
TIM, a ray-tracing program for forbidden ray optics

Dean Lambert1 , Alasdair C. Hamilton, George Constable, Harsh Snehanshu2 , Sharvil Talati2 , Johannes Courtial∗

SUPA, School of Physics & Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

Abstract

TIM (The Interactive METATOY) is a ray-tracing program specifically tailored towards our research in METATOYs, which are
optical components that appear to be able to create wave-optically forbidden light-ray fields. For this reason, TIM possesses
features not found in other ray-tracing programs. TIM can either be used interactively or by modifying the openly available source
code; in both cases, it can easily be run as an applet embedded in a web page. Here we describe the basic structure of TIM’s source
code and how to extend it, and we give examples of how we have used TIM in our own research.

Keywords: ray tracing; geometrical optics; METATOYs

PROGRAM SUMMARY

Manuscript Title: TIM, a ray-tracing program for forbidden ray optics
Authors: Dean Lambert, Alasdair C. Hamilton, George Constable,
Harsh Snehanshu, Sharvil Talati, Johannes Courtial
Program Title: TIM
Journal Reference:
Catalogue identifier:
Licensing provisions: GNU GPL
Programming language: Java
Computer: Any computer capable of running the Java Virtual Machine
(JVM) 1.6
Operating system: Any; developed under Mac OS X Version 10.6
RAM: typically 145 MB (interactive version running under Mac OS X
Version 10.6)
Keywords: ray tracing, geometrical optics, METATOYs
Classification: 14 Graphics, 18 Optics
External routines/libraries: JAMA [1] (source code included)
Nature of problem:
visualisation of scenes that include scene objects that create wave-
optically forbidden light-ray fields
Solution method: ray tracing
Unusual features:
specifically designed to visualise wave-optically forbidden light-ray
fields; can visualise ray trajectories; can visualise geometric optic
transformations; can create anaglyphs (for viewing with coloured “3D
glasses”) and random-dot autostereograms of the scene; integrable
into web pages
Running time:
Problem-dependent; typically seconds for a simple scene

∗Corresponding author
E-mail address: johannes.courtial@glasgow.ac.uk

1Now at SUPA, School of Physics & Astronomy, University of Edinburgh,
Edinburgh EH9 3JZ, United Kingdom.

2HS and ST contributed while visiting from the Indian Institute of Technol-
ogy Delhi, Hauz Khas, New Delhi 110 016, India.

References

[1] JAMA: A Java Matrix Package, http://math.nist.gov/

javanumerics/jama/

1. Introduction

TIM was originally conceived as a tool to allow experimenta-
tion (although only in the computer) with novel optical com-
ponents called METATOYs [1] prior to building them (TIM is
an acronym for The Interactive METATOY). Since then, it has
developed into a much more general ray-tracing program, suit-
able for use in optics research (including, but not limited to,
METATOYs research), but also for simply playing with.

METATOYs are surfaces that appear to change the direction
of light in ways that often result in wave-optically forbidden
light-ray fields [2]. Of course, METATOYs cannot actually cre-
ate wave-optically forbidden light-ray fields; what they do is
create light-ray fields that are visually almost indistinguishable
from the forbidden fields. Of particular interest to us are sur-
faces that perform a generalisation of refraction: they change
the direction of transmitted light rays according to laws that
can be much more general than Snell’s law. In TIM, such gen-
eralised refraction can be described in terms of a complex repre-
sentation, which is explained in section 2. The ability to handle
very general surface properties, which enables the visualisation
of scenes that include objects with METATOY surfaces (Fig.
1), is TIM’s key speciality.

But TIM has other specialities, which support different as-
pects of our research. TIM can

• simulate photos taken with cameras that can focus on al-
most arbitrary surfaces (section 3);

• simulate surfaces that “teleport” light rays to correspond-
ing positions on other surfaces, from where the light rays
then continue (section 4);

Preprint submitted to Computer Physics Communications October 25, 2018

ar
X

iv
:1

10
1.

38
61

v2
 [

ph
ys

ic
s.

op
tic

s]
 2

5
M

ar
 2

01
1

http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/

Figure 1: Simulated view of a cylinder lattice, seen on its own (top) and
through a window that changes the sign of the vertical light-ray-direction com-
ponents (bottom).

Figure 2: TIM, running as an interactive Java application on an Intel MacBook.
The central image is the rendered view of the default scene. The Java applet
version looks identical, apart from the “Save image” button being absent in the
Java applet version because of security restrictions.

• visualise the trajectories of individual light rays (sec-
tion 5);

• render scenes as anaglyphs for viewing with red/cyan
anaglyph glasses (section 6);

• render scenes as random-dot autostereograms (section 7).

There is one more speciality: TIM can be run as an interac-
tive Java applet (Fig. 2), which can easily be embedded in inter-
net pages1. We use this capability to disseminate our research
over the internet, in a manner that invites playful exploration.
The use of this interactive version of TIM is described in a user
guide [3].

Sometimes our research requires capabilities which are not
yet built into the interactive version of TIM. This then requires
modification of the source code, and sometimes the modifica-
tions become part of the interactive version of TIM. As TIM
is open-source software, in principle everybody can do this.
The aim of this paper is to encourage this: to invite others to
play with the interactive version of TIM, and to entice them to
download and modify TIM’s source code. The paper contains
several appendices aimed at facilitating the source-code modi-
fication by outlining the implementation of ray tracing, which
forms the core of TIM’s source code (Appendix A); the overall
structure of TIM’s source code (Appendix B); and how to per-
form a number of code-modification tasks, including rendering
a specific scene by modifying the source code for the default
non-interactive TIM Java application (Appendix C), adding a

1An example can be found at http://www.physics.gla.ac.uk/

Optics/play/TIM/.

2

http://www.physics.gla.ac.uk/Optics/play/TIM/
http://www.physics.gla.ac.uk/Optics/play/TIM/

θ
n

d̂

θ

sin(θ) +1-1

(a)

(b)

d̂

n

+1

+i

-i

-1
P

φ

Im(z)

z

Re(z)

r
P

Figure 3: Representations of the normalised light-ray direction d̂ at a point P on
a surface. (a) Orthographic projection onto a real axis tangential to the surface
at P and with its origin at P. The real axis lies in the plane of incidence, which
is the plane through P that is spanned by the local surface normal, n, and the
normalised light-ray direction, d̂. (b) Orthographic projection into a complex
plane tangential to the surface at P and with its origin at P.

new class of scene object (Appendix D), and adding a new class
of surface property (Appendix E).

2. Complex representation of generalised refraction

TIM exists because we wanted to see scenes that include
METATOYs. Surface properties describing METATOYs there-
fore play a key role in TIM. TIM describes almost all META-
TOY surface properties in terms of a complex representation
introduced in Ref. [4].

The complex representation is itself an extension of the way
ray direction is represented in Snell’s law,

n sin θ = n′ sin θ′, (1)

where θ is the angle between the incident light-ray direction
and the surface normal at the point P where the ray intersects
the surface, θ′ is the angle between the outgoing light-ray direc-
tion and the surface normal at P, and n and n′ are the refractive
indices that meet at P. Each sine of an angle with the local
surface normal can be interpreted as the number at the ortho-
graphic projection of the tip of the unit vector d̂ representing
the corresponding light-ray direction onto a real axis that is tan-
gential to the surface at P, has its origin located at P, and is
lying in the plane of incidence (the plane spanned by the inci-
dent light-ray direction and the surface normal); this is shown
in Fig. 3(a). Snell’s law can then be interpreted as a simple mul-
tiplication of the projection of the light-ray direction by a factor
n/n′.

We now replace the real axis with a complex plane (Argand
plane), again tangential to the surface at P and with its ori-
gin at P. Light-ray direction can then be described in terms of
the complex number z at the orthographic projection of the tip
of the unit light-ray-direction vector d̂ into this complex plane
(Fig. 3(b)). In this representation, Snell’s law is still described

by a simple multiplication of z by a factor n/n′. That the out-
going light ray also lies in the plane of incidence is explicitly
contained in this formulation, but not in Snell’s law [4]. Ro-
tation of the light-ray direction by an angle α around the lo-
cal surface normal [5] is described by multiplication of z by a
factor exp(iα) [4]. Other light-ray-direction mappings can be
described by other complex mappings z → z′(z); the visual ef-
fects due to such mappings are investigated in more detail else-
where [6].

3. A camera that can focus on almost arbitrary surfaces

TIM has the ability to simulate photos taken with a camera that
can focus on almost arbitrary surfaces. In this section we ex-
plain how TIM simulates such a camera.

Focussing matters only in cameras with a non-zero aperture
size. (In photos taken by cameras with a point-like aperture —
pinhole cameras — everything is imaged as sharply as diffrac-
tions permits.) TIM simulates a camera with a finite-size aper-
ture by backward-tracing, starting from each pixel, a number
of light rays which have passed through different points on the
aperture, and averaging the resulting colours. The points on the
aperture through which the backwards-traced light rays emerge
are randomly chosen. Which direction these light rays have as
they leave the aperture is determined by the imaging properties
of the lens: the light rays originate at the position of a particular
pixel, and so they have to leave the lens in the direction of the
pixel’s image formed by the lens.

In a real lens, the images of all detector pixels lie, to a good
approximation, in a plane. By allowing the images of the de-
tector pixels to lie on a much more general surface, the focus
surface, TIM simulates a camera which focusses on this focus
surface.

The focus surface is defined as follows. The camera has asso-
ciated with it a number of scene objects that define the so-called
focus scene, a scene in addition to the scene TIM renders. The
focus surface is then defined as those points in the focus scene
visible to an observer placed at the centre of the aperture.

