
Max-Plan
k-Institut
für Mathematik

in den Naturwissenschaften

Leipzig

Low-rank quadrature-based tensor

approximation of the Galerkin projected

Newton/Yukawa kernels

(revised version: January 2010)

by

Cristobal Bertoglio, and Boris N. Khoromskij

Preprint no.: 79 2008

Low-rank quadrature-based tensor approximation of the
Galerkin projected Newton/Yukawa kernels

Cristóbal Bertoglio∗

INRIA, CRI Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Boris N. Khoromskij†

Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany

January 18, 2010

Abstract

Tensor-product approximation provides a convenient tool for efficient numerical

treatment of high dimensional problems that arise, in particular, in electronic struc-

ture calculations in R
d. In this work we apply tensor approximation to the Galerkin

representation of the Newton and Yukawa potentials for a set of tensor-product, piece-

wise polynomial basis functions. To construct tensor-structured representations, we

make use of the well-known Gaussian transform of the potentials, and then approxi-

mate the resulting univariate integral in R by special sinc quadratures. The novelty

of the approach lies on the heuristic optimisation of the quadrature parameters that

allows to reduce dramatically the initial tensor-rank obtained by the standard sinc-

quadratures. The numerical experiments show that this approach gives tensor-ranks

close to the optimal in 3D computations on large spatial grids and with linear com-

plexity in the univariate grid size. Particularly, this scheme becomes attractive for the

multiple calculation of the Yukawa potential when the exponents in gaussian functions

vary during the computational process.

Key words: tensor-product approximation, Newton/Yukawa potentials, Gaussian integral
transform, sinc-quadrature, electronic structure calculations.

1 Introduction

In the recent years, the idea of tensor approximation of operators and functions has lead to
powerful numerical algorithms in large-scale problems of computational physics, in particu-
lar, in electronic structure calculations based on the Hartree-Fock or DFT models [6, 10, 8].
In these applications one deals with numerical computations of integral transforms which

∗E-mail: cristobal.bertoglio@inria.fr
†E-mail: bokh@mis.mpg.de

1

include Green’s kernels in R
d [5, 7, 9]. Efficient computation of such integral transforms

often appears to be the bottleneck of the traditional numerical schemes.
For example, the Hartree-Fock equation for determination of the ground state of a molec-

ular system consisting of M nuclei and N electrons is given by the following self-consistent
eigenvalue problem in L2(R3),

(FΦφi)(x) = λi φi(x),

∫

R3

φi(x)φj(x) dx = δij, i, j = 1, ..., N , (1.1)

with FΦ being the non-linear Fock operator

FΦ(·) := −1

2
∆(·) −

M
∑

ν=1

Zν

‖x − aν‖
(·) + VH(x)(·) + VE(·) ,

where the Hartree potential is defined by

VH(x) := 2

∫

R3

ρ(y,y)

‖x − y‖ dy ,

and the nonlocal exchange operator is given as

VEφ := −
∫

R3

ρ(x,y)

‖x − y‖φ(y) dy .

Here, 1/‖ · ‖ : R
3 → R corresponds to the Newton potential, and Zν ∈ R+, aν ∈ R

3

(ν = 1, ...,M) specify charges and positions of M nuclei. The electron density matrix
ρ : R

3 × R
3 → R, is given by ρ(x,y) =

∑N
i=1 φi(x)∗φi(y).

Note that both exchange and the Hartree potentials contain the 3D convolution transform
with the Newton convolving kernel, that has to be computed at each step of the iterations on
nonlinearity. Hence, these terms represent the most complicated part in the numerical treat-
ment of the Hartree-Fock equation, see, e.g., [7, 9, 10, 12]. Another popular modification of
the Hartree-Fock and Schrödinger equations is based on the so-called Lippmann-Schwinger
integral formulation, which contains also the convolution transform with the Yukawa poten-
tial e−λ‖x‖

‖x‖ (λ ∈ R+) [6, 8].
Traditionally, the Hartree-Fock equation is solved by meshless methods based on the

usage of the so-called Gaussian type orbitals which allow analytical evaluation of the basic
convolution transforms. Application of the finite element and wavelet methods [13, 6] might
be of the particular interest if the volume integral transforms can be evaluated efficiently
[13, 6, 12]. In particular, due to the recent development of tensor numerical methods, the
combination of the finite element with nonlocal problem dependent basis sets leads to the
linear scaling methods O(n) [12].

In this case, the critical step corresponds to the efficient approximation in tensor-product
format of the Galerkin representation to the Newton and Yukawa potentials on a set of
piecewise polynomial basis functions associated with the large n×n×n spatial grids. Then,
this allows for instance the accurate computation of the convolution between Newton and
density kernels with log-linear scaling in the univariate grid size n, i.e., O(n logn).

