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Abstract

Semi-inclusive hadron-production processes are becomipgrtant in high-energy hadron reac-
tions. They are used for investigating properties of quzairon matters in heavy-ion collisions,
for finding the origin of nucleon spin in polarized leptoneteon and nucleon-nucleon reactions,
and possibly for finding exotic hadrons. In describing thdrba-production cross sections in
high-energy reactions, fragmentation functions are égdguantities. A fragmentation function
indicates the probability of producing a hadron from a partothe leading order of the running
coupling constantrs. Its Q% dependence is described by the standard DGLAP (Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi) evolution equationshich are often used in theoretical and ex-
perimental analyses of the fragmentation functions andioutating semi-inclusive cross sec-
tions. The DGLAP equations are complicated integndedéntial equations, which cannot be
solved in an analytical method. In this work, a simple mettsoeimployed for solving the evo-
lution equations by using Gauss-Legendre quadrature fduating integrals, and a useful code
is provided for calculating th@? evolution of the fragmentation functions in the leadingeard
(LO) and next-to-leading order (NLO) a@fs. The renormalization scheme i8S in the NLO
evolution. Our evolution code is explained for using it ine@nstudies on the fragmentation
functions.
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Nature of problem:

This program solves timelike DGLAPR? evolution equations with or without next-to-leading-
orderas effects for fragmentation functions. The evolved functionsloa calculated fobf, DY),

D{. Dj, DY Dg, Dg, D, Dg, Dy, andD}! of a hadrorh.

Solution method:

The DGLAP integrodierential equations are solved by the Euler’s method for ifieréntiation

of In Q? and the Gauss-Legendre method for xhietegral as explained in sectibh 4.
Restrictions:

This program is used for calculating @volution of fragmentation functions in the leading order
or in the next-to-leading order afs. Q? evolution equations are the timelike DGLAP equations.
The double precision arithmetic is used. The renormabrascheme is the modified minimal
subtraction schemeV(S). A user provides initial fragmentation functions as thérsutines
FF_INI and HQFF in the end of the distributed code_.BIGLAP.f. In FFE.DGLAP.f, the subrou-
tines are give by taking the HKNSOZ7 (2) functions as an exaropthe initial functions. Then,
the user inputs kinematical parameters in the file setugsigixplained in sectidn 5.2.

Running time:

A few seconds on HP DL360G5-DC-X5160.

1. Introduction

In the recent years, semi-inclusive hadron-productiongsees are becoming more and more
important for studying internal structure of hadrons andvyeion reactions. There are three
ingredients for calculating their cross sections in higlergy reactions with large transverse mo-
menta for produced hadrons. The first part is on parton bigidn functions (PDFs) of initial
hadrons, the second is on partonic cross sections, anditdeigton fragmentation functions
(FFs) for describing production of hadrons |(1; 2] 3} 4; 5).e ferturbative aspect of quantum
chromodynamics (QCD) has been established for many presess that the elementary par-
tonic cross sections of the second part can be accuratelylatdd in high-energy processes.
The PDFs of the first part have been extensively investigaigidly by inclusive deep inelastic
scattering. Except for extreme kinematical conditions,uhpolarized PDFs are generally well
determined. For example, one may look at Ref. (6) for theatiith of unpolarized PDFs, Refs.
(7;18) for polarized PDFs, and Refs. (9; 10) for nuclear PDBscause the PDF and partonic
cross section parts are relatively well known, the onlyéssithe accuracy of the FFs of the third
part for calculating precise semi-inclusive cross sestion

The first estimate for uncertainties of the FFs was done in 28f and its results indicated
that they have large uncertainties especially for so calisthvored fragmentation functions.
This fact could add ambiguities to calculated cross sestafrhigh-energy hadron productions
suchasgg+ g —» n+ XandA+ A" —» h+ X at RHIC and LHC. Here, wherg andr indicate
a polarized proton and a pion, respectivedyindicates a sum over all other hadrons created in
the reactionA and A’ are nuclei, andh is a produced hadron. Furthermore, the FFs could be
also used for other studies in searching for exotic hadrgmting characteristic éierences in
favored and disfavored FFs as pointed out in Ref. (3).
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These topics suggest that the FFs should be one of most iamp@piantities in describing
high-energy hadron reactions. There are two importanaistes in the FFs. One is the energy
fraction x (or often denoted ag for a produced hadron from a parton and the other is the hard
scale@?. Definitions of these quantities are given in SE¢. 2. Xkdependent functions are
determined mainly from experimental measurements of @egqiositron annihilation processes
e + & — h+ X by a global analysis (1;/ 2/ 3; 4). On the other ha@d, dependence can
be calculated in perturbative QCD. The standard equati@nddscribingQ? variations are the
timelike DGLAP evolution equations (11).