In the case of a thin lens, the image of any point, and specifi-
cally any detector pixel, lies somewhere along the continuation
of the straight line from the point to the centre of the lens. We
generalise this here such that, in TIM’s camera that focusses on
non-planar surfaces, the image of any detector pixel lies some-
where along the continuation of the straight line from the pixel
position to the centre of the aperture. Fig. 4 illustrates this.

Conveniently, the position of the image of a particular pixel
at position P can be found using functionality already built into
TIM, namely its capability to find the closest intersection be-
tween an arbitrary light ray and a group of scene objects, one of
the key capabilities for ray tracing: all that is required is finding
the closest intersection between the focus scene and a ray that
starts from the centre of the aperture, C, with a direction given
by (C−P), the direction from the detector pixel to the centre of
the aperture.

Fig. 5 shows an example of a scene rendered for a non-planar
focus surface. The focus scene consists of a few — but not all

3

detector

P
1

C

P
1
’P

2

P
2
’

imaging
element

Figure 4: Construction of the focus surface and the position of the image of
any detector pixel. The focus surface (thick red line) consists of those parts
of the focus scene visible from the centre C of the aperture of the imaging
element. The position of the image of any particular detector pixel P lies on
the intersection between the focus surface and the continuation of the straight
line between the pixel position and the point C. The figure shows the positions
of the images of two pixels, P1 and P2. In the example shown here, the focus
scene consists of three objects: a circle, a rectangle, and a line.

Figure 5: Example of a scene rendered with a non-planar focus surface. The
focus scene consists of two of the four spheres, the chequered cylinder, and a
plane in the far distance.

∂P
1

∂ϕ P
1

P
2

∂P
2

∂ϕ

∂P
1

∂θ

n̂
1

n̂
2

∂P
2

∂θ

Figure 6: Parametrisation of a scene object. Each point on the surface
is described by a pair of surface coordinates, in the picture the spheri-
cal coordinates θ and φ, defined with respect to an arbitrary zenith di-
rection (here (0.408, 0.408, 0.816)) and direction of the azimuth axis (here
(0.913,−0.183,−0.365)). This parametrisation of the surface has been indi-
cated by covering it in a chequerboard pattern with tiles of side length 1 in both
θ and φ. The local surface-coordinate axes, θ̂i = ∂Pi/∂θ and φ̂i = ∂Pi/∂φ, to-
gether with the local surface normals, n̂i, are shown for two points, Pi (i = 1, 2).
The sphere has radius 1 and is centred at (0, 0, 10).

— of the scene objects in the scene, and a distant plane. The
objects that are part of the focus scene can clearly be seen to be
rendered sharply; those that are not are blurred.

4. Teleporting surface property

An ideal lens takes the field in one plane and creates an image
of this field in another plane. The image is stretched in the
transverse directions, but not otherwise distorted.

Sometimes it is desirable to create an image that is distorted
according to a specific mapping between the coordinates in the
object and image planes. This is called a geometrical optical
transformation, and it can be approximated holographically [7].
Our own interest in geometrical optical transformations stems
from the application of a polar-to-Cartesian transformation be-
tween two planes to the detection of optical angular momen-
tum [8].

For geometrical optical transformations, coordinates are
clearly important. Many of TIM’s scene objects have asso-
ciated with them a two-dimensional coordinate system that
parametrises their surface, i.e. each point P on the scene ob-
ject’s surface is described by a pair of associated surface coordi-
nates, c1 and c2. For example, positions on a plane are described
by Cartesian surface coordinates; positions on a circular disc
are described by their polar coordinates r (the distance from the
centre) and φ (the azimuthal angle); positions on a sphere are
described by their spherical polar coordinates θ (the polar an-
gle) and φ (the azimuthal angle). Scene objects parametrised in
this way can also calculate the local surface-coordinate axes for

4

Figure 7: Simulated view through a Cartesian-to-polar converter. In the exam-
ple shown here, the converter has been placed immediately in front of the cylin-
der lattice shown in Fig. 1. The converter distorts vertical cylinders (green) into
circles centred on the origin, and horizontal cylinders (blue) into radial lines.
A brightening of the central region due to area elements being transformed to
a different size (see Eqn (5)) is clearly visible. The converter consists of a cir-
cular disc (the origin object), parametrised in terms of distance from the centre
and azimuthal angle φ, with a teleporting surface whose target object is a black
square immediately behind the disc, parametrised in terms of Cartesian coordi-
nates. All coordinates are scaled to range from 0 to 1.

any point on the surface. These are the vectors

ĉ1 =
∂P
∂c1

, ĉ2 =
∂P
∂c2

; (2)

they respectively point in the direction in which the correspond-
ing surface coordinate changes at the point P, and their respec-
tive length indicates the distance on the surface over which the
corresponding surface coordinate changes by 1. Fig. 6 shows
the local surface-coordinate axes for two positions on a sphere.
The surface coordinates and surface-coordinate axes, respec-
tively, play a key role in the calculation of the starting point and
direction of the continuation of the incident light ray.

TIM can simulate geometrical optical transformations using
an unusual surface property. In TIM’s implementation of ray
tracing (see Appendix A), surface properties are responsible
for returning the colour of light leaving a specific point on the
surface in a specific direction. Finding this colour often requires
further tracing of the incident ray, for example in the case of a
specularly reflective surface, where the continuation of the ray
leaves the same point on the surface with a new direction given
by the law of reflection. Geometrical optical transformations
can therefore be implemented in the form of a surface prop-
erty that continues tracing the incident light ray, starting from a
transformed position and with a suitably transformed direction.

TIM’s teleporting surface property does precisely this. A
teleporting surface has associated with it a destination object;
note that the link is one-way. We call the object with the tele-
porting surface the origin object. The mapping from the po-
sition P where the incident light ray intersects the origin ob-
ject to the position where its continuation leaves the destina-

tion object’s surface, P′, is defined in terms of the surface-
coordinate systems (Fig. 6) associated with the two objects’
surfaces. Specifically, if the position P where the incident light
ray intersects the origin object’s surface is described by some
values of its surface coordinates, then the point P′ where the
ray’s continuation leaves the destination object’s surface is the
point at which the destination object’s surface coordinates take
those same values. For example, if a planar origin object is
parametrised in terms of polar surface coordinates r and φ,
and the destination object associated with its teleporting sur-
face property is also planar and parametrised in terms of Carte-
sian surface coordinates, then this setup is a polar-to-Cartesian
converter for backwards-propagating light rays, which means it
is a Cartesian-to-polar converter for forwards-propagating light
rays. Fig. 7 shows a three-dimensional (3D) lattice of cylinders
seen through such a setup. It can clearly be seen that lines of
constant z and x value (i.e. vertical lines) in the cylinder lattice
become lines of constant radius (i.e. circles) when seen through
the converter, and that lines of constant z and y value (horizontal
lines) become lines of constant azimuthal angle (spokes).

The corresponding mapping of the light-ray direction is
based on wave-optical considerations. Specifically, we assume
that phase and intensity of the (scalar) optical field on the tele-
porting surface gets mapped onto the destination object’s sur-
face. In the ray-optics limit of wave optics [9], which is ar-
guably appropriate here, the light-ray direction is proportional
to the direction of the gradient of the phase. The wave’s lo-
cal phase gradient then defines the new light-ray direction. In
TIM, light-ray direction is normalised and therefore naturally
interpreted as normalised phase gradient.

The components of the phase gradient are, of course, the rate
of change of phase in the corresponding directions. Consider
the two coordinate systems that describe the surfaces of the ori-
gin object and of the destination object. Now consider the com-
ponent of the incident light-ray direction in the direction of the
origin object’s first surface coordinate, c1. A value g1 means
that the phase changes locally at a rate of g1 full 2π phase cy-
cles over the distance on the surface in which c1 changes by
1. On the destination object, the phase then changes locally
(at the point P′ where the light ray continues) at a rate of g1
full 2π phase cycles over the distance in which the destination
object’s first surface coordinate, c′1, changes by 1. The ratio
of the phase gradients in the direction of the first surface co-
ordinate, which is the ratio of the light-ray components in the
direction of the first surface coordinates, is therefore given by
the ratio of the distances over which the first surface coordinate
changes by 1 in the origin object and in the destination object.
These distances are given by length of surface-coordinate axes,
|ĉ1| = |∂P/∂c1| and |ĉ′1| = |∂P′/∂c1|. A similar argument can be
made for the second surface coordinate, c2. The components of
the direction of the continuation of the light ray in the directions
of the destination object’s first and second surface coordinates,
d′1 and d′2, are then

d′1 =
|ĉ1|

|ĉ′1|
d1, d′2 =

|ĉ2|

|ĉ′2|
d2, (3)

where d1 and d2 are the components of the direction of the in-

5

cident light ray in the directions of the first and second surface
coordinates of the origin object.

The component of the light-ray-direction vector in the direc-
tion of the surface normal is chosen such that the length of the
light-ray-direction vector remains unchanged. This correctly
represents the case of the continuation of the ray travelling in a
medium with the same refractive index as the medium in which
the incident ray was travelling.