The goal of this paper is the description of an efficient black-box low tensor-rank approx-
imation algorithm applied to the FEM-Galerkin matrices of the 3D Newton and Yukawa

2

potentials over the set of piecewise polynomial tensor-product basis functions. To construct
tensor-structured representations, we make use of the well-known Gaussian transform of
the potentials, and then approximate the resulting univariate integral in R by special sinc-
quadratures [1, 2, 3, 15]. The novelty of the approach lies on the heuristic optimisation of the
quadrature parameters that allow to reduce substantially the initial tensor-rank, obtained
by the standard quadratures approximation. We describe and implement the algorithm
that computes fast the optimised sinc-quadratures adapted to the required accuracy, the
grid-size, discretisation interval, and to the type of finite elements.

The numerical experiments show that this approach gives near optimal tensor-ranks in
3D computations on large spatial grids and with linear complexity in the univariate grid
size. This scheme becomes attractive for the multiple calculation of the Yukawa potential
when the exponents λ ≥ 0 vary during the computational process. It is also important to
mention that the adaptive black-box scheme presented in this paper was successfully applied
in electronic structure calculations [8, 12, 11].

The rest of this paper is organized as follows. Section 2 introduces tensor-product formats
inspired from the finite element representation of the potentials of interest, and discusses the
analytic tensor-product decomposition applied to the Galerkin integrals of the Newton kernel
(over the computational hypercube Ω ⊂ R

3) in terms of a parametric integral over a family of
rank-1 tensors. Section 3 explains how sinc-schemes are used to discretise the aforementioned
integral representations. As the main contribution of this work, special attention is deserved
to the appropriate choice of the free parameter in the quadrature to minimize the resultant
tensor-rank with a computational cost asymptotically neglectable with respect to O(n).
Furthermore, we discuss in Sections 4.1 the extension to other classes of basis functions,
and Section 4.2 summarizes the results approximation of the Yukawa potential based on the
similar methodology. Finally, Section 5 includes a comparative analysis of the optimality
of the low rank approximations obtained by our black-box algorithm, and includes some
concluding remarks.

Throughout the paper we present several numerical illustrations on the efficiency of the
proposed numerical algorithms of low tensor-rank approximation.

2 Tensor-product representations involving 1
‖x‖

As said above, we are interested in the separable representation of the Galerkin and colloca-
tion matrices associated with the singular kernel 1

‖x‖ in R
d, and specifically, for the Newton

kernel corresponding to d = 3.
Assume that the computational domain Ω corresponds to a hypercube in R

d,

Ω = Ω1 × · · · × Ωd ⊂ R
d with Ωℓ = [aℓ, bℓ] ⊂ [0,∞) , ℓ = 1, . . . , d . (2.1)

One can apply the Galerkin method of approximation to equation (1.1) in R
d for d = 3,

with respect to certain basis functions set {ψi}, where ψi are the tensor-product piecewise
polynomials,

ψi(x) =

d
∏

ℓ=1

ψ
(ℓ)
iℓ

(xℓ) with xℓ ∈ Ωℓ, (2.2)

3

for i = (i1, . . . , id) ∈ I := I1 × · · · × Id, iℓ ∈ Iℓ = {1, ..., nℓ}.
For example, the Galerkin matrix representation of the core potential is given by a tensor

of order 6 with the entries,

Nij =

M
∑

ν=1

Zν

∫

Ω

ψiψj

‖x − aν‖
dx, i, j ∈ I.

Assume that the function ρ is already presented in the basis set {ψi}. Then, the projection-
collocation scheme to approximate the Hartree potential described in [7], requires the con-
volution product with the following 3-tensor,

G := [Gi]i∈I , Gi =

∫

Ωi

ψi(x)

‖x‖ dx where Ωi = supp(ψi). (2.3)

We consider the low rank tensor approximation of the real-valued arrays like N = [Nij],
G = [Gi], i, j ∈ I.

Definition 2.1 The canonical form of a tensor N (resp. G) is given by

N =

rN
∑

k=1

nk

d
⊗

ℓ=1

V
(ℓ)
k , nk ∈ R, V

(ℓ)
k ∈ R

n×n,

respectively,

G =

rG
∑

k=1

gk

d
⊗

ℓ=1

B
(ℓ)
k , gk ∈ R, B

(ℓ)
k ∈ R

n,

with rN (resp. rG) called a tensor-rank (Trank) and with the normalized canonical factors

V
(ℓ)
k (resp. B

(ℓ)
k), where

⊗

represents the Kronecker product of matrices or tensor-product
of vectors.

Notice that the first expression represents the compressed form of a matrix N since the
required storage size is only O(r d n2), versus O(n2d) in the full format. Moreover, linear
operations between elements in this tensor-product spaces can be performed very efficiently.
For instance, a “matrix-vector multiplication” of N with a tensor G ∈ R

I requires only
O(d rN rG n2) operations, instead of O(n2d) operations in the full format. For more details
about tensor-product formats we refer to [?, 10].

