problem. In their control volume grand canonical molec-
ular dynamics (CV-GCMD) method, the simulation system is surrounded
by control volumes subject to PBC. Measurements are done only within the
simulation box, even though a larger volume is simulated.

The third category introduces a stochastic boundary region surrounding
the simulation volume. In the method developed by Berkowitz and McCam-
mon [17], the simulation system is divided into three regions, namely the
simulation region, the bath region and the reservoir region. The simulation
region consists of a central particle, and particles within a certain range from
this central particle. Outside this simulation region, the bath region forms a
shell that encloses the simulation region. The outermost region is the reser-
voir region. The particles in the simulation and bath regions follow MD
and Langevin dynamics respectively, while particles in the reservoir are held
fixed. When calculating forces acting on particles in the first two regions, the
potentials arising from particles in all three regions are considered. Brooks
and Karplus [18] modified the method by replacing the reservoir region with
a boundary region. The boundary region contains no particles, but generates
a potential based on an average structure inferred from the radial distribu-
tion function inside the simulation region. To prevent particles in the bath
region from venturing into the boundary region, and in effect changing the
average structure within the boundary region, the whole boundary region is
made repulsive. Boorks, Karplus and Brunger later applied the method to
simulate water [19] and proteins [20].

The forth category involves multiscale simulations, whereby the system is
simulated using a combination of MD and a continuum method [14, 15, 16].
The simulation system is separated mainly into three domains, viz. a molec-
ular domain, a continuum domain and a bridging domain. The Lagrangians
of the molecular and continuum domains are written down and their equa-
tions of motions are derived. Within the bridging domain, the Lagrangian
is written as a linear combination of those of the other two domains. At
each point in this bridging domain, molecular and continuum displacements
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are constrained to be the same. The constrained equations of motion are
then obtained using the Lagrange multiplier method. While the multiscale
approach is very appealing, there is yet no systematic study on how sensitive
the simulation results are to different choices of the three domain sizes. There
are also no serious efforts to determine whether the continuum Lagrangian
is truly compatible with the atomistic Lagrangian, i.e. can we derive the
continuum Lagrangian through coarse graining the atomistic Lagrangian?
In view of these open questions, the multiscalse simulation approach can at
best be a complement, but not a substitute for fully-atomistic, first-principle
simulations.

To more accurately simulate a finite observation window embedded in an
infinite system, we propose using a hierarchy of stochastic boundary condi-
tions (SBC) that is closest in spirit to the stochastic boundaries developed
by Berkowitz and McCammon [17], and extended by Brooks and Karplus
[18]. In this method, which is based on the concept of resampling, stochastic
events at the boundaries of the system are sampled from the statistics col-
lected within the system itself, so that there is never the need to simulate
a larger supersystem. The ejected particles are simply deleted, and not re-
injected like in PBC. While particles are ejected, new particles are injected
with random velocities at random positions along the boundaries, and at a
rate that is consistent with the simulation volume being embedded in an infi-
nite system at equilibrium temperature T . The approach is hierarchical. To
get greater accuracy, we simply go to higher order. The detailed implemen-
tation of the SBC would depend on whether we are simulating a gas, a solid
or a liquid, and also on whether we are working with short range interactions
or long range interactions. In this paper, we will focus only on developing
the SBC for a gas of hard disks.

This paper is organised as follows. In Section 2, we describe the basic
framework for this method, and how higher order algorithms can be imple-
mented in general. In Section 3, we restrict ourselves to a gaseous system
of hard disks, and elaborate how this can be simulated using a first order
algorithm. In the same section, we report various tests to ensure that the
SBC is performing as we expect, before giving results of our calculations of
the excess pressure, specific heat capacity, and chemical potential. We then
conclude in Section 4.

2. Overview and algorithms

2.1. Basic Notions

Let us consider a finite observation volume embedded inside an infinite
heat bath. At thermal equilibrium, the observed system exchanges particles
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Simulation
    Region
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Figure 1: For a finite simulation region inside an infinite heat bath, there is constant
exchange of particles as well as momenta at the boundary.