One further consideration is a concomitant change in bright-
ness. TIM assumes that no power is lost during teleportation,
so the power entering an area element dA on the surface of the
origin object at position P is the same as that exiting the cor-
responding area element dA′ on the surface of the destination
object at P′. The light intensities (power per area) at P and P′,
I and I′, are then given by the equation IdA = I′dA′. The ratio
of the area elements is given by

dA′

dA
=

∣∣∣ĉ′1 × ĉ′2
∣∣∣

|ĉ1 × ĉ2|
, (4)

and so

I = I′
∣∣∣ĉ′1 × ĉ′2

∣∣∣
|ĉ1 × ĉ2|

. (5)

It is worth noting that the teleporting surface property can be
used for purposes other than implementing geometrical optical
transformations. For example, consider a planar origin object
placed immediately in front of the camera and a planar target
object placed elsewhere, both parametrised in terms of Carte-
sian coordinate systems. If the scale of the two coordinate sys-
tems is the same, i.e. if the surface-coordinate axes on the ori-
gin and target objects are of the same length, then the effect is a
simple change of camera position and viewing direction.

5. Visualisation of light-ray trajectories

One of TIM’s capabilities, namely the visualisation of light-ray
trajectories, can be very helpful in understanding the effect of
optical components. Fig. 8 shows a cone of light rays being
traced through a window that rotates the local light-ray direc-
tion through 90◦, showing, for example, that such a window
would not create an image of a point light source at the apex of
the cone.

TIM visualises the trajectories of specific light rays in three
steps:

1. trace the light rays, keeping a list of the points where each
light ray intersects a scene object;

2. for each segment of the above light-ray trajectory, i.e. be-
tween each pair of neighbouring intersection points, add a
cylinder to the scene;

3. visualise the scene.

The first point uses the ray-tracing methods already built into
TIM, but those methods needed to be extended slightly to keep
track of ray trajectories. This requires the ability to deal with
rays branching, which occurs whenever a ray encounters an
object with multiple surface properties that require further ray

Figure 8: Visualisation of light-ray trajectories. A cone of light-ray trajectories
originating from a point in front of a window that rotates the light-ray direction
by 150◦ around the local window normal is converted into a twisted bundle of
rays.

tracing, such as a partially transmissive mirror. In TIM, when-
ever a ray hits a surface that requires further ray tracing, a new
ray is created, added to the list of the ray’s branches, and traced.
A light ray’s full trajectory is then stored in the form of a list of
positions where the main branch intersects scene objects, and
the list of the branches.

6. Anaglyphs

Parallax causes a scene to look different when viewed from two
different positions. This is called binocular disparity; the pro-
cess of deriving depth perception from the two different views
the two eyes receive is called stereopsis [10]. In anaglyph
images [11], the two views are superposed, but in different
colours. When viewed through suitable anaglyph glasses, i.e.
a different colour filter in front of each eye which in the sim-
plest case completely filters out the view intended for the other
eye, different images can be presented to the eyes, and stereop-
sis can lead to depth perception.

TIM can create anaglyph images intended for viewing with
red/cyan anaglyph glasses. Two images are calculated for cam-
era positions that differ by a sideways displacement. These two
images can then be turned into anaglyph images in two different
ways:

1. The red component of the image is the luminosity of the
left-eye image, the blue component is the luminosity of the
right-eye image. The resulting anaglyph has lost colour
information.

2. Following “recent simple practice” [11], the blue and
green components are removed from the image that corre-
sponds to the left eye, the red component is removed from
the right-eye image, and the two images are superposed.
The resulting anaglyph includes colour information, but
does not work very well for objects of certain colours.

6

Figure 9: Anaglyph versions of the images in Fig. 1, which show a cylinder
lattice au naturel (top) and when seen through a window that inverts the vertical
ray-direction component (bottom).

Figure 10: Example of a colour anaglyph image. In addition to the chequer-
board floor, the scene contains three reflective spheres.

Figures 9 and 10 show examples of anaglyph images.

7. Random-dot autostereograms

TIM can render scenes as random-dot autostereograms [12].
Fig. 11 shows an example of such a random-dot autostereogram
created by TIM.

Autostereograms rely on the fact that two different patterned
surfaces can look identical from different viewing positions. In
the case of standard autostereograms, the two different view-
ing positions are the positions of the observer’s eyes, one of the
surfaces is planar, and the pattern in that plane is the autostere-
ogram of the other, three-dimensional, surface. For the observer
to perceive the visual illusion of seeing the three-dimensional
surface when viewing the autostereogram requires the patterns
to be sufficiently detailed.

Placing dots on the two surfaces such that the patterns are
consistent with each other is perhaps the simplest way to con-
struct autostereograms. TIM uses the following algorithm.
We call the plane of the autostereogram A, and the three-
dimensional surface S (see Fig. 12).

1. Randomly pick a dot colour.
2. Randomly pick a position D in the plane A and place a

small dot of the picked dot colour there.
3. Find the point P on S that lies on the same line of sight

as D, as seen from the position of the left eye, L. For
the surfaces A and S to look identical from the position of
the left eye, P therefore has to have the same colour as D,
namely the dot colour picked above.

4. Find the point D′ on A that lies on the same line of sight
as P, as seen from the position of the right eye, R. By the
same argument as above, the colour of this point must also
be the dot colour picked above. Therefore, place another
small dot of the picked dot colour at D′.

7

Figure 11: Random-dot autostereogram of TIM’s default scene (Fig. 2). Note
that the scene includes a plane behind Tim’s head which can be seen in the
background, making it easier to see the autostereogram.

L

D
D‘

P

R

A

S

Figure 12: Principle of random-dot autostereograms. The eyes are located at
the positions L and R; the autostereogram is in the plane A; S is the 3D surface
represented by the autostereogram.

5. The previous two steps constructed, from the position D of
one dot in the autostereogram, the position D′ of another
dot that has to have the same colour. Repeat the previous
two steps to construct, from the position D′ of this other
dot, the position of yet another dot that has to have the
same colour. Keep repeating until the position of the new
dot lies outside the area of the autostereogram.

6. Steps 3 to 5 constructed, from the position D picked in step
2, the positions of further dots that have to be of the same
colour. This was done by using the left eye’s line of sight
to construct a corresponding point on S , and then the right
eye’s line of sight to construct a point on A corresponding
to this new point. Start again from the position picked in
step 2, D, and repeat steps 3 to 5, but swapping the role
of the left eye and the right eye. In other words, now use
the right eye’s line of sight to construct a point on S that
corresponds to a dot position in A, and then use the left
eye’s line of sight to construct a point on A corresponding
to this point on S , which is then the position of a new dot.

Two details in TIM’s algorithm are perhaps worth noting.

1. The dots placed by TIM in the autostereogram are not sin-
gle pixels but Gaussians. This means that their positions
are not restricted to the pixel positions, so they can be
placed “between pixels”. This is advantageous as restrict-
ing dot positions to pixel positions restricts the possible
separations between dots, and therefore the depths the dot
patterns can represent, which results in “layered” random-
dot stereograms.

2. Each dot TIM places in the autostereogram has a partic-
ular hue. To calculate the colour of a particular pixel in
the autostereogram, TIM calculates the weighted average
of the hues of all the dots that intersect at the pixel. Hue
is the azimuthal angle φ of a colour’s position in a suitable
colour wheel (e.g. red = 0◦, yellow = 60◦, green = 120◦,
cyan = 180◦, blue = 240◦, purple = 300◦). To form the
weighted average of the hues due to all dots, TIM converts
the hue of each dot into corresponding Cartesian coordi-
nates (the coordinates corresponding to the hue φ j of the
jth dot, weighted by a factor w j, are x j = w j cos(φ j) and
y j = w j sin(φ j)), adding up the x and y coordinates due
to all hues, and calculating the azimuthal angle φ of the
resulting (x, y) position. The weight of the hue of a par-
ticular dot is given by w j = exp

[
−(r j/ρ)2

]
, where r j is the

distance between the pixel and the centre of the jth dot,
and ρ is the dot radius. This can be expressed in terms of
complex numbers as

φ = arg

∑j

exp
[
−(r j/ρ)2

]
exp(iφ j)

 . (6)

Finally, the pixel colour is found using the standard Java
method for converting a colour represented in terms of its
hue, saturation and brightness (HSB) into its red, green
and blue (RGB) components. Both saturation and bright-
ness are set to their maximum value, 1.

8

8. Conclusions

TIM is a powerful raytracer with extensive capabilities, a num-
ber of them unique. We use TIM in our research on META-
TOYs: for disseminating our research over the internet by invit-
ing playful experimentation with METATOYs through TIM’s
interactive version; and for conducting computer experiments
with METATOYs ourselves.

Sometimes it is necessary to modify TIM’s source code,
which can be a daunting prospect. This paper is intended to
help others and ourselves doing this. We hope it will entice
other researchers to use TIM in their own work.

Acknowledgements

Thanks to The MathWorks and to NIST for making the source
code of JAMA publicly available.

Appendix A. Implementation of ray tracing in TIM

TIM is written in Java [13], an object-orientated programming
language [14]. As in all object-orientated languages, objects are
instances of classes. A class has associated methods and data
(variables), which take on specific values in specific instances
of the class, i.e. the objects. A class can have subclasses, which
inherit its methods and properties2; the former is called the lat-
ter’s superclass. In Java there are also interfaces, which are
collections of methods. If an object implements a specific in-
terface, it has to implement all the interface’s methods.

To trace a ray in TIM, a number of objects are interacting.
The following are the most important ones.

Rays. Each ray is an object of class Ray, which has a starting
position and a normalised direction, both represented as
3D Cartesian vectors.

