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Abstract

The structure and algorithms of the Monte-Carlo generator ELRADGEN 2.0 de-
signed to simulate radiative events in polarized ep-scattering are presented. The
full set of analytical expressions for the QED radiative corrections is presented and
discussed in detail. Algorithmic improvements implemented to provide faster simu-
lation of hard real photon events are described. Numerical tests show high quality
of generation of photonic variables and radiatively corrected cross section. The com-
parison of the elastic radiative tail simulated within the kinematical conditions of
the BLAST experiment at MIT BATES shows a good agreement with experimental
data.
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1 Introduction

The exclusive photon production in lepton-nucleon scattering is the routine
experimental tool in investigating the hadronic structure. Depending on the
design of experiments, the measurements of this process can give an access
to the generalized parton distributions [1,2] or the generalized polarizabilities
[3,4]. In some cases the exclusive photon production appears as a background
effect to inelastic [5,6] or elastic [7] lepton nucleon scattering. The last scenario,
i.e. the situation when the events with the real photon emission accompany
the elastic electron-proton scattering is the most advanced due to the infrared
problem, therefore it will be in our main focus.

The set of processes contributed to the observed cross section in the next order
of perturbation theory is referred to as the lowest order radiative corrections
(RC). The basic contribution to the lowest order RC appears from the square
of amplitude that only includes real photon emission from the lepton leg. This
contribution contains the so-called large logarithm (i.e., the logarithm of the
lepton mass) and normally is only held in the lowest order RC.

In practice of data analysis, RC are calculated theoretically or their contribu-
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tion to the observed cross sections (or asymmetries) are minimized by exper-
imental methods. Due to finite detector resolution, a complete removal of the
events with radiated hard photon(s) by pure experimental methods is not pos-
sible. Furthermore, the contributions of additional virtual particles and soft
photon emission cannot be removed in principle. The theoretical calculation
provides with analytical expressions included the contributions of loops and
photon emission which are infrared free after the procedure of the cancellation
of the infrared divergence. The contribution of the hard photon radiation is
presented in the form of integrals over photon phase space. Partly the inte-
gration is performed analytically without additional simplifying assumptions
or assumptions on specific functional forms describing hadronic structure.

The pioneering approach for RC calculation in inelastic processes was sug-
gested by Mo and Tsai in their seminal paper in 1969 [8]. They also developed
the peaking approximation allowing for analytical estimating integrals over
photon angles. The approximation is used in many data analysis, e.g. , in ref.
[9] the electromagnetic RC in elastic ep-scattering was calculated in peaking
approximation with taking into account the one-photon emission both from
lepton and hadron legs.

The Mo and Tsai approach requires involvement of the artificial parameter ∆
separating the integration region over photon energy on parts with soft and
hard photon contributions. To cancel infrared divergence analytically only
leading terms in the expansion of the soft photon contribution over recipro-
cal of the photon energy are kept. As a result, the final expressions contain
undesired dependence on the artificial parameter.

Bardin and Shumeiko developed the approach [10] for exact separation and
cancellation of infrared divergence when the final expressions for RC were com-
pletely free from any artificial parameters like ∆. Using this approach, RC in
polarized elastic ep-scattering withing QED theory has been calculated in refs.
[11,12]. Basing on these calculations the FORTRAN code MASCARAD has
been developed and successfully used for data processing of the relevant par-
ity conservation experiments [13,14]. Other approaches were also used for RC
calculation in elastic ep-scattering. Thus, the total lowest order RC (both to
lepton and hadron legs) was also calculated in [7] with soft photon approxi-
mation and the method of electron structure functions suggested in the work
[15] was also applied for estimation of RC to elastic ep scattering [16,17].

The use of realistic detector geometry requires essentially complicated inte-
gration over the real photon phase space. As a result, the researchers come to
the necessity of using the Monte Carlo technique which constitutes a comple-
mentary approach to the theoretical calculations of RC using respective codes
such as MASCARAD. The Monte Carlo generators for simulation of radiative
events have been developed for many specific processes and intensively used in
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Fig. 1. Feynman graphs contributing to radiatively corrected cross sections of elastic
lepton-nucleus scattering: Born (a), additional virtual particles (b,c) and real photon
emission (d,e) contributions.

data analysis. Thus, the Monte Carlo generator RADGEN [18] for simulation
of radiative events in inclusive deep inelastic scattering has been developed
on the basis of the FORTRAN code POLRAD [19]. The Monte Carlo gener-
ator MERADGEN [20] for simulation of radiative events in Møller scattering
appeared on the base of FORTRAN code MERA [21].

In this paper we present and describe in detail the latest version 2.0 of the
Monte Carlo generator ELRADGEN. The prototype of the code [22] dealt
with the simulation of real hard photon emission as a background effect in the
unpolarized elastic electron-proton scattering. The present version 2.0 is ex-
tended on the initial polarized particles: longitudinally polarized electron and
arbitrary polarized proton. The theoretical background for the developments
is presented in ref. [11].

The paper is organized as follows. Section 2 describes the kinematics of the
investigated process and the generation method. The different contributions
to the lowest order RC and the multi-soft photon emission are presented and
discussed in Section 3. The brief structure of the code and the input-output
datafiles are described in Section 4. Test runs, comparison with MASCARAD,
and numerical comparison of the simulated and measured cross sections of the
radiative tail from elastic peak in the BLAST experiment are presented in Sec-
tion 5. Conclusions and final remarks are given in Section 6. The four-momenta
reconstruction formulae, explicit expressions for the lepton and target polar-
ization vectors, some lengthy formulae for RC, and test outputs are given in
Appendices.

2 Kinematics and Method of Generation

The lowest order (Born) (Fig.1 (a)) as well as the additional virtual particle
(Fig.1 (b,c)) contributions to the polarized elastic lepton-nucleon scattering
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e(k1, ξL) + p(p1, η) −→ e′(k2) + p′(p2) (1)

(k2
1 = k2

2 = m2, p21 = p22 = M2) can be described by the following three
variables:

Q2 = −q2 = −(k1 − k2)
2, S = 2k1p1, φ, (2)

where φ is the azimuthal angle between the scattering plane (k1,k2) and the
ground level. The Lab system is used with OZ axis along the beam direction
and plane OZX parallel to the ground level. The explicit expressions of polar-
ization vectors (ξL and η) and four-momenta reconstructed in the lab system
are presented in Appendix A.

The description of the phase space of the radiative process (Fig.1(d,e))

e(k1, ξL) + p(p1, η) −→ e′(k2) + p′(p2) + γ(k), (3)

(k2 = 0) requires three new kinematic variables: a virtual proton transfer
momentum squared t = −(k1 − k2 − k)2, the inelasticity v = (p2 + k)2 −M2,
and the azimuthal angle φk between the planes (q,k) and (k1,k2). This set
of variables defines the four-momenta of all final particles.