To simplify the presentation, we will start computing the tensor-product approximation of
the coefficients tensor G := [Gi]i∈I . To that end, the Newton potential has to be decomposed
in the separable tensor-product format, that can be performed by using its Laplace transform
representation, i.e.,

1

‖x‖ =
1√
π

∫

R

e−t2‖x‖2

dt =
1√
π

∫

R

d
∏

ℓ=1

e−t2(xℓ)
2

dt, ‖x‖ > 0 . (2.4)

Moreover, inserting (2.4) into (2.3) and applying Fubini’s theorem, the entries of the tensor
G can be written in the form,

Gi =
1√
π

∫

R

∫

Ω

ψi(x)e−‖x‖2t2 dx dt =

∫

R

d
∏

ℓ=1

B
(ℓ)
iℓ

(t) dt, (2.5)

4

with

B
(ℓ)
iℓ

(t) = π−1/2d

∫

Ωℓ

ψ
(ℓ)
iℓ

(xℓ)e
−x2

ℓ
t2dxℓ, (2.6)

that remains valid for ‖x‖ ≥ 0. Furthermore, since in the integral (2.5) we separate the
spatial directions, the tensor G can be expressed using the integral representation via a
family of rank-1 tensors B(t),

G =

∫

R

B(t) dt with B(t) :=

d
⊗

ℓ=1

B(ℓ)(t) and B(ℓ)(t) ∈ R
nℓ . (2.7)

Now the task is to find an appropriate quadrature to approximate (2.7) for all elements Gi

simultaneously, and with possibly small numbers of terms.

Remark 2.2 Since computation of the Galerkin matrix includes integration of the Newton
kernel over the singularity, direct best-approximation of this kernel by exponential sums [4]
cannot be applied straightforwardly, since the latter is defined only for ‖x‖ ≥ h > 0. More-
over, the coefficients used in these sums are generally not optimal for the integrated version,
hence, the error control becomes troublesome.

In the next section, we describe the black-box optimised sinc-quadratute scheme to
approximate the integral in (2.7).

3 Quadrature-based Kronecker-sum decomposition

3.1 Improved sinc-quadrature

For a given precision ε > 0, we are looking for an accurate quadrature formula on R for the
integral of a tensor-valued function (2.7), that involves as less quadrature points as possible,
i.e.,

G ≈ G(M) =
M
∑

k=−M

gk

d
⊗

ℓ=1

B(ℓ)(tk), gk, tk ∈ R, (3.1)

such that in the Frobenius-type norm

‖G − G(M)‖ ≤ ε‖G‖, (3.2)

with the tensor-rank estimated by r = 2M + 1. We intentionally do not specify the norm at
this point since the proper choice will be discussed later on.

A good possibility to construct such a quadrature can be based on the sinc methods,
which are commonly used to interpolate and integrate analytic functions on R [15, 14]. For
instance, a typical choice for the quadrature parameters

tk = khM , gk = hM , hM = C0 log(M)/M, C0 ∈ R+, (3.3)

leads to the exponential convergence in M , see [5],

‖G − G(M)‖ ≤ C e−β
√

M‖G‖ with C, β ∈ R+.

5

An improved convergence rate can be achieved by using a variable transformation t =
sinh(u), and by taking advantage of the symmetry in t of the transformed integrand in
(2.5), to obtain

G =

∫

R

cosh(u)
d
⊗

ℓ=1

B(ℓ)(sinh(u)) du ≈
M
∑

k=0

gk

d
⊗

ℓ=1

B(ℓ)(tk) := G(M). (3.4)

If both quadrature points and weights in (3.4) are choosen as

tk = sinh(khM), (3.5)

and

gk =

{

hM for k = 0
2 hM cosh(khM) for 0 < k < M,

(3.6)

with hM as above, then the quadrature (3.4)-(3.6) converges in M asymptotically as (cf. [5]),

‖G − G(M)‖ ≤ C e−βM/ log M‖G‖ with C, β ∈ R+.

Moreover, due to the symmetry of quadrature points, the tensor-rank is now estimated by
r = M + 1.

Remark 3.1 The quadrature formula proposed above allows a free choice of the parameter
C0 in Equation (3.3). This choice has to be done carefully in order to control the relative
approximation accuracy for the complete tensor (in the sense of equation (3.2), and for some
choice of the norm), while keeping the tensor-rank r as small as possible. The problem is
that on one hand, all components of the target G are practically not computable for realistic
grids (e.g., if n = O(103)), and on the other hand, the norm evaluation with the complete
tensor may be expensive.

3.2 Rank minimisation via calibration of C0

In this section we will explain in detail how to choose C0 and r in an optimal way, such that
the rank-r approximating tensor fulfills the prescribed accuracy criteria ε > 0 as in (3.2).

First, let us define the proper norm-type functional that allows the efficient control of the
approximation accuracy. Typically in multilinear algebra calculations, the Frobenius norm,
‖ · ‖F , does a job. Practical application of this norm has, however, the limitation that the
approximation criteria (3.2) requires all nd entries of the exact tensor to be evaluated, that
is exactly what we are trying to avoid.

We introduce the following error-functional which allows to estimate the relative Frobe-
nius norm,

‖G/|G| − G(M)/|G|‖∞ := maxi∈I
{

|Gi − G(M)
i |/|Gi|

}

. (3.7)

Lemma 3.2 For given ε > 0, the condition

maxi∈I
{

|Gi − G(M)
i |/|Gi|

}

≤ ε

implies
‖G − G(M)‖F ≤ ε‖G‖F .