Scene objects. Each scene object implements the interface
SceneObject3; most (but, for complicated reasons, not
all) are instances of a subclass of SceneObjectClass,
which implements the SceneObject interface. Specifi-
cally, a scene object implements methods that calculate
the intersection point between the scene object and
any ray, and methods that calculate the colour of an
intersection point when seen along the direction of a
given ray and under specified illumination. There are
particularly fundamental scene objects, each typically rep-
resenting a simple geometrical object (such as a sphere)
with specific surface properties (such as reflective),
which are instances of the SceneObjectPrimitive

subclass of SceneObjectClass. Another subclass
of SceneObjectClass is SceneObjectContainer,
which represents a collection of scene objects.
There are also more complicated scene objects

2Unless they prevent this specifically by explicitly overriding individual
methods and/or properties.

3Note that every Java class is a subclass of the Object class.

that are neither SceneObjectPrimitives nor
SceneObjectContainers, but ultimately every in-
tersection with a SceneObject must be traceable to an
intersection with a SceneObjectPrimitive.

Surface properties. Perhaps the simplest surface property is
a colour that is independent of any light sources (ef-
fectively a coloured glow), which is represented by the
class SurfaceColourLightSourceIndependent. The
colour of non-glowing surfaces depends on illumination,
and this is represented by the class SurfaceColour,
in which the surface has separate diffuse and specular
colours. The diffuse component colours light due to Lam-
bertian reflectance [15]; the specular components colours
light that is specularly (or near-specularly) reflected [16].

There are also classes representing surfaces on which the
ray does not end, but which change its direction. Exam-
ples include mirror surfaces (Reflective) and refractive-
index interfaces (Refractive).

Finally, there is currently one class (Teleporting) which
continues tracing a light ray with a changed direction and
from a new starting position.

All surface properties implement the interface
SurfaceProperty.

Light sources. Light sources are represented by instances of
the class LightSource. In TIM, two types of light source
are implemented: ambient light, represented by the class
AmbientLight, and light sources with a specific 3D posi-
tion which throw shadows and which can create highlights
due to specular (or near-specular) reflection off surfaces of
type SurfaceColour.

Ray-tracing software usually considers only those light rays
that eventually enter the virtual camera. They do this by tracing
light rays backwards, starting from each pixel in the camera’s
virtual detector chip. What they try to do is establish the colour
such a light ray would have if it was travelling in the opposite
direction, i.e. the colour of the reverse ray, which is the colour
an observer would see in the direction of the light ray. More
details can be found in Ref. [17].

Backwards tracing a specific light ray in TIM proceeds as
follows:

1. The SceneObject representing the entire scene is asked
to return the colour of the reverse ray.

2. The SceneObject finds the SceneObjectPrimitive

the light ray intersects (if any), and asks its
SurfaceProperty to return the colour of the reverse ray.

3. The SurfaceProperty either changes the light-ray direc-
tion and starts tracing again, or it determines the colour of
the surface under illumination by the LightSource. If the
SurfaceProperty is a SurfacePropertyContainer,
then the colours due to all the surface properties are
summed (by adding up the individual RGB components).

4. The LightSource returns a colour according to
its shading model. If the LightSource is a

9

LightSourceContainer, then it asks each of the
LightSources it contains to return a colour and then sums
these colours.

We discuss the steps in some more detail below.
In TIM, tracing an individual ray backwards is initiated

by asking the SceneObjectContainer containing all scene
objects to return the colour an observer at the ray’s start-
ing point would see in the ray’s direction. This is done
by calling the SceneObjectContainer’s getColour method
(which is defined in the SceneObjectContainer’s superclass
SceneObjectClass). The SceneObjectContainer then es-
tablishes which one (if any) of the scene objects it contains the
ray would intersect with first. If the ray intersects none of the
scene objects, then the getColour method returns the colour
black. If the ray intersects one of the scene objects, then the
method establishes which SceneObjectPrimitive was hit
and calls this SceneObjectPrimitive’s SurfaceProperty

to establish the colour.
Each SurfaceProperty implements a getColour

method, which returns the colour an observer at the
ray’s starting point would see in the ray’s direc-
tion. In the simplest case, implemented in the class
SurfaceColourLightSourceIndependent (surface type
“Coloured (glowing)”), the colour stored within the specific
instance of the class is returned, irrespective of the illumination
and the rest of the scene. Illumination-dependent colour is
handled by the SurfaceColour class, which calls the light
source’s getColour method to establish the appearance of
the surface under illumination by the light source. There
are also surface properties, for example Reflective, whose
getColour method returns the colour resulting from tracing
through the scene a new ray that starts from the intersection
point and travels in a new direction (given, in the case of the
Reflective class, by the law of reflection). Finally, it is also
possible to have surface properties whose getColour method
returns the colour resulting from tracing a new ray that starts at
a point different from the intersection point; the Teleporting
class is an example of such a class. In the latter two cases of
surface properties that continue tracing rays through the optical
system, the colour may be slightly darkened to represent a
reflection or transmission coefficient of less than one.

A light source’s getColour method calculates the colour
in which an observer would see a specific surface colour at
a particular point on a surface if it was illuminated only by
this light source. TIM models two different types of light
source: ambient light (class AmbientLight), which illumi-
nates all objects in all directions with a given RGB colour;
and PhongLightSource, which implements the Phong shad-
ing model [16]. The latter corresponds roughly to a small,
coloured light bulb: it has a specific position, which is used
to determine whether the surface is in another scene object’s
shadow and whether near-specular reflection occurs, which
leads to highlights; and it has a specific colour. There is also a
class (LightSourceContainer) that models the effect of com-
binations of different light sources.

It should be clear from the above discussion that

backward tracing of a ray ends when a light ray
has intersected a surface with a surface of class
SurfaceColourLightSourceIndependent, or when it
hits a surface of class SurfaceColour (in which case the light
source performs the final calculation of colour). Sometimes it
can happen that rays get “trapped”, for example between mirror
surfaces such as those in canonical optical resonators [18].
In such cases, a reflection (or transmission) coefficient < 1
ensures exponential fall-off of the intensity with the number
of bounces, so such light rays become dark. TIM limits the
number of bounces it models, and when the limit is reached
returns the colour black. This is controlled by a variable called
traceLevel, which gets passed between the objects. The
backwards tracing process starts with traceLevel taking a
value of typically 100; whenever a surface property initiates
tracing of a new ray, it does so with a value of traceLevel

that is reduced by 1. When the value 0 is reached, the colour
black is returned.

Appendix B. Source-code structure

TIM is divided into a hierarchical package structure. We
describe here the main branch of this structure, namely the
optics package and the packages it contains. There are three
additional packages:

1. JAMA is a matrix package in the public domain [19]. TIM
uses it; for convenience, the unmodified third-party source
code is distributed with TIM’s source code.

2. math is a package that defines additional mathematical
functionality as required, including classes dealing with
complex numbers, 2D vectors, and 3D vectors.

3. test contains only the class Test, which can be executed
as a Java application for the purposes of testing any parts
of the code.

Appendix B.1. The optics package
The optics package collects together optics-related code. At
the top level, it contains the Constants class, a collection of
optics-related constants such as a few common refractive in-
dices; and DoubleColour, which is used internally to represent
colours.

The only sub-package within the optics package that is
distributed with TIM’s source code is optics.raytrace. It
contains both the ray tracer code as well as associated math-
ematical, graphical and user interface code, organised in the
form of a number of sub-packages. At the top level, it
contains NonInteractiveTIM, a template for a class that
can be run as a Java application that uses TIM (see sec-
tion Appendix C); TIMApplet, the applet class that is called
when the interactive version of TIM is run as an applet;
TIMJavaApplication, which allows the interactive version of
TIM to be run as a Java application (with slightly increased
functionality, specifically the ability to save images as .bmp

files); and TIMInteractiveBits, a class that defines the in-
teractive parts of TIM, which are called by both the TIMApplet
and TIMJavaApplication classes.

10

The package optics.raytrace.core contains a number
of the core ray-tracing classes and interfaces. A number
of these, and their interactions, are discussed in Appendix
A. The ray-tracing core classes and interfaces include
those defining the structure of cameras (Camera), light
sources (LightSource; see optics.raytrace.lights for
implementations), scene objects (SceneObject; implemen-
tations are in package optics.raytrace.sceneObjects),
surface properties (SurfaceProperty; implementa-
tions in optics.raytrace.surfaces), rays (Ray and
RayWithTrajectory), and intersections between rays and
objects (RaySceneObjectIntersection). The Studio

class defines a collection of everything required to calculate a
photo, namely information about the scene (in a SceneObject
object), lighting (a LightSource object), and camera (in the
form of a Camera object; implementations of cameras are
in the package optics.raytrace.cameras). A number of
interfaces outline mechanisms for the parametrisation of object
surfaces:

• ParametrisedObject defines coordinates assigned to
each point on a surface;

• One2OneParametrisedObject extends
ParametrisedObject by asking for the reverse of
the coordinate assignment, i.e. for a method that returns
the point on a surface associated with a set of coordinate
values.

Other classes included in the package are CameraClass,
which implements a number of methods common to cur-
rently all cameras, and which is a superclass to currently
all cameras; SceneObjectClass, which similarly im-
plements a number of methods common to most scene
objects, and is a superclass of many scene-object classes;
SceneObjectPrimitive, which describes simple geometric
objects, such as spheres and planes; CCD and CentredCCD,
which represent the light-detecting element in cameras;
Transformation, which defines the structure of geometrical
transformations (such as translation or rotation) which can
be applied to scene objects (for implementations see package
optics.raytrace.sceneObjects.transformations);
and DoubleColourCamera and DoubleColourCCD, which
define the structure of higher-quality cameras and their
light-detecting elements.

The useful optics.raytrace.demo package contains a
number of classes which can be run as Java applications and
which demonstrate the use and effect of different features, for
example LightsDemo, which was used to create Fig. B.13. It
is worth studying the examples contained in this package to un-
derstand how to access TIM’s functionality.