The simulation of radiative events requires an additional definition of the
lowest bound of the photon energy (or another respective quantity, inelasticity
vmin in our case) separating the photon phase space into the region of soft and
hard photons. Only hard photons need to be simulated while soft photons
cannot be simulated because of the infrared divergence. The observed cross
section can be presented in terms of two positively definite parts:

σobs = σrad(vmin) + σBSV (vmin). (4)

The first term, σrad(vmin), describes the cross section with an additional hard
photon emitted, and the second, σBSV (vmin), contains the contributions of the
Born cross section, soft-photon emission, and virtual corrections. Here and
later we define σ ≡ dσ/dQ2dφ. Note that σobs does not depend on vmin while
terms σBSV and σrad do.

The strategy for simulation of one event can be defined in a standard way [22]:

• For the fixed initial energy, Q2, the angle φ, and the missing mass square
resolution vmin, the two positively-definite contributions to the observed
(radiative-corrected) cross section σobs, σrad(vmin), and σBSV (vmin) are cal-
culated separately.

• The corresponding channel of scattering (i.e., BSV or radiative process) is
simulated for this event in accordance with partial contributions of these
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two positive parts into the total cross section. More specifically, the channel
of scattering is simulated in accordance with the Bernoulli trial where the
probability of “success” (i.e., radiative channel) is calculated as a ratio of
the radiative part of the cross section to the total cross section.

• For the radiative event the kinematic variables t, v and φk are simulated in
accordance with their calculated distributions. The distributions of v and
φk are conditional (e.g. , v is simulated conditionally on t, and φk is simu-
lated conditionally on t and v). The explicit expressions for the probability
densities of these variables are defined by eqs. 15.

• The four–momenta of all final particles in a required reference frame are
calculated.

The initial values of Q2 (and φ) can be non-fixed but externally simulated
according to a probability distribution (for example, the Born cross section).
If theQ2 distribution is simulated over the Born cross section, then the realistic
observed Q2 distribution is calculated as sum of weights computed as ratios
of the total and Born cross sections for each simulated event. If the observed
cross section is used for the simulation of Q2, then reweighting is not required.

3 Explicit expressions for σrad(vmin) and σBSV (vmin)

The analytical expressions for the lowest order RC on which the ELRAD-
GEN is based, were obtained in ref. [11] (see eqs. (50) and (51)). The
result for the observed cross section can be formally outlined as σobs =

(1 + δ)σ0 + C
∫

dv

v
[σR(v) − σ0], where C is a kinematic coefficient propor-

tional to α and the quantity σR(v) is proportional to the bremsstrahlung
cross section (σR(0) = σ0). This expression does not reproduce the form of eq.
(4), because the term with the integral is not positively definite and the term
with σR(v) cannot be separated because it is singular for v → 0. Instead, the
following transformation of this term was used:

∫
dv

v
(σR(v)− σ0) =

∫
dv

v
σR(v)θ(v − vmin)

−
∫ dv

v
σ0θ(v − vmin) +

∫ dv

v
[σR(v)− σ0]θ(vmin − v). (5)

The first term in (5) represents the contribution of hard photons, i.e., with in-
elasticity above vmin. This term is positively definite and it is used as σrad(vmin)
in (4). Its structure and explicit expressions are discussed in Section 3.2. The
second term admits the analytic integration resulting in correction δadd(vmin).
This term (as well as the third term in the eq. (5) discussed in Section 3.3)
contributes to the σBSV (vmin) that represents the part of the observed cross
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section not contained in the contributions of radiated photons with inelasticity
above vmin.

3.1 BSV cross section

The BSV -part of observed cross section includes the Born cross section
(Fig.1 (a)), loop effects (Fig.1 (b,c)) and the contribution of soft photons.
The latter is restricted by the inelasticity value v < vmin:

σBSV (vmin) = (1 + δV R + δlvac + δhvac)e
δinfσ0 + δadd(vmin)σ0

+σadd
R (vmin). (6)

The Born contribution to the cross section reads:

σ0 =
α2

S2Q4

4∑

i=1

θBi Fi(Q
2). (7)

The kinematic coefficients θB are presented in Appendix B. The structure
functions Fi are the squared combinations of the electric and magnetic elastic
form factors:

F1(Q
2) = 4τpM

2G2
M(Q2), F2(Q

2) = 4M2G
2
E(Q

2) + τpG
2
M(Q2)

1 + τp
,

F3(Q
2) = −2M2GE(Q

2)GM(Q2),

F4(Q
2) = −M2GM(Q2)

GE(Q
2)−GM(Q2)

1 + τp
(8)

with τp = Q2/4M2.

The factorizing corrections in the first term of (6) describe the effects of loops
and soft-photon emission. The correction δinf comes from the emission of soft
photons, the δV R appears as a result of an infrared cancellation of real (Fig.1
(d,e)) and virtual (Fig.1 (c)) photon contribution. The explicit expressions for
them are:

δinf =
α

π

(
log

Q2

m2
− 1

)
log

v2max

S(S −Q2)
,

δV R =
α

π

(
3

2
log

Q2

m2
− 2− 1

2
log2

S

S −Q2
+ Li2

(
1− M2Q2

S(S −Q2)

)

−π2

6

)
, (9)
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Fig. 2. The region of integration over v- and t-variables for JLab kinematics (Q2 = 3
GeV2, S = 7.5 GeV2). The line v = vmin splits it into hard (solid lines) and soft
(dashed lines) real photon regions.

where Li2 is the Spence function.

The effect of vacuum polarization by leptons (hadrons) depicted on Fig.1 (b)
is described by δlvac (δ

h
vac). The explicit expression for δlvac is defined by eq. (21)

of ref. [5] while the fit for δhvac has been taken from [23].

The term δadd(vmin)σ0 in the R.H.S. of (6) contains the correction coming from
the second term in (5).

δadd(vmin)=−2α

π

(
log

Q2

m2
− 1

)
log

vmax

vmin

. (10)

The last term in (6) is discussed in Section 3.3.