The evolution equations are complicated integrdedéntial equations, which cannot be solved
by an analytical method, especially if higher-order caiicets are included in the equations.
They are solved by numerical methods. A popular method istothe Mellin transformation
(12), in which@? evolution of moments for the FFs is analytically calculaged resulting mo-
ments are then transformed ink@lependent functions by the inverse Mellin transformat®ne
of other numerical methods is to solve théntegral part by dividing thex axis into small steps
for calculating integrals (13; 14), which is so called brtdece or Euler method. Of course, the
integral could be calculated by a better method such as thpssin method or Gauss-Legendre
quadrature. Another approach is to expand the FFs and DGIphfirgy functions in terms
of orthogonal polynomials such as the Laguerre polynon{it#3. Advantages and disadvan-
tages of these numerical methods are explained in Ref.{T@re are also recent studies on the
numerical solution (17).

Although the FFs are important, it is unfortunate that ndwismde is available in public for
calculatingQ? variations of the FFs. For example, the FFs are calculatedtieoretical model
(18) at a typical hadron scale of sm@f. In order to compare with the FFs obtained by global
analyses or with experimental data, one needs to calchla@?tevolution. However, one should
make one’s own code or rely on a private communication foaiolig a code since no public
code is available, although tt@? evolution is often used also in theoretical and experinlenta
analyses. In this work, we explain our method for solving E&LAP evolution and a useful
code is supplied for public use.

This paper consists of the following. The fragmentationctions and their kinematical
variables are introduced in Séé. 2, and evolution equationexplained in SeE] 3. Our numerical
method is described in Sdd. 4 for solving the DGL&Pevolution equations, and a developed
evolution code is explained in Se] 5. Numerical resultssai@vn in Sec[16 by running the
evolution code, and our studies are summarized in[Sec. 7.

2. Fragmentation functions

Fragmentation functions are given in the electron-posiatonihilation process* + e —
h + X, whereh indicates a specific hadron. The process is described firatdaycreation by
e'e” — gqq and a subsequent fragmentation, namely a hatirneation from the primary quark
or antiquark. The fragmentation function is defined by thdrba-production cross section of
e +e — h+Xas(19):
1 do(ete” — hX)
Otot dx ’

F'(x, Q) = (1)

whereo is the total hadronic cross section. The varia®feis the virtual photon oZ° mo-
mentum squared ie*e” — y (or Z°) and it is expressed by the center-of-mass eneygyas



Q? = s. The variablexis the hadron enerdg, scaled to the beam energys/2, and it is defined
by the fraction:

B 2
X = \/5/2_\/@. (2

The fragmentation process is described by the summatioadrfoim productions from pri-
mary quarks, antiquarks, and gluons{ (19):

F'(x @) = ) Ci(x ag) @ DI(x Q). 3)

whereCi(x, ag) is a codficient function, and it is calculated in perturbative QCDI)(20 he
factoras(Q?) is the running coupling constant, and its expression ismgin Appendix A for the
leading order (LO) and next-to-leading order (NLO). Thediion Dih(x, Q?) is the fragmentation
function from a partom (= u, d, s, - -+, @) to a hadrorh, and it is the probability of producing
the hadrorh, in the LO ofas, from the partori with the energy fractionx and the momentum
square scal&?. The notatior® indicates a convolution integral defined by

(Weow= [ 1 = f(y)g(g). @)

The fragmentation function is formally given by the expresg21)
D(x) = f - T [y (0] i@y 0] . X) (X |44 (0) | 0)]. (5)

wherek is the parent quark momentum, the lightcone notation is ddfbya* = (a° + a3)/ V2,
the variablex is then given byx = p /k* with the hadron momentum, and_L is the direction
perpendicular to the third coordinate. A gauge link needsetantroduced in Eq.[{5) so as to
satisfy the color gauge invariance. It should be, howewatedthat a lattice QCD calculation is
not available for the FFs because the operator-produdsesipn method cannot be applied due
to the fact that a specific hadrarshould be observed in the final state with the momenpym

An important sum rule of the FFs is on the energy conservati®imce the variable is
the energy fraction for the produced hadron, its sum wedjbtethe fragmentation functions,
namely the sum of their second moments, should be one.