The package optics.raytrace.exceptions defines
classes that signal exceptional circumstances that occured
during rendering, for example a ray becoming evanescent
(EvanescentException).

Appendix B.2. optics.raytrace.cameras

The optics.raytrace.cameras package contains imple-
mentations of the Camera interface. These handle the

Figure B.13: Effect of combination of different light sources. Here, a shiny
blue sphere is illuminated by a combination of three Phong light sources, one
red, one green, one blue, placed in different directions high above the sphere.
The Phong light sources produce differently-coloured highlights at the top of
the sphere and differently-coloured shadows (the colours are due to subtrac-
tive colour mixing) on the floor. Where the shadows from all Phong light
sources overlap, the scene is completely black in the absence of an ambient
light source. The image was rendered using the LightsDemo class in the
optics.raytrace.demo package (Appendix B).

mechanisms of generating the rays that are then traced
through the scene, and of turning creating corresponding im-
ages. Implemented camera classes include PinholeCamera,
which is the simplest type of camera that takes pictures in
which everything is in focus; ApertureCamera, a camera
with a circular aperture that can focus on any transverse
plane; AnyFocusSurfaceCamera, a camera with a circu-
lar aperture that can focus very general surfaces (section 3);
OrthographicCamera, which produces orthographic projec-
tions into a plane; AnaglyphCamera, which can produce ei-
ther red/blue or colour anaglyph images that can be viewed
with standard red/cyan anaglyph glasses (section 6); and
AutostereogramCamera, which can create random-dot au-
tostereograms of the scene (section 7).

Appendix B.3. optics.raytrace.lights

The optics.raytrace.lights package includes implemen-
tations of light sources. These include AmbientLight, which
represents a coloured ambient light; PhongLightSource,
which realizes the Phong shading model [16], which is
roughly equivalent to a slightly fuzzy point light source; and
LightSourceContainer, which allows light sources to be
combined. Fig. B.13 demonstrates effects due to different light
sources.

Appendix B.4. optics.raytrace.sceneObjects

The package optics.raytrace.sceneObjects contains im-
plementations of scene objects. It contains classes describing
different types of scene objects:

11

Simple geometrical shapes. Classes that describe sim-
ple geometrical shapes are implementations of the
SceneObjectPrimitive class (Appendix D.1). Ex-
amples include spheres (Sphere), planes (Plane),
parallelograms (CentredParallelogram), discs (Disc),
and cylinders (Cylinder).

Combinations of other scene objects. A number of classes
describe compound objects (Appendix D.2). Examples
include Arrow, Cylinder, and Eye.

Shapes with parametrised surfaces. Parametrisation,
described by implementations of the
interfaces ParametrisedObject and
One2OneParametrisedObject, assigns coordi-
nates to points on the surface of a geometrical
shape (Appendix D.3). Examples of classes that
define parametrised geometrical shapes include
ParametrisedSphere, ParametrisedPlane, and
ParametrisedCentredParallelogram. There are
also classes that allow the range of the coordinates that
describes the surface of the geometrical shape to be varied.
For example, in the ScaledParametrisedSphere class,
the range of the polar angle θ can be set to range from
an arbitrary value θmin to another arbitrary value θmax.
Other examples include ScaledParametrisedDisc and
ScaledParametrisedCentredParallelogram.

The optics.raytrace.sceneObjects.solidGeometry

package is a collection of classes useful for combining
scene objects. In the simplest case, scene objects are
grouped in a hierarchical way (SceneObjectContainer).
More elaborate combinations of scene objects include
intersections (SceneObjectIntersection), unions
(SceneObjectUnion), and inverse (SceneObjectInverse).

One of the capabilities required of any scene object is the
ability to create a transformed copy of itself. The structure
of the transformation is defined by the Transformation

class (in optics.raytrace.core). The package
optics.raytrace.sceneObjects.transformations

contains classes that describe specific types of trans-
formation, i.e. subclasses of Transformation. Ex-
amples include Translation, RotationAroundXAxis,
RotationAroundYAxis, RotationAroundZAxis, and the
more general LinearTransformation.

Appendix B.5. optics.raytrace.surfaces

The optics.raytrace.surfaces package contains im-
plementations of the SurfaceProperty interface (in
optics.raytrace.core). These include

• the classes representing coloured surfaces,
SurfaceColourLightSourceIndependent and
SurfaceColour;

• a class representing a transparent surface (Transparent);

• the Reflective class which represents specularly reflec-
tive surfaces;

• the Refractive class which represents refraction at the
interface between media with different refractive indices
according to Snell’s law;

• a class that facilitates the implementation of classes that
represent surfaces that change direction according to gen-
eralised laws of refraction (Metarefractive);

• a number of subclasses of Metarefractive represent-
ing surfaces that invert of one of the ray-direction com-
ponents tangential to the surface [20] (RayFlipping), ro-
tate the ray direction around the local surface normal [5]
(RayRotating), and refract like — formally [4] — the
interface between media with a complex refractive-index
ratio would (RefractiveComplex);

• classes representing surfaces that have combinations of
other surface properties (SurfacePropertyContainer
and SurfacePropertyContainerWeighted);

• a SemiTransparent class, which combines an arbitrary
surface property with the Transparent surface property;

• a class representing a surface whose inside has different
properties from its outside (TwoSidedSurface);

• classes representing surfaces with completely dif-
ferent surface properties at different points on
the surface (SurfaceTiling, EitherOrSurface,
PictureSurface, PictureSurfaceDiffuse,
PictureSurfaceSpecular;

• a class representing the hologram of a thin lens
(ThinLensHologram), which changes light-ray direction
dependent on the point where it is being intersected;

• and a class representing a surface a light ray enters and
then continues, from a corresponding position and with
a corresponding direction, from the surface of a different
scene object (Teleporting — see section 4; we use this
to model geometric optical transformations [8]).

Appendix E.1 discusses how to add new surface properties to
TIM.

The optics.raytrace.surfaces.metarefraction

package contains description of the direction change
performed by surfaces of class Metarefractive (see
optics.raytrace.surfaces). The format of these de-
scriptions is defined by the abstract Metarefraction

class. The ComplexMetarefraction class is a subclass
of Metarefraction, again abstract, which formulates the
direction change in terms of the projections of the incoming
and outgoing light rays into an Argand plane tangential to the
surface at the intersection point and with its origin there (sec-
tion 2) [6]. This is a generalisation of the formal description
in terms of multiplication with a complex number of rotation
of the light-ray direction around the local surface normal [4].
All other classes in this package are non-abstract subclasses of
ComplexMetarefraction. They include classes that describe
surfaces that change light-ray direction described by complex

12

Figure B.14: Editing one object in a hierarchical structure using the IPanel

class. The top line displays a breadcrumb trail, giving an idea of the place in
the hierarchy.

multiplication (ComplexMetarefractionMultiplication),
complex addition (ComplexMetarefractionAddition),
complex conjugation (ComplexMetarefractionCC), and
complex exponentiation (ComplexMetarefractionExp).

Appendix B.6. optics.raytrace.GUI

The optics.raytrace.GUI package is a collection of
packages that together constitute TIM’s graphical user
interface (GUI). All but one of the sub-packages of
optics.raytrace.GUI contain classes that handle user inter-
action in TIM’s interactive version.

The exception that contains the classes that handle user in-
teraction in the non-interactive version of TIM is the package
optics.raytrace.GUI.nonInteractive. It contains two
classes: PhotoCanvas, which creates a panel (screen element)
in which NonInteractiveTIM and classes derived from it dis-
play the rendered image; and PhotoFrame, which opens a win-
dow containing a PhotoCanvas.

The package optics.raytrace.GUI.core contains GUI
core classes. The RaytraceWorker class handles rendering
in a background thread, so that the GUI can continue to react
to user interaction. The class IPanel defines a screen element
intended to allow browsing and editing hierarchical networks of
objects on a relatively small screen area, so that it can be inte-
grated into an internet page without necessarily dominating the
page. At any one time, the panel corresponding to one object
in this network is displayed. IPanel handles a stack of these
panels, displaying only the top one, and a breadcrumb trail of
the other panels in the stack (Fig. B.14). The mechanism by
which this panel is supplied by the object, and how control is

handed over when another object’s panel gets displayed in the
IPanel, is defined in the IPanelComponent interface, which
all objects in TIM which are editable interactively implement.
EditableCamera is an interface that defines the functionality
of an editable camera.

The package optics.raytrace.GUI.lowLevel is a
collection of low-level classes related to the GUI. The class
GUIFrame represents the window TIM’s interactive version
opens when run as a Java application. GUIPanel is the
top-level screen element that contains the entire GUI, i.e.
the tabs showing views of the rendered scene from dif-
ferent view points, any component being edited, and all
buttons (see Fig. 2). BufferedImageCanvas is the panel
displaying the rendered image. RaytracingImageCanvas

extends BufferedImageCanvas by adding some inter-
active functionality, including the ability to identify the
scene object and coordinates of the point on the object the
mouse pointer hovers over and clicks on, and the ability
to edit that scene object by double-clicking on it. Most
classes provide panels for editing small chunks of data,
including integers (IntPanel and LabelledIntPanel,
an IntPanel displayed next to a brief verbal description),
individual double-precision real numbers (DoublePanel and
LabelledDoublePanel), pairs of double-precision real num-
bers (TwoNumbersPanel), complex numbers (ComplexPanel
and LabelledComplexPanel), 2D vectors (Vector2DPanel
and LabelledVector2DPanel), 3D vectors (Vector3DPanel
and LabelledVector3DPanel), and the limiting values of
a range of real numbers (LabelledMinMaxPanel). The
class SceneObjectPrimitivesComboBox describes a panel
that allows any SceneObjectPrimitive in the scene to be
selected, which is used in the panel editing surface properties
for selecting a target object for a surface of type Teleporting.
There are a number of classes for editing camera-specific pa-
rameters such as aperture size (ApertureSizeComboBox
and LabelledApertureSizeComboBox); quality
(QualityComboBox and LabelledQualityComboBox),
which can be applied to blurring and to anti-aliasing; and
all parameters related to camera blur collected in one panel
(BlurPanel). The class ButtonsPanel describes a panel con-
taining one or more buttons. The interface StatusIndicator
outlines the structure of an object that can display brief status
messages. Finally, GUIBitsAndBobs is a small collection of
miscellaneous methods commonly used by the GUI.