3.2 Bremsstrahlung cross section

Since the structure functions depend only on t, and therefore integrals over
other variables (i.e., v and φk) can be evaluated analytically or numerically
with high precision, a reasonable sequence of integration variables is chosen
such that integration over t is external. This approach allows us to speed up
the generation of radiative events. The radiative photon phase space for t- and
v-variables are presented on Fig. 2. It is separated into hard and soft photon
emission by the line v = vmin. The cross section of hard-photon bremsstrahlung
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is

σrad(vmin) = − α3

4πS2

t2∫

t1

dt
4∑

i=1

Fi(t)

t2
θRi (v1, vmax). (11)

The quantities θRi (v1, vmax) result from the integration over inelasticity v.
Their arguments correspond to the limits of integration:

θRi (v1, vmax) =
ki∑

j=1

vmax∫

v1

dvRj−3θRij(v). (12)

Here R = Q2 + v− t, and the upper sum limits are defined as ki = (3, 3, 4, 5).
Accordingly, the quantities θRij(v) result from the integration over φk:

θRij(v)=

2π∫

0

dφk θRij(v, φk). (13)

The set of quantities θR is defined in Appendix B.

Kinematical bounds are defined as

v1 =max{(t−Q2)(
√
t−

√
4M2 + t)

2
√
t

,
(t−Q2)(

√
t+

√
4M2 + t)

2
√
t

,

vmin},

vmax =
2Q2(S2 − 4M2m2 −Q2(S +m2 +M2))

Q2(S + 2m2) +
√
Q2(S2 − 4M2m2)(Q2 + 4m2)

≈S −Q2 − M2Q2

S
,

t1,2=
2M2Q2 + vmax

(
Q2 + vmax ∓

√
(Q2 + vmax)2 + 4M2Q2

)

2(M2 + vmax)
. (14)

The probability distributions used for simulation of the photonic variables are
obtained using (11) and (13):

ρ(t) =
1

Nt

4∑

i=1

Fi(t)

t2
θRi (v1, vmax), Nt =

4∑

i=1

t2∫

t1

dt
Fi(t)

t2
θRi (v1, vmax),

9



ρ(v|t) = 1

Nv

4∑

i=1

kj∑

j=1

Fi(t)θ
R
ij(v)R

j−3, Nv =
4∑

i=1

Fi(t)θ
R
i (v1, vmax),

ρ(φk|v, t)=
4∑

i=1

kj∑

j=1

Fi(t)θ
R
ij(v, φk)R

j−3

Nφk

, Nφk
=

4∑

i=1

kj∑

j=1

Fi(t)θ
R
i (v)R

j−3. (15)

3.3 Contribution of σadd
R (vmin)

The contribution of σadd
R (vmin) can be presented as an integral over the soft-

photon region in Fig. 2:

σadd
R (vmin)=− α3

4πS2

t′
2∫

t′
1

dt

vmin∫

v′
1

dv
4∑

i=1

[ kj∑

j=2

Rj−3θRij(v)
Fi(t)

t2

+
1

R2

(
θRi1(v)

Fi(t)

t2
− 4θBi FIR(v)

Fi(Q
2)

Q4

)]
. (16)

The limits of integration over variables t and v read:

v′1=max{(t−Q2)(
√
t−

√
4M2 + t)

2
√
t

,
(t−Q2)(

√
t+

√
4M2 + t)

2
√
t

},

t′1,2=
2M2Q2 + vmin

(
Q2 + vmin ∓

√
(Q2 + vmin)2 + 4M2Q2

)

2(M2 + vmin)
. (17)

The infrared divergences could occur in the limit v′1 → 0 (i.e. at t → Q2) in the
terms containing R−2. However, one can see that σadd

R (vmin) is infrared-free.
Indeed, taking into account Eqs. (13), (B.2), (B.5), and (B.6), in the limit
v′1 → 0 we have

lim
v→0

θRi1(v)
Fi(t)

t2
= 4θBi FIR(0)

Fi(Q
2)

Q4
. (18)

This cancels one degree of R. The second degree of R cancels because the
integration region is collapsed into a point within this limit.
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program main
✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

elrad init

urand
✘✘✘✘✘✘✘✘✘

elradgen
✏✏✏✏✏✏✏✏✏✏

✡
✡
✡✡

PPPPPPPPPP

grid init fsib fsigtv fsigt

fsigtan fsigtnu

✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜
✜✜

✟✟
✟✟
✟✟
✟✟
✟✟

❉
❉
❉
❉❉

✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏
✏✏

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥✥
✥✥✥

✥✥✥
✥✥

sffun

ffpro

Fig. 3. The structure of the program ELRADGEN 2.0

4 The structure of the program and input-output data

4.1 The structure of the program

The set of files included in the package ELRADGEN 2.0 contains three
FORTRAN files (elradgen.f, run.f, test.f), six INCLUDE files (const.inc,
grid.inc, output.inc, par.inc, pol.inc, test.inc), two data files (rnd.dat,
test.dat), and one Makefile. No installation is required for this code.

The elradgen.f is a source code of the Monte Carlo generator ELRADGEN
2.0. It contains the set of functions and subroutines for simulation of a single
event. The loop over simulated events as well as initialization of constants re-
quires coding in the external program. Two versions of such external programs
are given in files run.f and test.f. The file run.f is a typical external program
for simulation of an event with fixed Q2 and φ. The file test.f is designed to
run several tests discussed below.

The structure of the code is illustrated in Fig. 3:
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• program main is a sample of an external program that invokes ELRAD-
GEN (in our case it is the program included in run.f and test.f);

• elrad init defines all constants (such as beam energy and polarization
degrees) which are necessary for generation;

• grid init prepares the grids for generation of photonic kinematic variables;
• elradgen is a main subroutine governing the simulation of an event;
• urand is a generator of uniformly distributed random numbers;
• fsib calculates the Born cross section;
• fsigt invokes one of the subroutines fsigtan or fsigtnu to calculate the
cross section dσ/dt;

• fsigtan calculates the analytical cross section dσ/dt for unpolarized scat-
tering;

• fsigtnu calculates the cross section dσ/dt with numerical integration over
variable v for polarized scattering;

• fsigtv calculates the analytical cross sections dσ/(dtdv) and dσ/(dtdvdφk);
• ffpro is a model for elastic form factors.

The six INCLUDE files are:

• const.inc includes all necessary constants, e.g. , the fine electromagnetic
constant, the proton and lepton masses;

• grid.inc includes nets of bins for simulation of the three photonic variables;
• output.inc contains variables governing the form of output as discussed
below

• pol.inc includes quantities which describe the polarization state (defined
in Appendix A.1);

• test.inc includes variables and nets of bins required for test run;
• par.inc includes variables required for calculation of σadd

R (vmin).

The file rnd.dat includes an initial integer for the flat generator urand, and
test.dat is an example of output data for a test run (when test.f is used as an
external program); the results of different test are presented in Appendix C.

The commands “make” or “make test” need to be run for creating the exe-
cutable file for the simulation or for the test runs, respectively.