ZMP:ZfOldxxDr(x,Qz)zl. (6)
h h

The fragmentation function should vanish kinematically at1 and it is expected to be a smooth
function at small, so that it is typically parametrized in the form (1] 2| B; 4)

DI'(x, Q2) = N'x' (1 - x!, (7)

at fixedQ@? (= Qg). Current experimental data are not accurate enough to firghrmomplicated
x-dependent functional form. In order to calculate the fimcDih(x, Q?) at arbitraryQ?, one
should rely onQ? evolution equations and the standard ones are the DGLAPtiegaan the
next section.



3. Q? evolution equations

The FFs depend on two variablgsand Q°. The x-dependence is associated with a non-
perturbative aspect of QCD, so that the only way of calcupii theoretically is to use hadron
models, because the lattice QCD estimate is not availablihéoFFs. There are some hadron-
model calculations (18) by using the expression Eq. (5) ahallshadronicQ? scale. On the
other handx-dependent functions are determined by global analysegefenental data mainly
one +e — h+ X (1;12;.3;4). In the model calculations and also in the globallgses, the)?
dependence or so called scaling violation is calculateeitupbative QCD.

The Q? dependence of the FFs is described by the DGLAP evolutioatens in the same
way with the ones for the PDFs with slight modifications intsiplg functions. They are gener-
ally given by (11| 19)

Pl ) = 24D EﬁaamM®D“aQ%+%@aaa®DMQﬂ,
0 2 Ols(Q ) h 2 h 2
9ln Q2 g( Q)= Pgg(X, as) ® Z Dq?(X, Q%) + Pgg(X, as) ® Dg(X, Q )} , (8)
j

where D}, (x, Q) denotes the fragmentation-function combinatf(x, Q°) + Dg(x, Q°). If
the sum is taken over the flavor, it becomes the singlet fand@ (x, Q%) = X4[D§(x. Q%) +

D%(X, Q?)], andN is the number of quark flavors. The flavor nonsinglet evohytfor example,
for q — qtype function is described by

0 as(Q)
In Q2 q,( Q)= 2n

. Paalxa9 @D (x @), (©)
i

WhereDh (x, Q%) = Df (x, Q%) — D2 (x, @?). The functionsPyq(X), Pgq(X), Pgg(X), andPyy(x) are
time- Ilke spllttlng functlons an@.J(x) describes the splitting probability that the parfosplits
into i with the momentum fractior. It should be noted thd®yy(x) andPgg(X) are interchanged
in the splitting function matrix for the PDFs. The LO splitgj functions are the same as the
space-like ones; however, there ar@atiences between them in the NLO and higher orders
(19;122). Actual expressions of the LO splitting functions provided in Appendix B. The NLO
expressions should be found in Ref./(19) because they dverdangthy.

The DGLAP equations in Eq.[J(8) are coupled integrfiediential equations with compli-
catedx-dependent functions especially if higher-ordgrcorrections are taken into account. It
is obvious that they cannot be solved in a simple analyticahf The convolution integral is
generally expressed by a simple multiplication of Mellinments, so that the the equations are
easily solved in the Mellin-moment space. However, thersweMellin transformation should
be calculated by a numerical method in any case to obtain-ttependent function. Here, we
solve the DGLAP equations directly in thespace by calculating theintegral in a numerical
way. Advantages and disadvantages of both methods aresdestin Ref. (16).



4. Numerical method for solving Q? evolution equations

The integro-diferential equations of Eq4.](8) amdl (9) are solved in thewotig way. Scaling
violation (Q? dependence) of the FFs is roughly given bydf) which is defined as the variable
t:

t=InQ% (10)

Because thé dependence is not complicated in the FFs, we do not have ta ssphisticated
method for solving the dlierentiation. The following simple method is used for sovthe

differentiation:
df(t)  f(tna) - f(t)

dt At '
Here, the variableis divided intoN; steps with a small intervait. This method could be called
Euler method (23). It is also possible to use the Euler methiotthe integration part by dividing
the x region intoNy steps with the intervadx (13). However, it is more desirable to use a better
method since thex dependencies of the FFs and splitting functions are notlsimigere, the
Gauss-Legendre method is used for calculating the integealx:

(11)

1 1-xo NoL
[ g0 dx= 252 Y watw. (12
o k=1

wherex, = [1 + Xo + (1 - Xo)X]/2 with the zero points; of the Gauss-Legendre polynomials
in the region-1 < x, < +1, w, are the weights (24), andg_ is the number of Gauss-Legendre
points. In our previous works (13;/14), simpler methods aediufor calculating the integral by
the Euler method and the Simpson’s one. Here, we change tthedfor the Gauss-Legendre
one for getting more accurate numerical results.