6

Proof. It is easy to show that

‖G − G(M)‖2
F

‖G‖2
F

=

∑

i∈I |Gi − G(M)
i |2

‖G‖2
F

≤ ε2

∑

i∈I |Gi|2
‖G‖2

F

= ε2,

what proves the assertion.
The error-functional in (3.7), in the general case, still needs the knowledge of the exact

tensor G, and, moreover, it is computationally even more expensive than the cost for the exact
Frobenius norm. However, taking advantage of the specific data structure in our particular
application, we are able to calculate the good estimate of that functional efficiently by
majorizing it over a very small subset of tensor entries.

In the following, we fix Ω = [0, 1]d, d = 3, and n×n×n tensor grid with n = 2p − 1, and
use the piecewise constant basis functions

ψiℓ(xℓ) :=

{

1 if h (iℓ − 1) < xℓ < h iℓ
0 otherwise,

(3.8)

with the uniform grid spacing h = 1/n in all spatial directions. All computations are
performed in MATLAB 7.4 on a MAC-OS machine (2.93 GHz, 4 GB). In particular, for the

evaluation of B
(ℓ)
iℓ

(t) in Equation (2.6), we approximate the integral over Ωℓ for a given set of
values of t by means of the function quadv (adaptive Simpson’s rule). In fact, even though we
still cannot find an estimate for the accuracy of this approximation (as function of the global
target precision ε), numerical tests show the the overall result is not too sensitive to this
parameter, and that fixing the accuracy equal to ε (but probably too strong), we found out
that always that the error curves are controlled by the accuracy of the sinc approximation
itself or the computation of the reference elements (see Section 3.4).

10
0

10
1

10
2

10
3

10
4

10
−12

10
−11

10
−10

 t
10

0
10

1
10

2
10

3
10

4
10

−50

10
−40

10
−30

10
−20

10
−10

 t

t
k
, C

0
=4

t
k
, C

0
=3

Figure 3.1: Bimin
(t) (left), Bimax

(t) (right) and location of the quadrature points for r = 30
and different values of C0.

First, we present some numerical examples illustrating the effect of optimisation by vary-
ing the quadrature parameter C0. For fixed n = 211 − 1 = 2047, Figure 3.1 presents

7

the integrand shapes for Bimin
(t) and Bimax

(t), with imin := (1, 1, 1), imax := (n, n, n) and
t ∈ [0, 104], and positions of the quadrature points, which are influenced by the value of C0.
From (2.5) and (2.6) it is clearly seen that Bimin

(t) ≤ Bimax
(t) ∀ t, what can be observed

in Figure 3.1. Hence, due to the different decays of the integrands for different indicies i,
varying C0 > 0 provides the way to improve accuracies of the respective quadratures. Then,
we find some C0 > 0 that simultaneously minimises the relative error of the sinc-quadrature
for both integrands corresponding to imin and imax. The error control for the rest of tensor
entries relyes on the heuristic majorizing property explained as follows.

Figure 3.2 presents relative error curves for Gimin
, Gimax

and for other selected tensor
entries, corresponding two different values of C0 (to compute reference values we use 3D
quadrature rules, see Section 3.4). We emphasize here that the choice of C0 is critical in the
optimisation of the tensor-rank, since for all elements the same quadrature parameter, C0

and M , are simultaneously used.

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

Tensor rank

R
el

at
iv

e
er

ro
r

C
0
=4

10 20 30 40 50 60
Tensor rank

C
0
=3

i=1 1 1
i=1 1 2
i=1 1 2047
i=2047 2047 2047

Figure 3.2: Relative error curves for two values of C0 and different tensor entries.

We now observe that the upper error bound is simply given by either Gimin
or Gimax

,
depending on the value of C0. In fact, a perturbation of this parameter will improve the
relative accuracy in some elements and reduce it in others since all integrands are contained
between Bimin

(t) and Bimax
(t).

This majorizing property can be used for choosing the quadrature parameters appro-
priately, avoiding the computation of all tensor components: the minimal Kronecker rank
r(C0) = M + 1 can be obtained by intersecting both error curves, related to imin and imax,
at the given accuracy level ε. In other words, the task is to find C0 and the smallest M so
that

|Gimin
− G(M)

imin
| ≤ ε|Gimin

| and |Gimax
− G(M)

imax
| ≤ ε|Gimax

| .
Figure 3.3 shows the effects of applying this criteria at two accuracy levels. Notice that the

optimal values of C0 obtained for the two different accuracies are quite close. This observation
motivates us to optimize C0 on a sequence of accuracy thresholds εj, j = 1, . . . , m, with the
grading εj/εj+1 = O(10) and ε1 = 10−1. Therefore, we minimize the Kronecker rank for
each εj and provide the resulting optimal C0 = C0(εj) as an initial guess for εj+1, until the

8

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

Tensor rank

C
0
=4.18

R
el

at
iv

e
er

ro
r

10 20 30 40 50 60
Tensor rank

C
0
=3.765

Figure 3.3: Optimal configurations of the error curves for accuracies ε = 10−1 (left) and
ε = 10−6 (right) (dashed lines).

desired accuracy εm is achieved. This strategy avoids to deal with unnecessary higher ranks
if the initial value of C0 is far from the optimal one.