4.2 Input-output data

Input data in ELRADGEN 2.0 are set up in program main of run.f or test.f.
Majority of them are transferred to the main program through parameters in
the subroutine elradgen. They are:

• ebeam is an energy of electron beam;
• q2 is a virtual photon momentum squared Q2;

12



• phi is an azimuthal angle between the scattering plane and the ground
level;

• vvmin is a missing mass square resolution vmin for separation of radiatively
corrected cross section into radiative and BSV parts;

• vcut is a cut-off quantity vcut that allows to exclude the simulation of hard
photons above vcut.

The last variable provides the opportunity to exclude simulation of events
with inelasticity above a predetermined level. This could be convenient when
simulation is performed for experimental design, when hard real photon are
removed from experimental data by putting a cut on the missing mass of the
undetectable particle.

The quantities describing the polarization characteristics of beam and target
(defined in Appendix A.1) are transferred to the code through the common
block pol containing four variables: i,ii) plrun and pnrun, the polarization
degrees of the lepton beam PL and target PN , iii) thetapn, the angle θη between
3-vectors of the target polarization η and initial lepton momentum k1, and
iv) phipn, the angle φη between OZX and (k1, η) planes.

One additional variable itest governs the form of the output. If itest 6= 0, all
output information is printed to the file test.dat. If itest = 0, the output
data are collected in two common blocks of the file output.inc:

common/variables/tgen,vgen,phigen,weight,ich

and

common/vectors/vprad,phrad

Here tgen, vgen, and phigen are the generated photonic variables t, v, and
φk, respectively, weight is a ratio of the observable cross section to the Born
one, variable ich shows whether the scattering channel is radiative (ich = 1)
or BSV (ich = 0). The quantities vprad = p2 − p1 and phrad := k are four-
momenta of virtual and real photons defined in the Lab system.

For BSV events, vgen = 0, tgen = Q2, φk = 0, phrad = 0 and vprad = k1−k2.

5 Numerical tests and comparison with experimental data

Below we describe three types of numerical experiments allowing: i) to cross-
check some key distributions and parameter estimates in ELRADGEN, ii) to
investigate issues related to a possible dependence of simulated cross sections

13
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Fig. 4. Histogram (points) and corresponding probability densities (solid lines) for
variables describing the exclusive real hard photon production in polarized elec-
tron proton scattering at JLab kinematic conditions (Ebeam = 4 GeV, Q2 = 3
GeV2, ) for transverse polarized proton (θη = 900) with φ = φη, PLPN = −1 and
vmin = 10−2 GeV2.

on vmin, and iii) to perform a comparison with data collected in the BLAST
experiment.

5.1 Tests implemented in ELRADGEN

There are five tests implemented in the program. The first three deal with
checking to which extent the simulated distributions on photonic variables t,
v, and φk correspond to analytical probability distributions given in eq. (15).
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Fig. 4 presents the t-, v-, and φk-distributions calculated numerically and gen-
erated by ELRADGEN under JLab kinematic conditions for a transverse po-
larized target. The theoretical and simulated distributions of this case (as well
as for unpolarized and longitudinally polarized targets) are almost identical.

The sharp peaks in the t-distribution coming from the collinear singularities,
i.e., from the kinematical region where the real photon is emitted along either
the initial or the final lepton. After integration over the inelasticity v, these
two singularities are situated near t = Q2 and are only slightly different.

The peaks on the plots of the v-distributions correspond to the collinear singu-
larities as well. Since the variable t is external, the v-distribution is conditional
on t, and therefore only one peak corresponding to either the initial or the
final electron appears for each v-distribution.

Finally, the φk-distributions show that most of the photons are emitted in the
scattering plane.

For generation of the three types of distributions, one has to set itest = 1,
itest = 2, or itest = 3, in the file test.f, and then type ”make test” and
”./test.exe”. In Appendix C, the test outputs for t, v, and φk generation with
P = 1, ELab

b =4 GeV, θη = 480, 20 bins for the histogramming and 108 radiative
events are presented.

After generating all photonic variables for one radiative event, ELRADGEN
reconstructs the four-momenta of the final particles. To make sure that the
vectors are constructed properly, the next test corresponding to itest := 4
is implemented. This test allows to perform the numerical comparison of the
generated variables t, v, and φk with the value of these variables reconstructed
from four-momenta of the particles. This test also reconstructs the mass of
the real photon that has to be equal to zero.

The test with itest := 5 provides us with the comparison of the unpolarized
cross section integrated over v analytically and numerically.

5.2 vmin-dependence and comparison with MASCARAD

The Monte Carlo generator ELRADGEN 2.0 was developed on the basis of
the FORTRAN code MASCARAD, therefore the agreement of outputs of
both programs with the same input parameters has to be demonstrated as a
primary test. Here we restrict our crosscheck to the JLab kinematic conditions
without cuts on inelasticity v and focus on the comparison of the ratio of the
radiatively corrected cross section to the Born one. Define components of the
cross sections as:
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vmin σu
rad/σ

u
0 σu

BSV /σ
u
0 weight = σu

obs/σ
u
0

GeV2 a b a b a b c

1 1.144 1.145 0.9730 0.9737 2.117 2.119

10−1 1.316 1.317 0.8018 0.8018 2.118 2.118

10−2 1.478 1.473 0.6386 0.6386 2.116 2.111 2.117

10−3 1.641 1.634 0.4754 0.4754 2.116 2.108

10−4 1.806 1.797 0.3122 0.3122 2.118 2.108

Table 1
The vmin-dependence of the ratios of radiative, BSV, and observable contributions
to the unpolarized (PLPN ≡ 0) electron-proton cross section to the Born cross
section for JLab kinematic conditions (Ebeam = 4 GeV and Q2 = 3 GeV2): a (b)
presents the results of analytical (numerical) integration over v in ELRADGEN,
while c shows the results of the calculation using MASCARAD [11].

vmin σL
rad/σ

L
0 σL

BSV /σ
L
0 weight = σL

obs/σ
L
0

GeV2 ELRADGEN ELRADGEN ELRADGEN MASCARAD

PLPN 1 -1 1 -1 1 -1 1 -1

1 0.6277 1.275 0.9648 0.9765 1.592 2.251

10−1 0.7913 1.448 0.8009 0.8080 1.592 2.250

10−2 0.9469 1.605 0.6385 0.6487 1.585 2.243 1.591 2.249

10−3 1.106 1.764 0.4754 0.4893 1.582 2.240

10−4 1.269 1.927 0.3122 0.3300 1.582 2.240

Table 2
vmin-dependence of the radiative, BSV, and observable contribution to electron-
proton scattering with longitudinally polarized target (θη = 0) for a different spin
orientation in the Born units and comparison with MASCARAD [11] for JLab
kinematic conditions (Ebeam = 4 GeV and Q2 = 3 GeV2).