In the following, only the nonsinglet evolution in Ed.] (9)dsscussed because an extension
to the general evolution in EJ.](8) is obvious just by writithgwn two coupled equations in the
same way. Substituting Eq§._{11) ahdl(12) into the nonsirgjeation of Eq.[{]9), we obtain

NoL

ag(ty) 1— X 1 Xm
Df (¥ tre1) = D (tm. t) + At—-2 = ;wk < Pao (%) DG, (z,t€)~ (13)
J =

In previous codes of? evolution equations in Refs|_(13;/14), an option is provittedivide
Inxgj, wherexg; is the Bjorken scaling variable, into equal steps insteatinefarxg; steps
because the smaXg; region is often important in discussing deep inelasticcstme functions.
However, the smalk part is not as reliable as the PDF case because experimedatio not
exist at very smalk and because of theoretical issues on finite hadron massessamdmation
effects. The Gauss-Legendre points are taken by considemningrarx scale atx > 0.1 and
by the logarithmicx scale atx < 0.1. If the initial function is supplied at certai@? (= Q3), the
evolution fromt; = InQj to the next point, = t; + At is calculated by Eq[{13). Repeating this
step, we finally obtain the evolved FFtat; = In Q.

The most important and time-consuming part is to calculagextintegrals by the Gauss-
Legendre quadrature. For the integral from the minimigrto 1, the splitting function®q- ()
are first calculated &l points ofx, and they are stored in an array. Then, the fragmentation
functions are also calculatedatandxy, and they are stored in a two-dimensional array. These
arrays are used for calculating the Gauss-Legendre sum.ifB}
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5. How to run the Q? evolution code

We made the numerical evolution code of the FFs by the metiamdissed in the previous
section. Its main code (EFBGLAP.f), a test program (sample.f), and an example of tpatfile
(setup.ini) could be obtained upon email request (25). & hee three major steps for calculating
the Q? evolution of the FFs:

Initial FFs are supplied in the subroutines, I’ for gluon (g) and light-quark, d, s, u,
d, ) functions and HQFF for heavy-quarg () functions.

Input parameters for the evolution are supplied in theddwup.ini. These parameters
are used for calculating two-dimensionalgnd Q?) grid data for the FFs in the ranges
Xmin < X< landQ3 = Q2. < Q® < Q..

As indicated in the test code (sample.f), the evol@dalue (Q2) and the value of (X)
should be supplied for calculating the evolution. The grddadcreated in the step 2 are
used for this final step calculation. Therefore, output fioms can be obtained at various
x and Q? points without repeating th@? evolution calculations as far as they are within
the rangesmin < X < 1 andQ < Q% < Q2.

5.1. Main evolution code

The mainQ? evolution code (FEDGLAP.f) is rather long, so that only the major points are
explained. First, one needs to supply the initial FFs in thrcutines FENI and HQFF, which
are located in the end of EBGLAP.f. The subroutine FfNI is for gluon (g) and light-quark
(u, d, s, 4, d, ) functions, and HQFF is for heavy-quark f) functions. As an example, the
HKNSO07 functions|(2) are given. The initial scale for theaiuand light-quark functions i§?,
and the scales are the mass-threshold va‘m@mdmﬁ for charm and bottom FFs, respectively.
These scale values are provided in setup.ini, and thelifitiections are supplied in analytical
forms in our main code FIBGLAP.f.

Second, input parameters are read from setup.ini, whickpkmed in Sec[5]2. They are
basic parameters: the order®f, scale parameter of QCD\J, charm and bottom massesg
andm, for setting thresholds, number of flavors at the initial 8&@§; kinematical parameters:
initial scale @2, maximum@? value Q2,,,, and minimumx (Xmin) for making grid data of the
evolved FFs; parameters to control the numerical integmatiGauss-Legendre pointddq, ) and
numbers of INQ? = t andx points (\; andN,).

Third, the splitting functions are calculated at the poit$or calculating the summation in
Eq. (I3). Thex points are determined by the paramefdgsandNg, . The splitting functions at
these points are calculated at once in the beginning of dudse.cln the same way, the initial FFs
are also calculated at the given pointsxpndx,, and they are stored in two-dimensionabfnd
m) arrays.