The package optics.raytrace.GUI.cameras con-
tains classes that describe various editable camera
classes. The classes EditableAnyForucSurfaceCamera,
EditableApertureCamera, EditableAnaglyphCamera,
EditableAutostereogramCamera and
EditableOrthographicCamera respectively extend
the AnyFocusSurfaceCamera, ApertureCamera,
AnaglyphCamera, AutostereogramCamera and
OrthographicCamera classes in this way. The
classes EditableOrthographicCameraSide and
EditableOrthographicCameraTop make special cases
of the OrthographicCamera class editable; these respectively
correspond to TIM’s “Side view” and “Top view” tabs.

13

The package optics.raytrace.GUI.sceneObjects

contains the classes describing all editable scene ob-
jects. Most of these are simply editable versions of
classes in optics.raytrace.sceneObjects, includ-
ing EditableArrow, EditableParametrisedCone,
EditableParametrisedCylinder,
EditableParametrisedPlane,
EditableRayTrajectory, EditableRayTrajectoryCone,
EditableScaledParametrisedDisc,
EditableScaledParametrisedCentredParallelogram,
and EditableScaledParametrisedSphere. The
class EditableSceneObjectCollection allows edit-
ing of groups of scene objects, which can be com-
bined a number of ways respectively handled by the
SceneObjectContainer, SceneObjectIntersection,
and SceneObjectUnion classes in the
optics.raytrace.sceneObjects.solidGeometry

package. A few of the classes defined in
optics.raytrace.GUI.sceneObjects ex-
ist only in editable form. Examples include
EditableCylinderFrame, EditableCylinderLattice,
EditableLens, EditableObjectCoordinateSystem,
EditablePolarToCartesianConverter, and
EditableTelescope.

The optics.raytrace.GUI.surfaces package con-
tains classes that enable selecting a class of surface
property and editing class-specific parameters. The
class that provides a panel for doing all of this is
SurfacePropertyPanel (see Fig. E.15, appendix Appendix
E.3). The remaining classes in this package allow editing
of class-specific parameters. EditableSurfaceTiling

and EditableTwoSidedSurface are editable sub-
classes of SurfaceTiling and TwoSidedSurface,
respectively. TeleportingTargetsComboBox is a sub-
class of SceneObjectPrimitivesComboBox (in the
optics.raytrace.GUI.lowLevel package) that allows
a suitable scene object contained in the scene to be selected. In
its labelled form (LabelledTeleportingTargetsComboBox)
this is used in the SurfacePropertyPanel class to select a
target object for the Teleporting surface property.

Last, and least, the package
optics.raytrace.GUI.sceneObjects.transformations

contains only the class EditableLinearTransformation,
which will eventually be able to edit lin-
ear scene-object transformations (see package
optics.raytrace.sceneObjects.transformations)
and become part of TIM’s interactive version.

Appendix C. The default non-interactive TIM

TIM’s source code comes with a class called
NonInteractiveTIM, which can be compiled and run as
a Java application4 that defines a studio (scene, camera and

4In Eclipse [21], simply bring up the source-code file
optics.raytrace.RayTraceJavaApplication.java and select Run

> Run.

lights); renders the scene under the conditions defined in the
studio; and displays the rendered image on the screen and
saves it as a .BMP file. This class can serve as an example and
template for using TIM’s source code.

The class NonInteractiveTIM provides three methods:

1. getFilename returns the filename under which the ren-
dered image is saved;

2. createStudio defines and returns the studio, i.e. a scene,
a camera, and lights;

3. main calls the createStudio method, renders the image,
displays it on the screen, and saves it as a .BMP file; auto-
matically gets called when the NonInteractiveTIM class
is run as a Java application.

Modifying these methods5 allows TIM to perform tasks that
cannot currently be achieved in the interactive version; below
are a few examples.

First we discuss modifying the createStudio method,
which changes one or more of scene, camera and lights. This
allows the programmer to do a number of things that are not
currently possible in the interactive version, including

• setting parameter values by typing in formulas;

• using Java’s built-in flow control (such as for or while
loops) and formulas to create a number of objects system-
atically;

• accessing classes of scene object not currently supported
in the interactive version (e.g. MaskedObject);

• transforming objects, e.g. rotate, move, or scale
them (these transformations are defined in the
optics.raytrace.sceneObjects.transformations

package);

• accessing additional classes of surface properties (an ex-
ample is PictureSurface, which maps a picture loaded
from a file onto a surface; other examples include several
types of MetarefractiveSurface);

• giving surfaces combinations of surface
properties (which can be achieved by us-
ing the SurfacePropertyContainer or
SurfacePropertyContainerWeighted classes);

• changing the lights.

Changing the behaviour of the resulting Java application al-
together can be achieved by altering the main class. Simple
examples include stopping the Java application from saving the
image (by removing the relevant line in the code, or simply by
commenting it out). By running a loop in which parameters
change values, for example the position of a scene object or
the camera, and by saving the rendered images with a suitable
filename (in the simplest case ending in a number), the saved
images can later be combined into a movie by other software.

5Note that overriding these methods has no effect as all are declared
static.

14

Appendix D. Adding a new scene-object class

Sometimes it is necessary to add a new class of scene object to
TIM. We can distinguish the following cases, which we treat in
more detail in the following sections:

1. It is desirable to add a class representing a geometrical
shape not yet represented in TIM, for example an ellipsoid
or a torus.

2. It is desirable to define a class representing combi-
nations of geometrical shapes already represented in
TIM. One reason for doing so could be to automate
the placing and adding to the scene of the constituent
scene objects, for example the cone and the cylinder
that form an arrow represented by the Arrow class.
The individual scene objects can also automatically be
combined using the solid-geometry classes defined in the
optics.raytrace.sceneObjects.solidGeometry

package; this is how a lens is created by the
EditableLens class.

3. It is desirable to (re)parametrise the surface of an existing
geometrical shape.

4. It is desirable to add a scene-object class that is represented
in TIM for non-interactive use to the interactive version.

Appendix D.1. Adding a class representing a geometrical
shape

A geometrical shape is represented by a (non-abstract) subclass
of the (abstract) SceneObjectPrimitive class. This is itself
a subclass of SceneObjectClass, an abstract class that imple-
ments some common methods required by the SceneObject

interface such as keeping a copy of the studio, the parent object,
and the description, and providing implementations of methods
such as getColour that reduce the task to other methods that
remain to be implemented, such as finding the intersection be-
tween a ray and the object. It is instructive to study the imple-
mentation of such a class, for example Sphere.

Any new subclass of the SceneObjectPrimitive class
needs to implement methods for dealing with the geometry
of ray tracing, namely finding the intersection between a ray
and the shape (getClosestRayIntersection); calculating
the normalised surface normal at any possible intersection point
(getNormalisedSurfaceNormal); and determining whether
a position is inside the object or not (insideObject). It also
needs to implement methods for an instance of the class to
make an identical copy of itself (clone), or a copy that is ge-
ometrically transformed, for example shifted, rotated, or scaled
(transform).

Note that the surface normal points in the direction of the
shape’s outside. In many cases, it is obvious which side of the
surface is on the inside and which one is on the outside, for
example in the case of a sphere. However, in other cases, for
example in the case of a plane, it is not at all obvious. In such
cases, the direction of the surface normal defines an inside and
an outside. It is important to be able to distinguish inside from
outside as many types of surface property, for example refrac-
tion, distinguish between rays that arrive from the inside from
those arriving from the outside.

Appendix D.2. Defining a new scene-object class in terms of
existing scene objects

Sometimes it is desirable to define a new class of scene objects
that consists of a number of scene objects of existing classes.
Examples include the Arrow class, which represents a combina-
tion of a cone (the arrow’s tip) and a cylinder (the shaft), and the
EditableLens class, which represents a convex-convex lens.

The easiest way to implement such a class is to extend
the class that represents the appropriate combination of scene
objects. For example, an arrow, which is simply a col-
lection of a cone and a cylinder, can be realised by ex-
tending the class representing simple scene-object collections,
SceneObjectContainer; a convex-convex lens, which is the
intersection of two spheres, can be realised by extending the
SceneObjectIntersection class. All the class then needs
to do (usually in the constructor) is to add the appropriate
scene objects to the array of objects in the class, using the
addSceneObject method.