σL,T
a (ξL, ηL,T ) = σu

a + PLPNσ
p
a(ξL, ηL,T ), (19)

where a = 0, BSV, rad, obs

First, we consider the unpolarized scattering for which an option with an-
alytical integration over v is available. Table 1 presents the results of the
analytical and numerical integration for the BVS- and radiative contributions
(i.e., σBSV (vmin) and σrad(vmin)) to the observed cross section, as well as the
results obtained using MASCARAD. Each of these contributions changes es-
sentially by decreasing vmin from 1 to 10−4 GeV2, while the observable cross
sections barely change for both analytical and numerical integration over v.
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vmin σT
rad/σ

T
0 σT

BSV /σ
T
0 weight = σL

obs/σ
T
0

GeV2 ELRADGEN ELRADGEN ELRADGEN MASCARAD

PLPN 1 -1 1 -1 1 -1 1 -1

1 0.9457 1.447 0.9730 0.9746 1.919 2.422

10−1 1.117 1.620 0.8018 0.8018 1.918 2.422

10−2 1.273 1.776 0.6386 0.6386 1.912 2.415 1.917 2.420

10−3 1.432 1.935 0.4754 0.4754 1.908 2.411

10−4 1.596 2.099 0.3122 0.3122 1.908 2.411

Table 3
vmin-dependence of the radiative, BSV and observable contribution to electron-
proton scattering with transversely polarized target (θη = π/2, φ = φη) for different
spin orientation in the Born units and comparison with MASCARAD [11] for JLab
kinematic conditions (Ebeam = 4 GeV and Q2 = 3 GeV2).

The similar behavior of the radiative and BSV parts takes place for the polar-
ized case. This is illustrated in Tables 2 and 3. The observable cross sections
change by no more than 1%.

5.3 Results from the BLAST data

Analyzing the ∆-excitation region in ep-scattering, it is necessary to extract
the contribution of real hard-photon emission that accompanies the elastic
ep-scattering (so-called elastic radiative tail) and cannot be removed from the
data by any experimental cuts. The main radiative photons are emitted by the
electron leg (see Fig.1 (d,e)), because their contributions include the logarithm
of the electron mass. These radiative events are spin-dependent, and therefore
affect not only the cross section, but other extracted quantities in the ∆-
region as well, e.g. asymmetries, spin-correlation parameters, spin-structure
functions, etc.

The BLAST experiment was designed to study spin-dependent electron scat-
tering off protons and deuterons with small systematic uncertainties [25]. The
experiment used a longitudinally polarized, an intense electron beam and
isotropically pure highly-polarized internal targets of hydrogen and deuterium
from an atomic beam source. For extraction of the elastic radiative tail con-
tribution, the new version 2.0 of Monte Carlo generator ELRADGEN has
been applied. This generator was incorporated into the BLAST Monte Carlo
event generator [26], where longitudinally polarized electrons at an energy of
850 MeV and at a polarization factor of 65%, were scattered off a highly-
polarized hydrogen internal gas target (PN ∼ 80%), with the average target
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Fig. 5. Normalized yields as a function of the invariant mass, W [GeV] over
0.08 < Q2 < 0.38GeV2. The dots show the BLAST ABS hydrogen data corrected
for the background contributions, and the solid line represents the Monte Carlo
simulations with radiative effects (ELRADGEN 2.0).
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Fig. 6. The effect of the radiative contributions to the asymmetry in the ∆-excitation
region. The left (left) and right (right) asymmetries are shown with (dots) and
without (squares) radiative corrections (RC), for 0.08 < Q2 < 0.38GeV2. Monte
Carlo simulations using the MAID 2003 model [27] (straight line) and ELRADGEN
(dotted line) are shown for comparison.

spin direction oriented at 48.84◦ to the left of the beam direction.
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In order to estimate the contribution of the elastic radiative tail to the ∆-
excitation region, the results of the Monte Carlo simulations were normalized
to the data elastic peak, as shown in Fig. 5. In this figure, the normalized yields
correspond to the outgoing electrons detected in each sector of the BLAST
detector (inclusive scattering). The radiative tail obtained from the above
normalization is subtracted from the measured yields (radiative corrections),
and then the left and right asymmetries are extracted. For comparison, in
Fig. 6 we show the left and right asymmetries with and without the radiative
corrections. The asymmetry from ELRADGEN alone is also shown (dotted
line) in order to see the radiative tail effect to the overall asymmetries and its
spin dependence.

6 Conclusion

In this paper, we presented a new version of Monte Carlo generator ELRAD-
GEN for simulation of real-photon events within elastic lepton nucleon scat-
tering for longitudinally polarized lepton and arbitrary polarized target. Fol-
lowing the absolute necessity of both accuracy and quickness for our program,
we have developed the fast and highly precise code using analytical integra-
tion wherever it was possible. The developed program has a broad spectrum
of applications in data analysis of various experimental designs on polarized
ep-scattering, including the measurements of the generalized parton distribu-
tions, the generalized polarizabilities, and the evaluation of spin asymmetries
in elastic scattering. Also, it can be used as a generator of the “Born” process
in DVCS measurements and of the radiative tail from the elastic peak in DIS.
The most significant application of the generator is in the experiments with
the complex detector geometry.

The set of numerical tests of the presented version of this code proved its
high quality. First, a good agreement with FORTRAN code MASCARAD [11]
was found. Second, no dependence on the missing mass square resolution was
found. Third, the distributions of the generated radiative events are found
to be in accordance with the corresponding probability densities. Fourth, a
good agreement with the radiative tail from the elastic peak measured in the
BLAST experiment was demonstrated.

Several additional steps allowing to make the simulation even faster are
planned. They include implementation of analytical integration over variable
v of the hard-photon emission contribution with the longitudinally polarized
target and utilizing the look-up table option for faster simulation of radiative
events with transverse component of the target polarization vector.
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Fig. 7. 3-vectors decomposition in the LAB system

The spectrum of applications of the presented code could be extended after a
certain substantive upgrade in several directions including the development of
this generator for transferred polarization from lepton beam to recoil proton
[28], and for involving this generator into the measurement of the electromag-
netic form-factors of the proton in elastic scattering with unpolarized [29] and
polarized targets [30,31]. Inclusion of electroweak effects will provide the gen-
eralization for the investigation of electroweak corrections in experiments on
axial form factors of the nucleon [32] and parity violation elastic scattering
[33]. This generator can be included in data analysis of experiments with the
measurement of unpolarized and spin-flip generalized polarizabilities in virtual
Compton scattering [3,4].
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Appendix A Four-vectors