Finally, Table 3.1 summarizes the results for various values of n and ε.

ε p = 11 p = 13 p = 15
10−4 3.61 , 30 3.9 , 34 4.19 , 37
10−6 3.765 , 49 4.04 , 53 4.28 , 58
10−8 3.947 , 73 4.189 , 79 4.43 , 85
10−10 4.161 , 97 4.409 , 105 4.65 , 112

Table 3.1: Optimal values of (C0, r) for different grid sizes n = 2p − 1.

3.3 Near-far fields decomposition (NFFD)

We can further reduce the tensor-rank using, instead of Gimin
in the optimisation of C0, the

tensor element Gĩmin
, with ĩmin = (1, 1, 2) (the one with the second lowest decay of B in t).

Thus, the task is now to find a new pair (C̃0, M̃), so that for a given accuracy ε we have

|G(M̃)
i − Gi| ≤ ε |Gi| for i 6= imin . (3.9)

Respectively, the value G(M̃)
imin

has to be corrected as

|(G(M̃)
imin

+ δGimin
) − Gimin

| ≤ ε |Gimin
| with δGimin

:= G(M)
imin

− G(M̃)
imin

. (3.10)

Now we express the new compressed tensor G̃(M̃) with the Kronecker rank r̃ = M̃ + 2 as

G ≈ G̃(M̃) =

M̃
∑

k=0

g̃k

d
⊗

ℓ=1

B(ℓ)(t̃k) + δGimin

d
⊗

ℓ=1

e
(ℓ)
1 =

M̃+1
∑

k=0

ḡk

d
⊗

ℓ=1

B̄
(ℓ)
k (3.11)

9

with

ḡk =

{

g̃k for 0 ≤ k ≤ M̃

δGimin
for k = M̃ + 1

and B̄
(ℓ)
k =

{

B(ℓ)(t̃k) for 0 ≤ k ≤ M̃

e
(ℓ)
1 for k = M̃ + 1 ,

(3.12)

where g̃k and t̃k are computed by formula (3.6) and (3.5) respectively with parameters C̃0

and M̃ and
{

e
(ℓ)
1

}

iℓ
=

{

1 iℓ = 1

0 otherwise .
(3.13)

In Figure 3.4 we compare the error curves with optimal Kronecker rank for the two situa-
tions, with and without NFFD in the optimisation procedure. Note that the C̃0-quadrature
applied to Gimin

converges much slower than for the other entries, indicating the need of a
correction. Table 3.2 shows some optimal values for C̃0 and r̃ obtained with the algorithm
based on the NFFD strategy.

10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

Tensor rank

C
0
=3.765

R
el

at
iv

e
er

ro
r

10 20 30 40 50 60
Tensor rank

C
0
=2.687

Figure 3.4: Optimal configurations without (left) and with (right) NFFD for ε = 10−6.

ε p = 11 p = 13 p = 15
10−4 2.88 , 23 3.195 , 27 3.46 , 30
10−6 2.687 , 32 2.97 , 37 3.26 , 41
10−8 2.547 , 42 2.816 , 48 3.083 , 54
10−10 2.461 , 51 2.724 , 58 2.983 , 65

Table 3.2: Optimal values of (C̃0, r̃) for different grid sizes n = 2p − 1, and ε > 0.

3.4 Black-box algorithm for tensor-rank optimisation

In this section, we will summarize the particular algorithm realizing the optimized Tensor
decomposition of the Galerkin projected Newton kernel (TGN).

10

Algorithm TGN. Given the computational domain Ω = [0, b]3, the one-dimensional grid
size n, the target accuracy ε∗ > 0, and the level number m = ⌈log10 1/ε∗⌉:

1. For ĩmin = (1, 1, 2) and imax = (n, n, n), compute the reference values for Gĩmin
and

Gimax
by approximating the integral (2.3) through a quadrature over the domain Ωi,

i = ĩmin, imax (e.g., by a trapezoidal rule), with an accuracy higher than ε∗.

2. Initialize C0 = 3, δC0 = 0.5 and M̃0 = 3 (recommended). For j = 1, ..., m:

(a) Set εj = 10−j, p = 1.

(b) Find M j
1 ,M

j
2 > M̃ j−1 such that

|Gĩmin
− G(Mj

1
)

ĩmin
| ≤ εj|Gĩmin

| and |Gimax
− G(Mj

2
)

imax
| ≤ εj |Gimax

|,

with

G(M)
i =

M
∑

k=0

gk

d
∏

ℓ=1

B
(ℓ)
iℓ

(tk),

gk, tk computed using quadrature formula (3.5)-(3.6) with hM = C0 log(M)/M ,

and B
(ℓ)
iℓ

(tk) evaluated by approximating integral in (2.6).