Appendix D.3. (Re)parametrising the surface of an existing
shape

A number of surface properties require a surface that has a
two-dimensional coordinate system associated with it (section
4, especially Fig. 6). An example of such a surface property
is SurfaceTiling, which covers the surface in a chequer-
board pattern in the surface’s coordinate system. A surface
that can calculate a pair of coordinates for any point on the
surface is represented by the ParametrisedObject interface;
it needs to implement methods for returning coordinates of
an arbitrary point on the surface (getSurfaceCoordinates)
and for returning the corresponding coordinate names, for ex-
ample theta and phi in the case of a sphere’s polar coordi-
nate system (getSurfaceCoordinateNames). A surface that
can also identify a point on the surface for arbitrary coordi-
nates is represented by One2OneParametrisedObject inter-
face. Such a surface needs to implement the methods required
by the ParametrisedObject interface, and additionally the
getPointForSurfaceCoordinates method. If the mapping
between surface points and coordinates is not one-to-one then
the behaviour of this method is undefined.

Note that there are scene objects, most notably
compound scene objects, which can implement the
ParametrisedObject interface so that patterned sur-
faces can be applied to each constituent scene object, provided
it implements ParametrisedObject, but which should not
implement the One2OneParametrisedObject interface even
if all constituent scene objects do as there might be points
on different constituent objects that correspond to the same
combination of coordinate values, and so the mapping between
surface points and coordinates is not one-to-one.

A scene object that implements the ParametrisedObject

interface also defines directions on the surface, through the
getSurfaceCoordinateAxes call-back method. This allows
the implementation of anisotropic surface properties, which re-
quire a preferred direction to be defined. Fig. 6 shows these
vectors for two points on the surface of an object of class

15

ParametrisedSphere. Their primary purpose is to define di-
rections on the surface, which is why they many methods that
use these vectors normalise them. An example is the surface-
property class Metarefractive, which allows surfaces to de-
flect light rays in very general ways. (This can be seen as a
generalisation of refraction at the interface between media with
different refractive indices, or “metarefraction” [1].) As many
light-ray-direction changes are internally handled through the
Metarefractive class (see Appendix E.2), it is often impor-
tant that surfaces implement the ParametrisedObject inter-
face. Those light-ray-direction changes include Snell’s-law re-
fraction (surface property Refractive); ray flipping, which
changes the sign of one light-ray-direction component [20]
(surface property RayFlipping); and ray rotation (Fig. 2),
which rotates the light-ray direction by an arbitrary (but fixed)
angle around the local surface normal [5] (surface property
RayRotating).

Creating a class that parametrises the geometrical shape
described in an existing class can be achieved by creat-
ing a subclass of the existing class. This new subclass
needs to implement the methods of the relevant interfaces,
ParametrisedObject or One2OneParametrisedObject. If
the existing class is already parametrised and the new subclass
overrides its methods related to parametrisation, then the new
class re-parametrises the geometrical shape described in the ex-
isting class.

Appendix D.4. Adding an existing scene-object class to inter-
active TIM

All scene-object classes available in the interactive version of
TIM need to be fully parametrised (see previous section), i.e.
they need to implement the One2OneParametrisedObject

interface.
For a class to be editable through the mechanism built into

the interactive version of TIM, it needs to implement the
IPanelComponent interface. To add an existing scene-object
class to the interactive version of TIM, it is easiest to create
a subclass that implements the following methods required by
IPanelComponent:

1. createEditPanel prompts the creation of the edit panel
(of class JPanel), an area of screen that allows interactive
editing of any of the scene object’s parameters;

2. discardEditPanel signals to the IPanelComponent

that the edit panel is no longer required, and any resources
associated with it can be freed up;

3. getEditPanel returns the edit panel;
4. setValuesInEditPanel sets all the sub-panels in the

edit panel to reflect the current values of the scene object’s
parameters;

5. acceptValuesInEditPanel sets the scene object’s pa-
rameters to the edited values in the edit panel;

6. backToFront gets invoked after editing of a different
IPanelComponent’s edit panel has been completed (for
example, the surface property of the current scene object
could have been edited), and this one’s edit panel is being
edited again.

The new class can now be part of the scene, and it can be
edited, but it is so far not possible to create a new instance
(unless another one is being duplicated). Creating a new in-
stance of a scene object in interactive TIM happens by adding
a new scene object to a collection of scene objects. This col-
lection can be “The scene”, which is the top-level collection of
scene objects, but it can also be a collection that is part of “The
scene” (or of other collections in the hierarchy). Editing a col-
lection is handled by the EditableSceneObjectCollection
class. We will discuss the required steps using the example of
the EditableTelescope class.

1. Add a string that describes an object of this class (e.g.
String OBJECT TELESCOPE = "Telescope";).

2. Add this string to the array of strings that are to be
the menu items in the combo box responsible for ini-
tiating the creation of a new instance of a scene ob-
ject (e.g. String[] componentStrings = { [...],

OBJECT TELESCOPE, [...]};)
3. In the actionPerformed method of the internal class

SceneObjectControlPanel, which gets called when-
ever the user interacts with the combo box that initiates
the creation of a new scene object, add a case that gets in-
voked when the user has selected the new object type in
the new-object combo box. In the case of our example, it
has the following form:

else if(newElementName.equals(

OBJECT_TELESCOPE)

)

iPanelComponent = new EditableTelescope(

"Telescope", // description

// default centre

new Vector3D(0, 0, 10),

// default ocular normal

new Vector3D(0, 0, -1),

1, // default magnification

1, // default radius of aperture

// parent in hierarchy

EditableSceneObjectCollection.this,

// scene, lights and camera

getStudio()

);

Appendix E. Adding a surface-property class

One of the main reasons why we wrote TIM was to be able
to fully control the effect of surfaces on light rays, which
has proved tremendously useful not only for our research on
METATOYs but also for our work on optical orbital angular
momentum. This section outlines how new surface properties
can be added to TIM.

Appendix E.1. Adding a general surface property
TIM establishes the effect of a surface on any specific light ray
by asking the getColour method of the SurfaceProperty

object representing the surface to return the colour of the re-
verse ray, i.e. the light ray travelling in the opposite direction.

16

The role of surfaces in establishing this colour is outlined in
more detail in Appendix A.

A new surface property can be created by implementing
the SurfaceProperty interface directly. The class represent-
ing the new surface property must implement the getColour

method. Precisely how it calculates the reverse ray’s colour
varies greatly between different surface-property classes. The
getColour method has access to all the information being
passed to it as arguments:

• the Ray object describing the incident light ray contains its
direction and starting position;

• the RaySceneObjectIntersection object describing
the intersection between the surface and the light ray con-
tains the position of the intersection point and the primitive
scene object being intersected;

• the entire scene information is passed in the form of a
SceneObject object;

• information about lights is passed in the form of a
LightSource object.

Additionally, the trace level is passed as an argument. The class
might also store additional information and make it available to
be used within getColour.

It might be instructive to study the code of a few classes that
implement the SurfaceProperty interface directly. The fol-
lowing two classes are perhaps particularly instructive.

• The class SurfaceTiling is an example of a spatially
varying surface property that calculates the local coordi-
nates in the intersected primitive scene object’s coordinate
system. This is done by the code fragment

(

(ParametrisedObject)(i.o)

).getSurfaceCoordinates(i.p),

where i is the RaySceneObjectIntersection object
describing the intersection point; i.o is the primitive
scene object being intersected (which has to implement
the ParametrisedObject interface here; if it does not,
an exception is thrown); and i.p is a 3D vector describing
the position of the intersection point.

• The class Reflective is an example of a surface property
that requires further ray tracing. Its getColour method
illustrates, amongst other things, checking that the trace
level is greater than zero and continuing backwards ray
tracing with a new direction. The latter is achieved by the
following code segment:

return scene.getColourAvoidingOrigin(

ray.getBranchRay(i.p, newRayDirection),

// the primitive scene object being

// intersected

i.o,

l, // the light source(s)

scene, // the entire scene

traceLevel-1

).multiply(reflectionCoefficient);

Note that creating the continuation of the ray using the
original ray’s getBranchRay method ensures the ray tra-
jectory is recorded correctly (see section 5); that the
branch ray is being launched with a trace level reduced by
1; and that the intensity of the branch ray is multiplied by
a reflection coefficient stored in the Reflective object.

Appendix E.2. Adding a surface property that affects only
light-ray direction

As surface properties that change light-ray direction in dif-
ferent ways are of particular interest to us for the pur-
poses of our METATOYs research, we have put in place a
surface-property class that aims to facilitate the creation of
new light-ray-direction-changing surface properties. The di-
rection change itself is described by a subclass of the ab-
stract Metarefraction class, which must provide meth-
ods that calculate the new light-ray direction from the old
light-ray direction for the two cases of light travelling in-
wards, i.e. arriving from the surface’s outside, or outwards,
i.e. arriving from the inside. (Inside and outside are de-
fined by the direction of the normalised surface normal, which
can be obtained with the SceneObjectPrimitive class’s
getNormalisedSurfaceNormal method, and which is de-
fined to point outwards.) These methods are the call-back meth-
ods refractInwards and refractOutwards. The surface-
property class that represents this light-ray-direction change
is of class Metarefractive. The description of the direc-
tion change (i.e. the implementation of the Metarefraction

class) is passed as an argument to the constructor of the
Metarefractive surface property; in other words, an object
of class Metarefractive is always created around a specific
light-ray-direction change.

In TIM, most light-ray-direction changes at surfaces are de-
scribed in terms of their projection into an Argand plane tan-
gential to the surface at the intersection point and with its ori-
gin placed there (section 2) [6]. A complex number that cor-
responds to the projection of the incoming light ray is mapped
to another complex number, which corresponds to the projec-
tion of the outgoing light ray. The component in the direction
of the surface normal is calculated so that the length of the di-
rection vector remains unchanged. The mapping of the light-
ray projection then defines the direction change; for example,
refraction according to Snell’s law is described by multiplica-
tion with a real number, and rotation through an angle α around
the surface normal is described by multiplication with a com-
plex number of the form exp(iα) [4]. Direction changes can be
described in this way by the ComplexMetarefraction class,
which is a subclass of Metarefraction.