Forth, the evolution step of Eq._{[13) is repeatedNjrtimes to obtain the evolved FFs up to

7 ax from Q3 in the rangemin < x < 1. If Q% exceeds the threshoit (or n), the number of
flavor is changed accordingly and charm (or bottom) funcstants to participate in the evolution
calculation. During the evolution calculations, two dirs@mal x andQ?) grid data are stored
for calculating the FFs at any point within the ranggs < x < 1 andQ3 < Q? < Q3. by
interpolation. Thex andQ? values need to be specified in running this main subroutime a@
example is proved as a test code (sample.f).



5.2. Inputfile

The input parameters should be supplied in the file setufmimunning the main evolution
routine FEDGLAP.f, in which the parameter values are read. For exantipéefollowing input
values are used for evolving the HKNSO7 FFs in the NLO. Héresymbol # is for commenting
out the subsequent line in setup.ini.

# pQCD ORDER 1:LO, 2:NLO

IORDER= 2

# DLAM (Scale parameter in QCD) d; = 4

#e.g. 0.220 GeV (LO), 0.323 GeV (NLO) in HKNSO07

DLAM=0.323 #in HKNSO7-NLO
# Heavy-quark mass threshold

#HQTHRE= m,, my = 1.43, 4.3 GeV in HKNSO07

HQTHRE=1.43, 4.3

# Q2 range for making grid files

# Q02— Q2max (note: not the Q2 evolution range)

Q2=1.D0, 1558.-5 #in HKNSO7 Library
# minimum ofx

XMIN = 1.D-2

# NT: # of t-steps foQ? dependence

# NX: # of x-steps forxD(x)

# NGLI: # of steps for Gauss-Legendre integral

NT= 580

NX= 160

NGLI= 32

# NF at the initial scale Q02

NF=3 (14)

The parameter IORDER indicates the LO or NLOagf Both LO and NLO evolutions are
possible so that the order of should be IORDER1 or 2. The scale parametarshould be
supplied in the case of four flavora4). It is then converted to the three and five flavor values
(As and As) within the evolution code (26). The charm and bottom fumtsi appear as finite
distributions above the threshold valu@$> mg (or mg). The HQTHRE values are these heavy-
quark thresholds (27).

The kinematical regions of and Q* are specified by the paramete@ (=QZ;.), Qdax
andXmin. The Q3 is the initial Q% scale, and3 ., is the maximumQ? for calculating the FFs.
Any Q? values can be chosen as long as perturbative QCD calcisaii@nvalid, which means
that smallQZ and Qz,,, values are not favorable particularly in the regi@f < 1 Ge\? where
pQCD calculations do not converge easily due to the largeingcoupling constants. The Q?
maximumQ?,,, = 1.558x 10® Ge\? is used in making the HKNSO7 library for their FES (2). It
is chosen so that two grid points are close to the charm aridrbdhreshold valuesg andmg.
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If one needs to calculate the evolution only@=100 Ge\?, one does not have to take such a
largeQz,,,, andQ?2,,,=100 Ge\# is enough. We also should note that a very small value.ef

is not favored because some FFs become negative, which hygsically allowed in principle.
This occurs due to a singular behavior of a time-like splitfiunction. In order to cure this issue,
more detailed studies are needed by including resummatiects (28).

The parameter NT is the number of points ofJfin the range I'Q2. < INQ? < IN Q2.
and NX is the number of points ofin the rangemin < x < 1. The NGLI is the Gauss-Legendre
points for numerical integration. In the example of Eq.] (14 number of = In Q? points is
580, the one ok is 160, and the one of the Gauss-Legendre points is 32. Tieesedected by
looking at evolution results by varying their values. Suthdges are explained in details in Sec.
[6. The NF is the number of flavors @ﬁ and it is usually three as given in EG.114).

5.3. Sample code

A test code (sample.f) is provided as an example for runriiegrnain evolution code. The
main evolution routine GETFF(Q2,X,FF) is called by supptyQ? andx values. Evolved FFs
are returned to FF(l), -5, 5):

FF(-5)= Dx, Q). FF(-4)=DXx Q%. FF(-3)=DXx Q%, FF(-2)=Dj(x,Q?,
FF(-1)=D%x Q%, FF(0)=Dj(x,Q%, FF(1)=Dj(x Q). FF(2)=Dj(xQ,

FF(3)=Di(x,Q%), FF(4)=D(xQ%. FF(5)=Dj(x Q).
(15)

6. Results

@ evolution results of FFs are shown in FIg. 1 by taking theéahfunctions ofz* as the
HKNSO7 (Hirai, Kumano, Nagai, Sudoh) parametrization i®2@(2). The initial functions are
provided atQ?=1 Ge\? for g, u, d, ands FFs and forc andb at Q> = mg andn®g, respectively.
The evolution has been calculated in the NLO and with theespatameteAqcp=0.323 GeV
in the running coupling constant. The used numbers of step¥;a560,Nx=160, and\g =32
for calculating the evolutions. In Fi@l] 2, ti@? evolution results are shown as a function@f
at fixedx points x = 0.1 and 0.4). The same input parameters are used in setuphiich was
used in obtaining the results in F[d. 1, for running the code.