Figure 2: In a gas of hard disks, particles are deleted when they are ejected (left, deleted
particle shown as dashed circle) and new particles are injected at a boundary (right,
injected particle shown in green).

with the environment. This exchange of particles occurs only at the bound-
aries (see Figure 1). In addition, the system also exchanges energy with
the environment, through the exchange of particles, as well as through long-
range interactions with its fluctuating environment. The characters of these
exchanges are qualitatively different in the gas, solid and liquid phases. In the
gas and liquid phases, we have the phenomenon of diffusion. In these phases,
we find exchange of particles at the boundaries, as well as the exchange of
energy due to the exchange of particles. In the gaseous phase (see Figure 2),
ejection or injection involves only a single particle nearly all the time. In the
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Figure 3: In a liquid of hard disks, particles form dense clusters with varying particle
numbers and shapes. The effective dynamics of the liquid consists of diffusion of the
clusters, as well as particle and energy exchange between clusters.

Figure 4: The shape fluctuations of a monolayer of particles at the center of a hard
disk solid. The fluctuation statistics of this layer is resampled to simulate the stochastic
fluctuations at the boundaries.

liquid phase (see Figure 3), particles form strongly-correlated clusters. Each
cluster diffuses through the simulation system, and also exchanges particles
with other clusters. Therefore, it is not accurate to have single-particle in-
jections or ejections in such simulations. Instead, we should eject or inject
clusters. In addition, the time evolutions of the shapes of the clusters must
also be simulated as part of the SBC for liquids with short-range interactions.
In the solid phase (see Figure 4), we have strong local spatial ordering of the
particles. This greatly reduces the exchanges of particles. However, the sys-
tem do exchange energies with the infinite system it embedded in through
the collisions of particles at the boundaries. Thus simulating the fluctua-
tions of the boundary particles without injecting or ejecting events should
be sufficient for the SBC simulation of hard disk solids. For systems with
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long-range interactions, the dynamics of particles in the observation volume
are affected by particles both inside and outside of the volume. To simulate
such systems using SBC, the stochastic forces contributed by environmental
particles must be simulated, again using a resampling method. In summary,
we see that SBC, with appropriate resamplings, can be applied to systems
with different densities and different interactions.

Figure 5: A finite observation window within an infinite system (left) and a finite simula-
tion system of the same size (right).

2.2. Hierarchy of SBCs

To better explain the resampling ideas behind the SBC, we will focus
only on the simulation of a hard disk gas in this paper. For a finite ob-
servation volume inside an infinite system of hard disks (see Figure 5), ex-
change of energy only occurs through the exchange of particles. Therefore,
if we could somehow simulate the infinite system, we can record the his-
tory {r1, r2, . . . , ri, . . . } and {v1,v2, . . . ,vi, . . . } of particle injected into the
observation volume at times {t1, t2, . . . , ti, . . . }. If we start with the same
initial conditions, and simulate the observation volume only, we would ob-
tain the same trajectories within the observation volume if we inject par-
ticles at times {t1, t2, . . . , ti, . . . } with velocities {v1,v2, . . . ,vi, . . . } at po-
sitions {r1, r2, . . . , ri, . . . } along the boundaries of the observation volume.
All physical quantities that can be measured within the observation volume
alone would also have the same values in both simulations.

Of course, if we could obtain this history of particle injections from the in-
finite system simulation, there would be no point running another simulation
of the finite observation volume. The main idea behind our SBC method is
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to generate an artificial history of particle injections that would mimick the
presence of the infinite environment, without having to simulate such an in-
finite environment. To do so, we observe that for a different initial condition,
the hypothetical infinite system simulation would produce a different history
{r′

1
, r′

2
, . . . , r′i, . . . } and {v′

1
,v′

2
, . . . ,v′

i, . . . } at times {t′
1
, t′

2
, . . . , t′i, . . . }. Ul-

timately, these two particle injection histories (along with infinitely many
more) belong to the same statistical ensemble associated with the infinite
system being in thermal equilibrium at temperature T . We therefore expect
them to be independent samples from the same fixed statistical distributions.