Examples of surface properties which have been im-
plemented by extending the Metarefractive surface-
property class, and which use extensions of the

17

Figure E.15: The panel for editing the surface property an orange object. The
top half allows selecting a surface-property class; the lower half allows editing
of parameters specific to the selected class, in this case the red (R), green (G),
and blue (B) values of the surface colour. The panel is created by the class
SurfacePropertyPanel.

ComplexMetarefraction class to describe the light-
ray-direction change they represent, include RayFlipping,
which represents surfaces that change the sign of one of
the ray-direction components tangential to the surface at
the intersection point [20]; RayRotating, which represents
surfaces that rotate the light-ray direction by an arbitrary, but
fixed, angle around the local surface normal [5]; Refractive,
which represents standard Snell’s-law refraction at the interface
between optical media with different refractive indices; and
RefractiveComplex, which represents a combination of
Snell’s-law refraction and rotation around the local surface
normal, which can be described formally as refraction at
the interface between optical media with different complex
refractive indices [4].

Appendix E.3. Adding an existing surface-property class to in-
teractive TIM

Surface properties are being selected in a panel described by the
SurfacePropertyPanel class (Fig. E.15). This panel consists
of a combo box that allows selection of the class of surface
property, and space for editing any parameters specific to the
selected surface-property class.

The following modifications of the
SurfacePropertyPanel class add an existing surface-
property class to TIM’s interactive incarnation; we
discuss these using the example of the surface prop-
erty describing a coloured surface (SurfaceColour in
optics.raytrace.surfaces).

1. Define a string constant, with a suitable name, that de-
scribes the surface property. After completion of the steps
below, the contents of this string will come up as an option
in the combo box for selecting a surface-property class. In
our example, add the lines

private static final String

SURFACE_PROPERTY_DESCRIPTION_COLOURED =

"Coloured";

2. If the surface-property class requires additional parame-
ters, define a variable that can hold the panel for edit-
ing these parameters. In our example, this panel al-
lows separate editing of the red, green and blue (RGB)
components of the surface colour, and it has a label

which helpfully points out what it is the user is edit-
ing (“Colour”). All of this can be achieved with the
LabelledDoubleColourPanel class, using the follow-
ing lines of code:

private LabelledDoubleColourPanel

colourPanel;

In the constructor of the SurfacePropertyPanel class,
create an instance of the panel for the additional parame-
ters and initialise it with a default value:

colourPanel =

new LabelledDoubleColourPanel("Colour");

colourPanel.setDoubleColour(

DoubleColour.WHITE

);

3. The setSurfaceProperty method contains a chain of
if statements that distinguishes between different surface-
property classes of the variable surfaceProperty. Into
this chain, link a case for the surface-property class to
be added. In the code block for this if statement,
add statements that make the surface-property class that
currently selected in the surface-property-class combo
box; set the panel for editing the surface-property-class-
specific parameters to reflect the properties of the variable
surfaceProperty; and ensure that the panel for edit-
ing the class-specific parameters is shown. The following
block of code does this for our example:

if(surfaceProperty instanceof SurfaceColour)

{

surfacePropertyComboBox.

setSurfacePropertyString(

SURFACE_PROPERTY_DESCRIPTION_COLOURED

);

colourPanel.setDoubleColour(

(

(SurfaceColour)surfaceProperty

).getDiffuseColour()

);

setOptionalParameterPanelComponent(

colourPanel

);

}

4. There is a similar chain of if statements in the
getSurfaceProperty method. Into that chain, add
a case that returns an instance of the new surface-
property class with the parameters from the class-specific-
parameters panel. In our case, the following lines do this:

if(surfacePropertyString.equals(

SURFACE_PROPERTY_DESCRIPTION_COLOURED

))

{

// return a shiny version of the colour

return new SurfaceColour(

colourPanel.getDoubleColour(),

// specular component; white = shiny

18

DoubleColour.WHITE

);

}

5. The remaining changes are to the internal class
SurfacePropertyComboBox, which describes the
combo box for selecting a surface-property class. First,
the code for adding the string describing the new surface-
property class to the various options available for selection
by the combo box needs to be added to the constructor.
This is done by adding the string constant describing the
surface property defined above to the array of strings
called surfacePropertyStrings. For our example,

surfacePropertyStrings.add(

SURFACE_PROPERTY_DESCRIPTION_COLOURED

);

6. Finally, in the actionPerformed method, a case needs to
be added to the chain of if statements which displays the
class-specific-parameters panel in case the user selects the
new surface-property class in the surface-property-class-
selection combo box. In our example, the following code
is suitable:

if(surfacePropertyString.equals(

SURFACE_PROPERTY_DESCRIPTION_COLOURED)

)

{

setOptionalParameterPanelComponent(

colourPanel

);

}

For a few classes of surface property it is necessary to
edit more parameters than fit into the space reserved for the
surface-property panel. The way this has been achieved in
TIM is by making the surface-property-class-specific panel
consist of a button which, when clicked, initiates editing of
the class-specific parameters. The details of how this has
been implemented can be seen by studying how the classes
describing tiled and two-sided surfaces, SurfaceTiling and
TwoSidedSurface, respectively, have been incorporated into
the SurfacePropertyPanel class.

References

[1] Hamilton, A. C. and Courtial, J., New J. Phys. 11 (2009) 013042.
[2] Courtial, J., Hamilton, A. C., Šarbort, M., and Tyc, T., Natural and unnat-

ural refraction, in preparation, 2011.
[3] Lambert, D. et al., User guide to TIM, a ray-tracing program for forbidden

optics, in preparation, 2011.
[4] Sundar, B., Hamilton, A. C., and Courtial, J., Opt. Lett. 34 (2009) 374.
[5] Hamilton, A. C., Sundar, B., Nelson, J., and Courtial, J., J. Opt. A: Pure

Appl. Opt. 11 (2009) 085705.
[6] Constable, G., Hamilton, A. C., and Courtial, J., Complex representation

of light-ray-direction changes, in preparation, 2011.
[7] Bryngdahl, O., J. Opt. Soc. Am. 64 (1974) 1092.
[8] Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W.,

and Padgett, M. J., Phys. Rev. Lett. 105 (2010) 153601.
[9] Landau, L. D. and Lifschitz, E. M., Klassische Feldtheorie, chapter VII,

Akademie Verlag, Berlin, 1992.

[10] Palmer, S. E., Vision Science — photons to pheomenology, chapter 5.3,
MIT Press, 1999.

[11] Wikipedia, Anaglyph image, http://en.wikipedia.org/wiki/

Anaglyph_image.
[12] Tyler, C. W. and Clarke, M. B., The autostereogram, in Stereoscopic Dis-

plays and Applications, volume 1258 of SPIE proceedings series, pages
182–196, Bellingham, Washington, 1990, SPIE - The International Soci-
ety for Optical Engineering.

[13] Wikipedia, Java (programming language), http://en.wikipedia.

org/wiki/Java_(programming_language).
[14] Wikipedia, Object-oriented programming, http://en.wikipedia.

org/wiki/Object-oriented_programming.
[15] Wikipedia, Lambertian reflectance, http://en.wikipedia.org/

wiki/Lambertian_reflectance, 2010.
[16] Wikipedia, Phong shading, http://en.wikipedia.org/wiki/

Phong_shading.
[17] Wikipedia, Ray tracing, http://en.wikipedia.org/wiki/Ray_

tracing_(graphics).
[18] Nelson, J., Courtial, J., and Whyte, G., Am. J. Phys. 76 (2008) 991.
[19] Hicklin, J. et al., JAMA: A Java Matrix Package, http://math.nist.

gov/javanumerics/jama/.
[20] Hamilton, A. C. and Courtial, J., J. Opt. A: Pure Appl. Opt. 10 (2008)

125302.
[21] Eclipse, http://www.eclipse.org/.

19

http://en.wikipedia.org/wiki/Anaglyph_image
http://en.wikipedia.org/wiki/Anaglyph_image
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Lambertian_reflectance
http://en.wikipedia.org/wiki/Phong_shading
http://en.wikipedia.org/wiki/Phong_shading
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
http://www.eclipse.org/

	1 Introduction
	2 Complex representation of generalised refraction
	3 A camera that can focus on almost arbitrary surfaces
	4 Teleporting surface property
	5 Visualisation of light-ray trajectories
	6 Anaglyphs
	7 Random-dot autostereograms
	8 Conclusions
	Appendix A Implementation of ray tracing in TIM
	Appendix B Source-code structure
	Appendix B.1 The optics package
	Appendix B.2 optics.raytrace.cameras
	Appendix B.3 optics.raytrace.lights
	Appendix B.4 optics.raytrace.sceneObjects
	Appendix B.5 optics.raytrace.surfaces
	Appendix B.6 optics.raytrace.GUI

	Appendix C The default non-interactive TIM
	Appendix D Adding a new scene-object class
	Appendix D.1 Adding a class representing a geometrical shape
	Appendix D.2 Defining a new scene-object class in terms of existing scene objects
	Appendix D.3 (Re)parametrising the surface of an existing shape
	Appendix D.4 Adding an existing scene-object class to interactive TIM

	Appendix E Adding a surface-property class
	Appendix E.1 Adding a general surface property
	Appendix E.2 Adding a surface property that affects only light-ray direction
	Appendix E.3 Adding an existing surface-property class to interactive TIM