(c) Compute sp = sign{M j
1 −M j

2} and if p = 1, set s0 = s1. Then:

i. If sp = 0, set M̃ j = M j
1 , j = j + 1, and p = 1 and go to Step 2b, or continue

with Step 3 if j = m.

ii. If sp = sp−1 6= 0, set C0 = C0 + spδC0, p = p+ 1 and repeat Step 2b.

iii. If sp 6= sp−1, set δC0 = αδC0, C0 = C0 + spδC0, p = p+ 1 and repeat Step 2b
(with, e.g., α = 0.2).

3. Let M̃ := M̃m and C̃0 = C0 be the optimal quadrature parameters computed at Step

2. Set imin = (1, 1, 1), and calculate the correction δGimin
= G(M∞)

imin
−G(M̃)

imin
, with G(M∞)

imin

computed with the quadrature parameters C̃0, and choosing M∞ large enough in order
to satisfy

|G(M∞)
imin

− G(M∞−1)
imin

| ≤ ε∗|G(M∞−1)
imin

|.

4. Finally, compute the canonical vectors of the tensor G̃(M̃) from Equations (3.11)-(3.13),
with the quadrature parameters C̃0, M̃ , δGimin

and the resulting tensor-rank r̃ = M̃+2.

We would like to estimate now the computational complexity of Algorithm TGN. For
this purpose, we assume that each evaluation of the function B

(ℓ)
iℓ

(t) costs O(1). The result
is summarized in the following Lemma.

Lemma 3.3 For given ε∗ > 0, and with fixed r̃, the total computational cost of Algorithm
TGN can be estimated by

O
(

d r̃ n+ dr̃2
)

= O
(

d n log 1/ε∗ + d log2 1/ε∗
)

.

11

Proof. It is clear that Step 1 has a cost O(1), and that Step 4 is of O(d r̃ n) = O (d n log 1/ε∗)
complexity in view of the estimation r = O (log 1/ε∗) stipulated by the sinc-quadratures.
However, for both Steps 2 and 3 we have to proceed more carefully.

Observing that for going from j → j + 1 in Step 2, M j
1 and M j

2 are searched starting
from M̃ j−1, the complexity of Step 2 can be estimated by the expression

O







m
∑

j=1

Nj2 d

Mj
1,2
∑

i=Mj−1

1,2

i






, (3.14)

with Nj the number of repetitions of the Step 2b (typically Nj ≤ 10, equivalent to p in the
algorithm explanation) and M j

1,2 = max{M j
1 ,M

j
2}.

Based on the exponential convergence of the quadrature presented in Section 3.1 and
observed in the numerical experiments, we can assume that there is a bound for the rank in
terms of the accuracy level j of the type

M j
1,2 ≤ M̄ j := C̄

(

1 +
M̃ − 1

m
j

)

, C̄ = O(1). (3.15)

Then, replacing this expression in equation (3.14) and computing the double sum we obtain

N d
(

M̃2 +mM̃ +m− 1
)

< N d log2 1/ε∗, (3.16)

since m = O(M̃) = log 1/ε∗.
Analogously (but simpler), for Step 3 the complexity can be (roughly) estimated as

d/2
(

M2
∞ +M∞ − M̃2 − M̃

)

< d r̃2 = O
(

d log2 1/ε∗
)

,

assuming that M∞ = O(M̃), which completes the proof.

We summarize some numerical results in Table 3.3. There, tref , topt and tass correspond to
the computing time for all reference values, rank optimisation and assembly of the canonical
vectors, respectively.

We first note that tref is neglectable with respect to the others, except for very high
accuracies due to the quadrature method used (MATLAB’s triplequad with an adaptive
Lobatto scheme in our case). However, these high accuracies are not used in practice, since
the computation of the Frobenius norm can only be peformed until machine precision, i.e.,
ε2
∗ ≈ 10−16.

Note that the behavior O(n) is also verified for tass. However, it remains practically
invariable by increasing the rank r̃, that happens due to the vectorized format of the MAT-
LAB’s function quadv whereby the evaluation of B

(ℓ)
iℓ

(tk), for k = 1, . . . ,M , is performed.
This has also an impact on topt, which grows in practice as O(r̃).

12

n ε∗ r̃ tref [s] topt [s] tass[s]
500 10−2 12 0.06 0.41 0.27

10−5 24 0.06 0.85 0.28
10−11 49 21 1.7 0.29

2000 10−2 14 0.06 0.5 1
10−5 28 0.06 1.2 1
10−11 57 21 2.3 1.1

8000 10−2 16 0.06 0.7 4.1
10−5 32 0.06 1.5 4.3
10−11 64 21.2 2.7 4.5

32000 10−2 18 0.06 0.64 16.9
10−5 36 0.06 1.7 17.2
10−11 69 20.8 3.1 18.38

Table 3.3: Complexity results for the Algorithm TGN.