The input file setup.ini for calculating the evolution of tNeO HKNSO07 functions is given
in Eq. (I3). The light-partony u, d, s, U, d, S) FFs are supplied at the initial sca@¥, which is
assigned to be th@” minimumQ?, . The evolved)? value (10, 100, or 10000 GeéYneeds to
be supplied when running the code, for example, sample.f.

Next, evolution results are shown by varying the parametigrs Ny, andN;, which &fect
the evolution accuracy. First, tf@? evolution results are calculated @=100 Ge\ by using
the HKNSOQ7 parametrization for the initial functions ane tharameterdlg =100, Nx=500,
andN;=500. Then, they are considered to be “standard” functiorshiowing ratios with other
evolution results. In the input setup.ini fil§?2,,=100 Ge\ is taken because the large
region is not necessary.

First, Ng_ is varied as 10, 20, and 40 in order to find its dependence doteo results in
checking evolution accuracy. The evolved functions are tised for calculating ratios with the
standard evolution bDfr+ (X, Q2 =100 Ge\;)NGL,NX:50QNt:500/ D:T+ (X, Q2 =100 Ge\;)NGL:]_OQNX:50QNt:500.
The ratios are shown in Fid] 3 for the fragmentation funatiofg, u, d, ¢, andb. The quark
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Figure 1:Q? evolution of HKNSO7 fragmentation functions. The init@lu, andd FFs are supplied at the scaug=1
GeV2, and thec andb functions are atrg andb2. They are evolved to the sca@?=10, 100, and 10000 Gé\by the
values are listed in Eq_{14).
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1

time-like DGLAP evolution equations in the NL®S) by using the code developed in this work. The explicit pazamn
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Figure 2: Q? dependence of the fragmentation functions at fiexéet 0.1 and 0.4) . The initiab, u, andd FFs are
supplied at the scal@2=1 Ge\?, and thec andb functions are atg andb2. They are evolved to the sca@?=10000

GeV? by the time-like DGLAP evolution equations in the NL®I6) by using the code developed in this work. The
explicit parameter values are listed in Hg.1(14).

functions are evolved accurately except for the regionectos = 1 even with a small number
of Gauss-Legendre points suchMg = 10. However, the gluon evolution depends much on the
choice ofNg_, and the results indicate thit, > 20 needs to be taken for getting the evolution
accuracy better than about 0.3%. This is the reasonMBY.| = 32 is used in calculating the
evolutions in Fig[L.

Second, the dependence bR is shown by fixing the other parametershg =100 and
N;=500. The evolved functions are used for taking ratios withsdtandard evolution results with
NsL=100, Ny=500, andN;=500 in the same way with Fid.] 3. The input paramegris the
number of points ik from Xy to one. For example, &min=0.01 andN,=500 are taken, 250
points are given for the logarithmicin the region 01 < x < 0.1 and another 250 points for
the linearx in 0.1 < x < 1. If xyir=0.001 and\,=600 are taken, we have 400 (200) points in
0.001< x< 0.1 (01 < x<1). Itischanged abl,=20, 50, and 200 to show variations in the
evolved functions, and results are shown in Eig. 4. In gdnthrare are large dlierences in the
largex region in all the FFs. In particular, the evolved functiomns aot reliable a > 0.7 if
Nx=20 is taken. As the number increases\gs50 and 200, they become reliable except for the
extremely largex region x > 0.9). From these studiedly=160 is taken, for example, in Fig] 1
as a reasonable choice.

Third, we showN; dependence in Fil] 5. It is varied Bs=100, 200, and 300 by fixing other
parameters dtlg. = 100 andN, = 500. If N; is small, evolved distributions are not accurate at
largex, especially in the gluon fragmentation function. A largenber of points should be taken
for N; for getting a converging function within a few percent leeélaccuracy, andN;=580 is
taken in Fig[l. However, iQ? ., is small, accurate evolution results can be obtained byi¢aki
smallerN;.