In principle, these particle injection history distributions that we must
sample from are very high dimensional, because they must incorporate all
possible spatial and temporal correlations between the entire history of parti-
cle injections. For simulation purposes, it is not feasible to work with these: it
is impossible to estimate the distributions from data, and also nearly impos-
sible to sample from them. We must therefore always work with approximate
versions of these particle injection history distributions. There is a hierarchy
of spatial and temporal approximations that we can make. If we ignore spa-
tial correlations, and treat successive injections as statistically independent,
we can work with the much simpler distributions f0(ri) and g0(vi) for the
injection positions and injection velocities respectively. These distributions
can be derived theoretically, or estimated from data. An algorithm to gen-
erate artificial particle injection histories based on f0(ri) and g0(vi) would
then be called zeroth order in space. If we decide that spatial correlations
are important, and should not be completely ignored, we can work with the
conditional distributions f1(ri|ri−1) and g1(vi|vi−1), where the probability
of injecting a particle at ri with velocity vi depends on where, ri−1, and
with what velocity, vi−1, the previous particle had been injected. An algo-
rithm to generate artificial particle injection histories based on f1(ri|ri−1)
and g1(vi|vi−1) would be called first order in space. In general, an algorithm
that is nth order in space would be based on the conditional distributions
fn(ri|ri−1, . . . , ri−n) and gn(vi|vi−1, . . . ,vi−n). As we can imagine, higher-
order conditional distributions are hard to derive theoretically, and also hard
to estimate from data.

Similarly, we can also design algorithms of various orders in time, de-
pending on what approximations we make, and what temporal correlations
we ignore. If we inject particles into the observation volume at fixed time
intervals of τ̄ = ti − ti−1, the algorithm can be called zeroth order in time.
Alternatively, if we gather statistics for the injection delays τi = ti − ti−1,
and then sample random delays from this distribution, the algorithm can be
called first order in time. In general, in an algorithm that is nth order in

time, we will have to gather statistics for n successive injection (and perhaps
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also ejection) events, and then have the random delays sampled from these
conditional distributions. In this paper, we focus on developing a SBC for
simulating a hard disk gas. Since the density of particles is low, we expect
very little spatial correlations between boundary events, and so we will stick
to an algorithm that is zeroth order in space. However, the zeroth order in
time algorithm is too artificial, so we will develop instead an algorithm that
is first order in time.

3. Application to a gaseous system of hard disks

To test our first-order algorithm, we simulate a two-dimensional system of
hard disks enclosed in an unit square. This simple system is chosen because
there are no inter-particle potentials to deal with. Particle trajectories are
therefore straight lines between collisions. For numerical simplicity, we set
the Boltzmann constant kB and mass m of the particles both to unity. We
also fix the radius of the hard disk to be σ = 0.005. This leaves us with only
two free parameters, the thermodynamic temperature T0 and the density of
particles η = N0πσ

2/V (N0 is the number of particles and V = 1 is the
volume of the system), that will determine the properties of the system.

3.1. Simulation Procedure

We simulated this system using the event-driven algorithm described by
Alder and Wainwright [22], with N0 particles. To speed up the computation
we use the cell list scheme described in [1, 2, 23]. Because ejection statistics
must be collected before we can turn on SBC, we start the simulation off
using PBC. Once enough data has been gathered, we replace the PBC by
the SBC in our simulations.

3.1.1. Initialization

We started the PBC simulation by assigning the N0 particles random
non-overlapping positions. We also gave each particle a random velocity
sampled from the Maxwell-Boltzmann distribution at temperature T0 = 25.
Because the average velocity of the system is typically non-zero after the
random assignment, we subtract the average velocity from all velocities {vi},
to obtain a set of velocities

v′

i = vi −
1

N0

N0
∑

i

vi , (1)
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whose average is zero. We then rescale components of the new set of velocites,
{v′

i}, independently,

vnew
i,x = v′

i,x

√

N0 T0

Tx

, vnew
i,y = v′

i,y

√

N0 T0

Ty

, (2)

Here,

Tx =

N0
∑

i

v′i,x
2

and Ty =

N0
∑

i

v′i,y
2

(3)

with v′i,x and v′i,y being the x and y components of the momenta v′

i.