4 Generalisation of the method

4.1 Extension to other types of basis functions

When solving equation (1.1) by the finite element method the set of Galerkin continuous
piecewise polynomial basis functions is usually required. Thus, we apply our scheme in a
straightforward way to Gi but now using tensor-product piecewise linear polynomials in (2.2),

ψiℓ(xℓ) =



























xℓ − (iℓ − 1)h

h
if (iℓ − 1) h ≤ xℓ < iℓ h

(iℓ + 1) h− xℓ

h
if iℓ h ≤ xℓ ≤ (iℓ + 1) h

0 otherwise,

(4.1)

for the index set iℓ ∈ Iℓ = {−n, . . . , n}, corresponding to the computational domain (−1, 1)3.
As said in the first sections, in electronic structure calculations it is of special interest to

compute the Galerkin matrix N ∈ R
I×I

N = [Nij]i,j∈I , Nij =

∫

Ω

ψi(x)ψj(x)

‖x‖ dx , (4.2)

using the basis functions in (4.1). Given the accuracy ε > 0, the optimised quadrature
parameters for both tensors G and N are presented in Table 4.1.

Notice that the extension of our scheme to the case of high order polynomials does not
change the basic concept of the method.

13

ε G N
10−4 3.365 , 29 3.53 , 30
10−6 3.39 , 43 3.52 , 46
10−8 3.453, 63 3.582 , 66

Table 4.1: Optimal values of (C̃0, r̃) for the case of Galerkin tensors G and N via piecewise
linear basis functions with n = 2047 and Ω = [0, 1]3.

4.2 Extension to the Yukawa potential

As it was mentioned in the introduction, we would like also to approximate in tensor product
format the Yukawa kernel integrated over a tensor-product set of basis functions as,

Y =

∫

Ω

e−λ‖x‖

‖x‖ ψi(x) dx , λ > 0, i ∈ I. (4.3)

Analogous to the case of Newton kernel, we apply the gaussian integral to the Yukawa kernel
in the form [8],

e−λ‖x‖

‖x‖ =
1√
π

∫

R

e−‖x‖2t2−(λ/2t)2 dt =
1√
π

∫

R

e−(λ/2t)2
d
∏

ℓ=1

e−t2(xℓ)
2

dt , x ∈ Ω . (4.4)

Inserting (4.4) into (4.3), and applying the Fubiny theorem, we obtain
∫

Ω

e−λ‖x‖

‖x‖ ψi(x) dx =

∫

R

e−
λ2

4t2 Bi(t) dt , (4.5)

with B = [Bi]i∈I being the same tensor as in (2.7).

Although (4.5) differs from (2.7) only by the factor e−
λ2

4t2 , the respective quadrature may
converge much slower because the integrand has a sharp decay as t → 0. The numerical
experiments show that in this case it is more preferable to use the exponential-type nonsym-
metric sinc-quadrature with the following parameters [8],

t
(M)
k = exp(khM) and g

(M)
k = hM exp(khM), hM = C0 log(M)/M, (4.6)

for −M ≤ k ≤M and r = 2M + 1.
Table 4.2 shows the results obtained for the Yukawa potential by repeating the Algorithm

TGN presented in Section 3.4, but now with quadrature formula (4.6) and r̃ = 2M̃ +1. It is
important to note that quadrature (4.6) generates many small components for large values of
λ, and hence some of them can be simply eliminated keeping the same accuracy in terms of
the Frobenius norm with respect to the target tensor. This filtering of the canonical vectors
implies a further tensor-rank reduction r̃ → r̂, with r̃ > r̂.

5 On the rank optimality and conclusions

It is interesting to analyze if the rank obtained through the aforementioned heuristic method
is close to the quasioptimal one obtained by the algebraic Tucker/canonical decompositions.

14

ε λ = 0.1 λ = 1
10−4 2.935 , 32→24 2.725 , 42→26
10−6 2.637 , 52→38 2.515 , 60→37
10−8 2.478 , 68→51 2.395 , 78→48

Table 4.2: Optimal values of (C̃0, r̃ → r̂) for n = 2047 and λ = 0.1, 1.

For this purpose, we generate (with Algorithm TGN) the low rank tensors with higher
accuracy ε = 10−9, and apply algebraic rank optimisation.

Figure 5.1 illustrates the tensor rank vs. relative error for best algebraic recompressions
via the multigrid orthogonal Tucker decomposition [10] and for those obtained with NFFD
applied to our sample tensor. In fact, it is known that the rank-r orthogonal Tucker model
provides the lower bound for the canonical rank R, i.e., r ≤ R.

0 10 20 30 40
10

−8

10
−6

10
−4

10
−2

10
0

Tensor rank

R
el

at
iv

e
er

ro
r

0 10 20 30 40 50
Tensor rank

Sinc NFFD + filtering
Tucker approx.

Sinc NFFD
Tucker approx.

Figure 5.1: Rank recompression results for the sample tensor with n = 2047 and Ω = [0, 1]3

for both the Newton (left) and Yukawa (λ = 1) potentials.

Finally, we conclude that this work presents a methodology to approximate L2-Galerkin
projections of Green kernels in R

3 onto the set of tensor-product basis functions, through
canonical tensor-product sums. We apply analytic quadrature-based numerical decomposi-
tions followed by the algebraic optimizations, leading to almost optimal tensor ranks. The
computation procedure is represented as the black-box scheme whose complexity scales lin-
early in the univariate grid size, O(n).