In this section we present the explicit expression for four-vectors decomposi-
tion in LAB system depicted in Fig. 7
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Appendix A.1 Polarization vector definitions

As it was mentioned above we assume that the electron beam has a longitu-
dinal polarization. Therefore its polarization vector has a form [19]:

ξL =
1√
λs

(
S

m
k1 − 2mp1

)
. (A.1)

The target polarization vector in the Lab. system can be decomposed into
longitudinal

ηL =
1√
λs

(
2Mk1 −

S

M
p1

)
(A.2)

and transverse ηT components as it is depicted in Fig. 7

η = cos(θη)ηL + sin(θη)ηT , (A.3)

where θη is the angle between 3-vectors k1 and η. Transverse ηT component
can be presented as:

ηT = cos(φ− φη)ηt + sin(φ− φη)η⊥, (A.4)

where φη is the angle between (k1, η) and OZX planes, and

ηt=
(4m2M2 + 2Q2M2 − SX)k1 + λsk2 − (SQ2 + 2m2Sx)p1√

λλs

,

η⊥ =

(
0,

k2 × k1

|k2||k1| sin θ

)
= (0, sinφ,− cosφ, 0). (A.5)

Here

X = 2k2p1, Sx = S −X, λ = SXQ2 −M2Q4 −m2λq,

λq = S2
x + 4Q2M2. (A.6)

It should be noted, that for the BSV process the variable X is fixed by Q2

and S: X = S −Q2, while for the radiative one, the variable X (as well as Sx

and λq) depends on inelasticity:

X = S −Q2 − v, Sx = Q2 + v, λq = (Q2 + v) + 4Q2M2. (A.7)
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As it follows from (A.9) the normal to scattering plane component of η satisfies
the equations:

k1η⊥ = k2η⊥ = p1η⊥ = 0, kη⊥ = −p2η⊥ = sinφk

√
λ3√
λq

. (A.8)

Appendix A.2 Four-momenta reconstruction

After generation of photonic variable t, v and φk the four-momenta of final
proton p2 = (p

(0)
2 , p

(1)
2 , p

(2)
2 , p

(3)
2 ), lepton k2 = (k

(0)
2 , k

(1)
2 , k

(2)
2 , k

(3)
2 ) and real pho-

ton k = (k(0), k(1), k(2), k(3)) in the LAB system read:

p
(1)
2 =

√
λ3(λ1 cosφ cosφk −

√
λqS sin φ sinφk) + λ2

√
λ4 cosφ

λqS
,

p
(2)
2 =

√
λ3(

√
λqS cos φ sinφk + λ1 sinφ cosφk) + λ2

√
λ4 sinφ

λqS
,

p
(3)
2 =

λ1λ2 − 4M2
√
λ3λ4 cosφk

2λqMS
, p

(0)
2 =

t+ 2M2

2M
,

k
(1)
2 =

√
λ4 cosφ

S
, k

(2)
2 =

√
λ4 sinφ

S
, k

(3)
2 =

S2 − λ1

2MS
, k

(0)
2 =

S −Q2 − v

2M
,

k(1) =

√
λ3(

√
λqS sinφ sinφk − λ1 cosφ cosφk) + (λq − λ2)

√
λ4 cosφ

λqS
,

k(2) =
−
√
λ3(

√
λqS cosφ sinφk + λ1 sinφ cosφk) + (λq − λ2)

√
λ4 sinφ

λqS
,

k(3) =
λ1(λq − λ2) + 4M2

√
λ3λ4 cosφk

2λqMS
, k(0) =

Q2 + v − t

2M
, (A.9)

where

λ1 = S(Q2 + v) + 2M2Q2, λ2 = t(Q2 + v) + 2M2(Q2 + t),

λ3 = tv(Q2 − t+ v)−M2(Q2 − t)2, λ4 = Q2S(vmax − v). (A.10)

Appendix B Explicit expressions for the kinematic quantities θ

The kinematic coefficients θBi appear as a convolution of the leptonic tensor
LB
µν with corresponding hadronic structures
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wµν
1 = −gµν , wµν

2 =
pµpν
M2

,

wµν
3 = −iPN ǫµνλσ

qλησ
M

, wµν
4 = iPNǫµνλσ

qλpσ ηq

M3
(B.1)

and read

θB1 =
1

2
LB
µνw

µν
1 = Q2,

θB2 =
1

2
LB
µνw

µν
2 =

1

2M2
(S(S −Q2)−M2Q2),

θB3 =
1

2
LB
µνw

µν
3 = PLPN

2m

M
(qη k2ξ − ξη Q2),

θB4 =
1

2
LB
µνw

µν
4 = PLPN

mQ2 qη

M3
(2p1ξ − k2ξ). (B.2)

Here PL and PN define the degree of the lepton and target polarization re-
spectively and the explicit expressions for polarized vectors of the scattering
particles ξ and η can be found in Appendix A.1.

The quantities θi(v1, v2) appear as a convolution of the leptonic tensor that is
responsible for the real photon emission:

LR
µν =−1

2
Tr[(k̂2 +m)Γµα(1− PLξ̂γ5)(k̂1 +m)Γ̂αν ],

Γµα =

(
k1α
kk1

− k2α
kk2

)
γµ −

γµk̂γα
2kk1

− γαk̂γµ
2kk2

,

Γ̂αν =

(
k1α
kk1

− k2α
kk2

)
γν −

γαk̂γν
2kk1

− γν k̂γα
2kk2

(B.3)

with hadronic structures presented in eq.(B.1).

As a result

θRi (v1, v2)=− 1

4π

v2∫

v1

dv
√
λq

2π∫

0

dφk LR
µνw

µν
i (q → q − k) =

ki∑

j=1

v2∫

v1

dvRj−3θRij(v)

=
ki∑

j=1

v2∫

v1

dv

2π∫

0

dφk Rj−3θRij(v, φk), (B.4)

where R and ki are defined after eq. (12).
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Appendix B.1 Quantities θij(v) and θij(v, φk)

Here, we combine explicit expressions for θRij(v) and θRij(v, φk) quantities cal-
culated for polarized scattering [5,19,34] and present the explicit expressions
θRi (v1, v2) calculated for unpolarized scattering only.