3.1.2. Calibration

We then ran the simulation until there are at least 10000 exit events
along each boundary. This is to ensure that the system has equilibrated
from an initial condition that is not part of the equilibrium ensemble [6]. We
then continued the PBC simulation until the number of ejections along each
boundary is at least 75000. We fixed the number of exit events at 75000
to ensure that we have adequate statistics to estimate the time delay distri-
bution. During this stage of the simulation, the distribution of time delays
between successive boundary events (which includes both boundary cross-
ings and collisions, as shown in Figure 6), the position and the momentum
of the event particles are measured for each direction of boundary. These
distributions are shown in Figure 7. From Figures 7(a) and 7(b), we observe
that the boundary events occur uniformly along the boundary of the system
while the time between successive events along each direction of boundary is
independent of direction, as expected from the translational and rotational
symmetries of the system. Since we have decided to keep our SBC algorithm
zeroth order in space, this means that there is no need to keep the empir-
ical distribution of injection positions. However, for our first order in time
algorithm, we will need an empirical distribution of injection time delays,
which should be the same as the distribution of ejection time delays because
Newtonian mechanics is time reversal invariant. To obtain better statistics
for this empirical distribution, we pool time delays collected from all four
boundaries.

Figures 7(c) and 7(d) show the momentum distribution of particles exiting
the four boundaries. As expected, the component of the momentum parallel
to the boundary follows a Gaussian distribution with mean zero. We expect
the component of momentum normal to the boundary to follow a truncated
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boundary boundary

t = 0

t = s > 0

t > s

t = s > 0

(b)(a) Boundary crossing event
Boundary collision event

t = 0

t > s

t > s

t = 0

Figure 6: The two classes of boundary events, (a) ejection, and (b) collision, considered
for SBC statistics. During ejection a particle from inside the system leaves the system,
whereas during a collision two particles on either side of the boundary scatter off each
other.

Gaussian distribution of the form

g0(v⊥) =

{

√

2

πT
exp

(

−
v2
⊥

2T

)

, v⊥ ≥ 0;

0, v⊥ < 0.
(4)

From the list of boundary events recorded, we can also extract the distri-
bution of times between successive collisions at the boundary. Knowing this
distribution of time between successive boundary collisions help us determine
when a particle approaching the boundary will next collide, given the most
recent collision at the given boundary. In order to simulate collisions with
environmental particles at the boundaries, we also collect scattering angle
and momentum transfer statistics. These distributions are shown in Figures
8 and 9 respectively.

3.1.3. SBC Simulation

Once the necessary distributions are calibrated, they are stored as his-
tograms, before we turn off PBC and turn on SBC. In this SBC stage of
the simulation, a system particle reaching the boundary will not always be
ejected. Instead, we calculate the probability for it to be scattered at the
boundary, based on the time of the last collision on that boundary. To make
this more concrete, let t2 be the time at which the particle reaches the bound-
ary, and t1 < t2 be the time of the last collision at this boundary, which can
be an attempted ejection or an attempted injection. The probability that
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Figure 7: The distributions of exit events for each exit direction. The delay time distribu-
tion of successive exit events is shown in (a), while (b) shows the distribution of positions
at while they exit the system for each exit direction namely x = 0, x = 1, y = 0 and
y = 1. In (c) and (d) we have plotted the distribution of the momentum components of
the exiting particles. The figure shows that the exit statistics are independent of direction
of exit and thus we treat injections in each direction as independent stochastic processes.
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and N0 = 2200. The speed distribution is consistent with a Gaussian initial velocity
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this particle exits the system without undergoing any collision is

P (t2, t1) = exp

[

−
(t2 − t1)

τ

]

, (5)

where τ is the average time between consecutive collisions. If we draw a
U(0, 1) random number smaller than P (t2, t1), the particle exits the system
(and is thereafter deleted from the simulation). Otherwise, the particle un-
dergoes a collision at the boundary, and is assigned a new velocity re-sampled
from the scattering statistics (see Figure 9). Depending on the scattered ve-
locity, this particle either makes its way out, or is deflected back into the
system. After each event in this SBC stage of the simulation, we update the
histograms of the relevant distributions.

In the mean time, particles are injected into the system. This is done by
first drawing a set of future injection times for each boundary, based on the
statistic in Figure 7(a). Since this statistic is collected for both boundary
crossing and boundary collision events, the injection events sampled from
this statistic can also succeed or fail. When the next injection time t2 is
reached, we then determine whether it would be successful by comparing
a U(0, 1) random number against P (t2, t1) in Equation (5), as we did for
attempted ejections. If the injection is successful, the injected particle will
be assigned a random velocity sampled from the distributions in Figures 7(c)
and 7(d). Since Figure 7(b) shows that the boundary crossing events should
be uniformly distributed along the boundaries, the successful injection is
carried out at a random empty space along the boundary.