A typical running time for obtaining the evolutions in Figlisl4 seconds by using g95 on
the CPU (Dual-Core Intel Xeon 2.66 GHz) with Mac-OSX-10,%8 that the code isfigcient
enough to be used on any machines for one’s studies on thadragtion functions.
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Figure 3: Evolved fragmentation-function ratim{(x)NGL, Nx=50Q N¢=500/ D?+(X)NGL:1()Q Nx=500 Ny=500 are shown for
NeL=10, 20, and 50 a©?=100 Ge\?. The initial functions are the HKNS07 ones@f=1 Ge\? for g, u, andd, at
Q@ = mg for ¢, and atQ? = n¢ for b.
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Figure 4: Evolved fragmentation-function ratiﬁt{(x)NGL:mQ Ny, Ne=500/ D?+(X)NGL:100 Nx=500 Ny=500 are shown for
Nx=20, 50, and 200 &B?=100 Ge\~. The other conditions are the same as the ones iFig. 3.
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Figure 5: Evolved fragmentation-function ratiﬁt{(x)NGL:mQ Nx=500Q N/ D?+(X)NGL:100 Nx=500 Ny=500 are shown for
Nx=100, 200, and 300 &)?=100 Ge\~. The other conditions are the same as the ones inFig. 3.
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7. Summary

The fragmentation functions are used in describing hagroctuction cross sections at high
energies. The FFs are described by two variaklaad Q?>. The Q? dependence of the FFs is
calculated in perturbative QCD and they are described bRpGIEAP evolution equations. In this
work, theQ? evolution equations are numerically solved and a usefuléiom code is provided
so that other researchers could use it for their own studlies variables and InQ? are divided
into small steps, and the evolution is numerically caladdby using the Euler method and the
Gauss-Legendre quadrature. We showed that the evolutiaccigrately calculated except for
the extremely largecregion by taking reasonably large numbers of the Gaussdrgepoints
(NgL), x steps Ny), andt = In Q? steps [;). Our evolution code can be obtained upon request
(25) for using one’s studies on ti@¥ evolution of the FFs.

Acknowledgments
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aboutQ? evolution of fragmentation functions.

Appendix A. Running coupling constant

The running coupling constants in the leading order (LO) aext-to-leading order (NLO)
are

4

LO()2) — 16
= pon@iny (o)
4n B1InIn(Q?/A?)
NLO2y _ 1— i 17
Q) BoIn(Q?/A2) B5In(Q2/A2) ()
whereA is the QCD scale parameter, gfigdandp; are given by
11 4 34 10
= ~Cg - =TrN = —-C%Z - = CgN¢ — 2CkN 18
503G3Rf,,313(33ef rNs, (18)
with the color constants
Ca=N C—N‘Jz_1 To= X (19)
A — Cs F = ZNC ) R — 2'
In the NLO, MS is used for the renormalization scheme.
Appendix B. Splitting functions
The splitting functions are expandedag:
2
Pij(x as) = PP(x) + —“Sgr? )Pi(jl)(x) +o (20)
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whereP{?(x) andP{(x) are LO and NLO splitting functions, respectively. Spiigifunctions
in the LO are the same as the ones for describing the PDF ewol(it3):

1+ 3
PO, () = 5ijCr ﬁ +50(1-%) |, (21)
PO = Tr[ X + (1-%7]., (22)
ng(x) =Cr w’ (23)
1- 11 IN(T
sz,)(x)=zce[ﬁ L (1—2—55) aa-n| 4

The only point one should note is that the splitting func$iBgy andPgyq are interchanged in the
matrix of Eq. [8) from the PDF evolution. However, the spa®shnd timelike splitting functions
for the PDFs and FFs, respectively, arffetient in higher-order afs as shown in Refs| (19; 22).
The quark-quark splitting function in the NLO is given by

(1) _— p() 1) _ o (pV(@) V(1) S(1) S(1)
quqT = Pqiqi + PO|iOTi = 6.J(qu + qu )+ Pog” + an , (25)
where the function®y(? and Pyt" are given in Ref. [(19), the functiokg{’ (= P5") can be

derived from the relatioﬁ’glq) = Pgél) + P:%l) + Nf(PqSél) + Pgél)). These expressions are lengthy
and they are provided in Sec. 6.1 of Ref./(19).
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C X DEPENDENCE OF FFs
IMPLICIT REAL*8(A-H,0-Z)
PARAMETER (NSTEP=200)
CHARACTER*1 Q2PROG_END
CHARACTER*9 Q2_0UT
CHARACTER*22 FNAME
DIMENSION FF(-5:5),Z(600)
COMMON /XMIN/XMIN ! Setting in the setup.ini