The analytic step allows to decompose the volume integral representation of our Green’s
kernels over Ω ∈ R

d into another integral of a family of rank-1 tensors (discrete separable
functions) over R. Then, we use improved sinc-quadratures to approximate this integral
numerically. Here, the choice of the free parameter C0 in the quadrature is crucial to reduce
the number of evaluation points to reach the target accuracy, uniformly for all tensor entries.

After the description of the rank minimization scheme, we present optimal values for C0

and tensor rank r for different grid sizes, and different sets of basis functions. The numerical

15

results encourage to further applications of this strategy to other type of Green kernels, like
the Yukawa potential. Concerning the computational cost, the optimization involves only a
small number of evaluations of some tensor elements. Therefore, the main cost of our scheme
is (asymptotically) dominated by the calculation of the canonical vectors constituting the
complete tensor from the optimized quadrature, that is of order O(n). The latter step is
well paralellisable since the tensor entries can be computed independently. In practice, only
few seconds are required for the complete rank decomposition on large spacial grids up to
n = 32000.

Algorithm TGN was already successfully applied in numerical computations of various
3D convolution integrals [7] included in the Fock operator of the nonlinear Hartree-Fock
equation in 3D, see [9, 10, 11, 12]. In particular, this includes fast multiple computations of
the Coulomb and exchange convolution integrals in the tensor-structured numerical methods
for solving the ab initio Hartree-Fock equation on large n × n × n Cartesian grids, in the
range n ≤ 104, see [12].

Acknowledgements

The authors are thankful to Prof. Wolfgang Hackbusch (MPI MiS, Leipzig) for valuable
discussions on the topic. We appreciate Venera Khoromskaia (MPI MiS, Leipzig) for pro-
viding the compression to Tucker format, and Marco Müller (University of Leipzig) for the
assistance in testing Algorithm TGN.

References

[1] I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij. Data-Sparse Approximation to
Operator-Valued Functions of Elliptic Operator. Math. Comp. 73 (2003), 1297-1324.

[2] I.P. Gavrilyuk, W. Hackbusch and B.N. Khoromskij. Data-Sparse Approximation to a
Class of Operator-Valued Functions. Math. Comp. 74 (2005), 681-708.

[3] I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij. Tensor-product approximation
to elliptic and parabolic solution operators in higher dimensions. Computing 74 (2005),
131-157.

[4] W. Hackbusch Entwicklungen nach Exponentialsummen. Preprint 4/2005, MPI-MiS
Leipzig.

[5] W. Hackbusch and B.N. Khoromskij. Low-rank Kronecker product approximation to
multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate
functions. Computing 76 (2006), 177-202.

[6] R.J. Harrison, G.I. Fann, T. Yanai, Z. Gan, and G. Beylkin. Multiresolution quantum
chemistry: Basic theory and initial applications. J. of Chemical Physics, 121 (23): 11587-
11598, 2004.

16

[7] B. N. Khoromskij. Fast and Accurate Tensor Approximation of Multivariate Convolution
with Linear Scaling in Dimension. Preprint 36/2008, MPI MiS Leipzig (J. Comp. Appl.
Math., accepted).

[8] B.N. Khoromskij. On Tensor Approximation of Green Iterations for Kohn-Sham Equa-
tions. Comput. and Visualization in Sci., 11 (2008) 259-271.

[9] B.N. Khoromskij and V. Khoromskaia. Low Rank Tucker-Type Tensor Approximation
to Classical Potentials. Central European J. of Math. 5(3) 2007, 1-28.

[10] B.N. Khoromskij and V. Khoromskaia. Multigrid tensor approximation of function
related multi-dimensional arrays. SIAM J. on Sci. Comp., 31(4), 3002-3026 (2009).

[11] B. N. Khoromskij, V. Khoromskaia, S. R. Chinnamsetty, H.-J. Flad. Tensor Decompo-
sition in Electronic Structure Calculations on 3D Cartesian Grids. J. of Comput. Phys.
228 (2009), 5749-5762.

[12] B.N. Khoromskij, V. Khoromskaia, and H.-J. Flad. Numerical Solution of the Hartree-
Fock Equation in Multilevel Tensor-structured Format. Preprint 44/2009, MPI MiS
Leipzig (submitted).

[13] C. Le Bris. Computational chemistry from the perspective of numerical analysis. Acta
Numerica (2005), 363 - 444.

[14] J. Lund and K.L. Bowers. Sinc Methods for Quadrature and Differential Equations.
SIAM, Philadelphia, 1992.

[15] F. Stenger. Numerical Methods Based on Sinc and Analytic Functions. Springer Verlag,
1993.

17

	Introduction
	Tensor-product representations involving 1"026B30D x"026B30D
	Quadrature-based Kronecker-sum decomposition
	Improved sinc-quadrature
	Rank minimisation via calibration of C0
	Near-far fields decomposition (NFFD)
	Black-box algorithm for tensor-rank optimisation

	Generalisation of the method
	Extension to other types of basis functions
	Extension to the Yukawa potential

	On the rank optimality and conclusions