3.1.4. Reversibility

At thermodynamic equilibrium, we must have detailed balance. This
means that within the equilibrium ensemble, the transition rate from one
state to another must be equal to the transition rate from latter to the
former [24, 25]. Instead of an exhaustive survey of the high-dimensional
phase space, we demonstrate that our SBC simulations indeed satisfy detailed
balance by running time reversed versions of these simulations. To simulate
the time reversed system, all velocities inside the system were reversed after
a fixed duration t of SBC simulation. Thereafter, the time reversed SBC
system was simulated also for duration t. In all the testing results presented
in Subsection 3.2, we always compare the SBC distributions against their
time-reversed analogs.
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3.2. Testing

3.2.1. Equilibrium

Before we compute any thermodynamic variables we must first ensure
that the simulation system has equilibrated, and its total energy and entropy
remain more or less constant. We check this by first computing the system’s
Boltzmann’s H-function [6] as a function of time, in place of the entropy
of the system. In Figure 10, we compare the results of SBC simulations
against a PBC simulation. We see that SBC preserves the thermodynamic
equilibrium attained during the PBC stage of our simulation.
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Figure 10: Comparison of Boltzmann’s H-fucntion as a function of time calculated both
from PBC (black) simulation against the SBC simulation (colored), for different initial
densities (a) N0 = 500 and (b) N0 = 3000. The graphs show that the equilibrium attained
during the PBC simulation is preserved by the SBC simulation.

3.2.2. Detailed balance

To check the more stringent condition of detailed balance for thermody-
namic equilibrium, we compare the statistics of particle number and total
energy of the forward time SBC and the time reversed SBC simulations for
N0 = 500 (see Figure 11). While simulating the SBC forward in time, the
statistics used are mostly from the PBC stage of simulation. On the other
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Figure 11: The comparison of statistics of (a) particle number and (b) total energy of
the system for the SBC simulated forward in time (black) and simulated backwards in
time (red) for N0 = 500. The simulation time for this graph is t = 4. We observe that
the time reversed distributions are within one standard deviation of their forward-time
counterparts.

hand, when simulating the SBC backward in time, the statistics used receive
more contribution from the SBC simulation running forward in time. Be-
cause of this systematic difference, small discrepancies are expected in the
distributions. However, looking at the figures we can safely say that the SBC
algorithm satisfies the detailed balance condition.

3.2.3. Particle number and average energy

After checking that the system is at equilibrium and detailed balance is
maintained within the system, we compute the particle number and the total
energy of the system after each injection (or ejection) of a particle into the
system (or out of the system). We compare these data of number of parti-
cles inside the system and the energy per particle against the initial particle
number and total energy respectively. This is shown in Figures 12 and 13
for various initial densities. Within any given time interval, the number of
injections may not be same as the number of ejections. Thus we expect, the
particle number N as well as the total energy E to fluctuate with time. For
low densities, we can see that the particle number inside the system fluctuates
about the initial number of particles. But for higher densities, we observe
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small discrepancies shortly after SBC was turned on. These are expected for
the following reason. When PBC was imposed the simulation builds up ex-
cess correlations that get incorporated into the distribution functions. Once
we turn on SBC these correlations create an imbalance between injection
and ejection rates. However, the simulations eventually relaxes to an SBC
equilibrium with the correct average N and E. In some cases, this relaxation
is slow. We expect that higher order SBC algorithms described in Section 2
will speed up this relaxation from the PBC equilibrium.

From equipartition theorem the kinetic energy per particle should be
equal to the temperature of the system (with Boltzmann’s constant kB = 1).
We find from Figure 12 that the energy remains close to this value. We
believe the most important reason for the small discrepancy is the first order
algorithm missing out correlations due to the finite particle size. Because
of the finite particle size, the interaction between the bath and the system
happens in a finite region about the boundary (extending up to the radius of
the particle in both directions from the boundary). To faithfully reproduce
the correlations within this interaction zone, we have to go to higher order
algorithms. As the density increases further, we will find more multiple
collisions within the interaction zone.