CALL FF_DGLAP() ! Making arrary of FF(XMIN:1.DO, Q2_ini:Q2_max)

200 WRITE(*,fmt=>(a)’) "Q"2= "; READ(*,*) Q2
WRITE(Q2_0UT,’ (1PE9.3)’) Q2
FNAME="Q2="//Q2_0UT//’ _GeV2.dat’

OPEN (unit=23,file=FNAME,FORM=’formatted’)

DLMIN=DLOG10 (XMIN)

ZLSTEP=(DL0OG10(1.D0)-DLMIN) /DFLOAT (NSTEP)

DO I=1,NSTEP+1
DLOGZ=DFLOAT (I-1) *ZLSTEP+DLMIN
Z(I)=10.D0**(DLOGZ)

END DO

C FOR pi~+, FF(I), I= 0:g, 1:d, 2:u, 3:s, 4:c, 5:b
DO I=1,NSTEP
CALL GETFF(Q2,Z(I),FF) ! Getting FF(Z,Q°2)
WRITE(23,1010) Z(I), Z(I)*FF(0), ! gluon

+ Z(I)*FF(2), ! up

+ Z(I)*FF(1), ! down

+ Z(I)*FF(3), ! strange

+ Z(I)*FF(4), ! charm

+ Z(I)*FF(5) ! bottom

END DO

WRITE(*,fmt="(a)’)

+ "Do you finish the FF Q2 evolution 7 (y/n) "

READ (*,*) Q2PROG_END
IF((Q2PROG_END(1:1) .EQ.’n’) .0R. (Q2PROG_END(1:1) .EQ.’N’)) GOTO 200

1010 FORMAT(1X,9(1PE16.7))
CLOSE(23)
END



TEST RUN OUTPUT

Running the distributed sample code (sample.f) togeth#r thie mainQ? evolution sub-
routine (FEDGLAP.f) and the input file (setup.ini), we obtain the follimg output forQ?=100
Ge\2. The following functions corresponds to the curve®a£100 GeVf in Fig. 1.

X

1.0000000E-02
1.0232930E-02
1.0471285E-02
1.0715193E-02
1.0964782E-02
1.1220185E-02
1.1481536E-02
1.1748976E-02
1.2022644E-02
1.2302688E-02

8.9125094E-01
9.1201084E-01
9.3325430E-01
9.5499259E-01
9.7723722E-01

+ +

x Dg xDj

1.738727280
1.746924180
1.754453380
1.761327380
1.767559580
1.773163380
1.778151680
1.782536580
1.786332180
1.789549880

1.5206099E00
1.5297365E00
1.5384281E00
1.5466907E00
1.5545311E00
1.5619553E00
1.5689699E00
1.5755812E00
1.5817955E00
1.5876182E00

+

xDj

7.1337454E-01
7.2321764E-01
7.3265629E-01
7.4169702E-01
7.5034733E-01
7.5861384E-01
7.6650367E-01
7.7402396E-01
7.8118145E-01
7.8798236E-01

+

X D

7.1374282E-01
7.2358058E-01
7.3301393E-01
7.4204939E-01
7.5069444E-01
7.5895574E-01
7.6684037E-01
7.7435550E-01
7.8150786E-01

7.8830368E-01

+ +

x D x Dg

1.2897180& 2.5241504E00
1.2947968& 2.5089220E00
1.29952¥8& 2.4936096E00
1.3039166& 2.4782151E00
1.3079690& 2.4627404E00
1.3116966& 2.4471874E00
1.3150860& 2.4315579E00
1.3181680& 2.4158538E00
1.32092¥0& 2.4000771E00
1.3233860& 2.3842291E00

2.7586761E-05

1.4513488E-05
6.3142094E-06
1.9415364E-06
2.5705072E-07

7.8509439E-03

5.0877079E-03
2.8910396E-03
1.2925565E-03

1.03188@9E-D.0318809E-06

2.3777347E-B.3777347E-07
3.2396380E-8.2396330E-08
7.2014486E-1.2014458E-10

3.2218983E-042.2238409E-10-2.2238409E-10
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4.2783416E-05

1.6972984E-05
5.0850503E-06
9.1254976E-07
4.7361837E-08

1.7161909E-06
4.9828819E-07
9.9610221E-08
1.0039050E-08
1.7555729E-10
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