3.2.4. Pair distribution function

The pair distribution g(r) function gives the probability of finding a pair
of atoms a distance r apart. It not only provides insight into the average
structure of the system, but is also useful for calculating ensemble average
e.g., energy, pressure as well as the chemical potetial [1]. To calculate g(r),
we first measure the separations between all pairs of atoms in a given con-
figuration. These are then binned into histograms, n(r), which provides the
relative number of atoms between a distance r and r+δr, δrbeing the bin size
for the histograms. The radial distribution function ρg(r)is then calculated
by using

ρg(r) =
n(r)

2πrδr
, (6)

ρ being the density of the system, averaging over 10,000 equilibrium con-
figurations. In Figure 14 we compare g(r) calculated from PBC and SBC
simulations, for N0 = 500 and N0 = 3000. As we can see, the PBC and SBC
results are in good agreement. At N0 = 3000, oscillatory features can be
seen in g(r), telling us that we are already near liquid density. Beyond this
density, long range correlations cannot be ignored in simulations, and even
the higher order versions of the gas algorithm described in this paper may
not be accurate enough. Instead, we will need to develop SBC algorithms
specifically for liquid densities, as described in Section 2.
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3.2.5. Compressibility

For hard disk simulations, compressibility of the system can be computed
from collisions within the system [6]

Z =
PV

NkBT
= 1 +

2mσ

3Ek

1

t

Nc
∑

c=1

|∆vij(tc)| , (7)

where Nc is the total number of collisions occurring up to time t and ∆vij(tc)
is the change in velocities for the colliding particles i and j. In Figure 15,
we show the PBC and SBC compressibilities for different densities. At low
densities, the PBC and SBC compressibilities agree. At high densities, the
SBC system is more compressible than the PBC system.
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3.2.6. Specific heat

Since the total energy and particle number of the system fluctuates with
time in a SBC simulation, it is now possible to compute the specific heat

kBT
2Cv =

〈

(E − 〈E〉)2
〉

−
(〈NE〉 − 〈N〉〈E〉)2

〈(N − 〈N〉)2〉
(8)

from the variance of fluctuations of these quantities [27]. In Figure 16 we
show the specific heat as a function of the particle number. For an ideal
2D gas, the specific heat should be Cv = NkB. Our results are in good
agreement with this theoretical specific heat for low densities, N0 < 2000.
At higher densities, our specific heat devaites strongly from the ideal gas
behavior. Since the hard disk system at the highest density N0 = 3000 in
our simulations is already close to being a liquid, we expect the sharp rise
in our specific heat around N0 = 3000 to be a signature of the gas-to-liquid
transition beyond this density.
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4. Conclusions

To summarize, we described in this paper the basic framework for the
molecular dynamics simulations of a finite system embedded in an infinite
environment, by imposing stochastic boundary conditions that mimick the
exchange of energy and particles between the system and its environment. In
this method, particles that leave the system are deleted from the simulation,
instead of being reinjected into the system through periodic boundaries. In
addition, new particles are injected with random velocities at random posi-
tions along the boundaries at random times. In order to simulate the grand
canonical ensemble, we chose the injection statistics to be time-reversed ver-
sions of the ejection statistics, which can be measured empirically by starting
the simulation off in PBC.

Applying this method to a hard disk gas, we showed by measuring the
BoltzmannH-function, the particle number N , the average energy E/N , that
the equilibrium attained the PBC stage of the simulation is preserved by our
SBC. Like the PBC, we demonstrated that our SBC is also time-reversal
invariant. We then proceeded to measure the pair distribution function g(r),
the compressibility Z, and the specific heat Cv of the hard disk gas, and find
that they agree with analytical results (where they are available).

While we performed an equilibrium simulation in this paper, we expect
our method to be useful for non-equilibrium situations as well. In particular
we can choose any number of boundaries as control surfaces. At these control
surfaces, we can fix different control parameters e.g., they can be at different
temperature, or we can implement different injection velocity distributions
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or different rate of injection of particles. Such a method can be used for
various application, such as (but not limited to) MD measurements f short
time heat transport coefficients, jet intrusion, melting of solids by plasma as
well as effusion through nanopores.
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