Both types of quantities θRij(v) and θRij(v, φk) for i = 1, 2, 3 take the similar
form

θR11 =4Q2FIR,

θR12 =4τFIR,

θR13 =−4F − 2τ 2Fd,

θR21 =2(SX −M2Q2)FIR/M
2,

θR22 =(2m2SpF2− + SpSxF1+ + 2(Sx − 2M2τ)FIR − τS2
pFd)/2M

2,

θR23 =(4M2F + (2M2τ − Sx)τFd − SpF1+)/2M
2,

θR31 =PLPN
8m

M
(ηq k2ξ −Q2 ξη)FIR,

θR32 =−PLPN
2m

M
(2ηq (τk2ξFd − 2F ξ

IR) +Q2ηK(F ξ
2+ − F ξ

−2 − 2F ξ
d )

+4ξητFIR − 4m2k2ξ(2F
η
d − F η

2+))

θR33 =PLPN
2m

M
(ηK τ(2F ξ

d + F ξ
2− − F ξ

2+)− 2 k2ξ τF η
d − 4m2F ξη

d − 6F ξη
IR

+Q2(F ξη
2+ − F ξη

2−)),

θR34 =PLPN
2mτ

M
( 2F ξη

d + F ξη
2+ − F ξη

2− ) , (B.5)

where τ = (t−Q2)/R and the four-vector K = k1 + k2.

For i = 4 we have

θR41 = ηqθ̃41/M, θR42 = (ηqθ̃42 − θ̃η41)/M,

θR43 = (ηqθ̃43 − θ̃η42)/M, θR44 = (ηqθ̃44 − θ̃η43)/M,

θR45 = −θ̃η44/M, (B.6)
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where

θ̃41 =PLPN
4m

M2
( 2 ξp Q2 − Sx ξk2 )FIR,

θ̃42 =PLPN
m

M2
(2 (Sp − 2Sx )F

ξ
IR + 2 k2ξ τSxFd + 8 ξp τFIR

+Sp (Q
2
mF

ξ
2+ −Q2F ξ

2− )− 4m2( k2ξ (2Fd − F2+) + Sp(F
ξ
2+ − F ξ

d )),

θ̃43 =PLPN
m

M2
((Q2 − τSp )F

ξ
2− − (Q2

m − τSp )F
ξ
2+ + 2 k2ξ τFd

+6F ξ
IR − 2F ξ

d τSp),

θ̃44 =−PLPN
mτ

M2
( 2F ξ

d − F ξ
2− + F ξ

2+ ) . (B.7)

The quantities θ̃η4j are calculated as:

θ̃η4j = θ̃4j(Fall → F η
all, F

ξ
all → F ξη

all). (B.8)

The upper indices in Fall appears in the following way:

2F ξ
2+ =(2F1+ + τF2−)sξ + F2+rξ,

2F η
2+ =(2F1+ + τF2−)sη + F2+rη +

4 sinφkdη
R

√√√√λ3

λq
F2+,

2F ξ
2− =(2Fd + F2+)τsξ + F2−rξ,

2F ξ
d =F1+sξ + Fdrξ,

2F η
d =F1+sη + Fdrη +

4 sinφkdη
R

√√√√λ3

λq
Fd,

4F ξη
2+ =(2F1+ + τF2−)(rηsξ + sηrξ) + F2+(rηrξ + τ 2sηsξ)

+4(2F + Fdτ
2)sηsξ +

8 sinφkdη
R

√√√√λ3

λq
F ξ
2+,

4F ξη
2− =(2Fd + F2+)(rηsξ + sηrξ) + F2−(rηrξ + τ 2sηsξ) + 4τF1+sηsξ

+
8 sinφkdη

R

√√√√λ3

λq

F ξ
2−,
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4F ξη
d =F1+(rηsξ + sηrξ) + Fd(rηrξ + τ 2sηsξ) + 4Fsηsξ

+
8 sinφkdη

R

√√√√λ3

λq
F ξ
d . (B.9)

The quantities

s{ξ,η} = a{ξ,η} + b{ξ,η}, r{ξ,η} = τ(a{ξ,η} − b{ξ,η}) + 2c{ξ,η} (B.10)

are combinations of coefficients of polarization vectors ξ and η expansion over
basis (see Appendix A.1)

ξ=2(aξk1 + bξk2 + cξp),

η=2(aηk1 + bηk2 + cηp+ dηη⊥). (B.11)

We note that the scalar products from (B.5,B.6,B.7) are also calculated in
terms of the polarization vector coefficients:

ηq = −Q2(aη − bη) + Sxcη, ηK = (Q2 + 4m2)(aη + bη) + Spcη,

k2ξ = Q2
maξ + 2m2bξ +Xcξ, ξp = Saξ +Xbξ + 2M2cξ,

1

2
ξη = 2m2(aξaη + bξbη) + 2M2cξcη +Q2

m(aξbη + bξaη)

+S(aξcη + cξaη) +X(bξcη + cξbη). (B.12)

With the exception of the contribution proportional to dη all dependencies of
θij on the photonic variable φk are included in the quantities F , however in
both cases we have:

FIR = m2F2+ −Q2Fd (B.13)

So for θij(v, φk) the quantities F read

Fd(v, φk) =
F (v, φk)

z1z2
, F1+(v, φk) = F (v, φk)

(
1

z1
+

1

z2

)
,

F2±(v, φk) = F (v, φk)

(
1

z22
± 1

z21

)
, F (v, φk) =

1

2π
√
λq

. (B.14)

Here
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z1=
2kk1
R

=
1

λq
(Q2Sp + τ(SSx + 2M2Q2)− 2M

√
λz cosφk),

z2=
2kk2
R

=
1

λq
(Q2Sp + τ(XSx − 2M2Q2)− 2M

√
λz cosφk), (B.15)

and

λz = (τ − τmin)(τmax − τ)λ, τmax/min =
Sx ±

√
λq

2M2
,

Sp = S +X = 2S −Q2 − v. (B.16)

The following equalities define the functions F for θRij(v):

F (v) = λ−1/2
q , Fd(v) = τ−1(C

−1/2
2 (τ)− C

−1/2
1 (τ)),

F1+(v) = C
−1/2
2 (τ) + C

−1/2
1 (τ),

F2±(v) = B2(τ)C
−3/2
2 (τ)∓ B1(τ)C

−3/2
1 (τ), (B.17)

where

B1,2(τ) = −1

2
( λqτ ± Sp(Sxτ + 2Q2) ) ,

C1(τ) = (Sτ +Q2)2 + 4m2(Q2 + τSx − τ 2M2),

C2(τ) = (Xτ −Q2)2 + 4m2(Q2 + τSx − τ 2M2). (B.18)

We note that Fd has a 0/0-like uncertainty for τ = 0 (inside the integration
region). It leads to difficulties in numerical integration, so another form is used
also

Fd(v) =
Sp(τSx + 2Q2)

C
1/2
1 (τ)C

1/2
2 (τ)(C

1/2
1 (τ) + C

1/2
2 (τ))

. (B.19)

Appendix B.2 Quantities θRi (v1, v2)

As it was mentioned above for the unpolarized scattering, the integration over
v is performed analytically resulting in:

θR1 (v1, v2)=−4IF + 4tI−2
2+ − 2(Q4 + t2)I−2

d ,
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θR2 (v1, v2)=
1

2M2
(4M2IF − t(I01+ + 2I0d) + t(2S − t)I−1

1+ + 4I021

−4(2S − t)I−1
21 + 4(S2 − t(M2 + S))I−2

2+

+t(Q2 + 4S − 3t)I−1
d

+[t(Q2t− (2S − t)2) + 2M2(t2 +Q4)]I−2
d ), (B.20)

where

IF =

v2∫

v1

dvF (v) = log



Q2 + v2 +

√
(Q2 + v2)2 + 4M2Q2

Q2 + v1 +
√
(Q2 + v1)2 + 4M2Q2


 ,

I01+ =

v2∫

v1

dvF1+(v) = (Q2 − t)

(
S

Q4
∆L1 −

S − t

t2
∆L2

)
+

∆1
1

Q4
+

∆1
2

t2
,

I−1
1+ =

v2∫

v1

dv

R
F1+(v) =

1

Q2
∆L1 +

1

t
∆L2,

I021=
1

2
m2

v2∫

v1

dv(F2+(v)− F2−(v)) =
1

2
(Q2 − t)

S2

Q4
∆0

1,

I−1
21 =

1

2
m2

v2∫

v1

dv

R
(F2+(v)− F2−(v)) =

S

2Q2
∆0

1,

I−2
2+ =m2

∫
dv

R2
F2+(v) =

1

2(Q2 − t)

(
∆0

1 −
Q2

t
∆0

2

)
,

I0d =

v2∫

v1

dvFd(v) = (Q2 − t)

(
S2

Q6
∆L1 −

(S − t)2

t3
∆L2

)
+ 2

S

Q6
∆1

1

+2
S − t

t3
∆1

2 +
1

2(Q2 − t)

(
∆2

1

Q6
− ∆2

2

t3

)
,

I−1
d =

v2∫

v1

dv

R
Fd(v) =

S

Q4
∆L1 +

S − t

t2
∆L2 +

1

Q2 − t

(
∆1

1

Q4
− ∆1

2

t2

)
,

I−2
d =

v2∫

v1

dv

R2
Fd(v) =

1

Q2 − t

(
1

Q2
∆L1 −

1

t
∆L2

)
. (B.21)

Here

∆2
i = |Di(v2)|Di(v2)− |Di(v1)|Di(v1), ∆

1
i = |Di(v2)| − |Di(v1)|,

∆0
i = Di(v2)/D

2
i+3(v2)−Di(v1)/D

2
i+3(v1), (B.22)

∆L1 = log

[
2m2t(Q2 − t + 2v2) +Q2D1(v2) +D4(v2)

√
4m2t +Q4

2m2t(Q2 − t + 2v1) +Q2D1(v1) +D4(v1)
√
4m2t +Q4

]
,
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∆L2 = log

[
2m2

√
t(Q2 − t + 2v2) +

√
tD2(v2) +D5(v2)

√
4m2 + t

2m2
√
t(Q2 − t + 2v1) +

√
tD2(v1) +D5(v1)

√
4m2 + t

]

and

D1(v)= (t−Q2)(S −Q2) +Q2v,

D2(v)=S(Q2 − t) + tv,

D3(v)= vt(v − t+Q2)−M2(Q2 − t)2,

D4(v)=
√
D2

1(v) + 4m2D3(v),

D5(v)=
√
D2

2(v) + 4m2D3(v). (B.23)

Appendix C Test output

Here, we present the results of the test as test.dat output file corresponding
to:
1) itest := 1 – the generation of ρ(t) distribution and comparison with the
analytical cross section corresponding to the first formula in (15) (here and
below invariants v, t are in GeV2)

itest=1

t generation

rgen is generated probability

rcalc is calculated probability

Ebeam=.850 GeV

Q**2=.200 GeV**2

vmin=0.10E-01 GeV**2

vcut=0.00 GeV**2

PL*PN=-1.00 lepton polarization times nucleon polarization

thetapn=48.0 degrees angle between target polarization

vector and beam momentum in Lab system

phipn=0.00 degrees athimutal angle in Lab system

number of bins 20

number of radiative events 100000000

initial random number 12

bin t rgen rcalc rgen/rcalc

GeV**2 GeV**(-2)

1 0.4237E-01 1.624 1.786 0.9093

2 0.9197E-01 1.619 1.589 1.019

3 0.1453 2.325 2.274 1.023

4 0.1969 12.14 35.10 0.3460

5 0.2351 1.518 1.666 0.9108
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6 0.2893 0.3042 0.3153 0.9647

7 0.3411 0.1113 0.1134 0.9816

8 0.3923 0.5102E-01 0.5163E-01 0.9883

9 0.4433 0.2666E-01 0.2688E-01 0.9917

10 0.4943 0.1518E-01 0.1526E-01 0.9945

11 0.5449 0.9216E-02 0.9259E-02 0.9954

12 0.5960 0.5872E-02 0.5865E-02 1.001

13 0.6466 0.3893E-02 0.3872E-02 1.006

14 0.6973 0.2577E-02 0.2632E-02 0.9791

15 0.7479 0.1822E-02 0.1833E-02 0.9937

16 0.7983 0.1278E-02 0.1304E-02 0.9801

17 0.8490 0.9465E-03 0.9396E-03 1.007

18 0.9003 0.6965E-03 0.6806E-03 1.023

19 0.9509 0.4965E-03 0.4945E-03 1.004

20 0.9973 0.2696E-03 0.3558E-03 0.7577

2) itest := 2 – the generation of ρ(v) distribution and comparison with the
analytical cross section corresponding to the second formula in (15)

itest=2

v generation

rgen is generated probability

rcalc is calculated probability

Ebeam=.850 GeV

Q**2=.200 GeV**2

vmin=0.10E-01 GeV**2

vcut=0.00 GeV**2

PL*PN=-1.00 lepton polarization times nucleon polarization

thetapn=48.0 degrees angle between target polarization

vector and beam momentum in Lab system

phipn=0.00 degrees athimutal angle in Lab system

number of bins 20

number of radiative events 100000000

initial random number 12

t= 0.5218 GeV**2

bin v rgen rcalc rgen/rcalc

GeV**2 GeV**(-2)

1 0.6260 0.1660 0.1657 1.002

2 0.6599 0.1931 0.1933 0.9990

3 0.6937 0.2265 0.2266 0.9998

4 0.7275 0.2676 0.2677 0.9996

5 0.7613 0.3206 0.3205 1.000

6 0.7952 0.3904 0.3913 0.9978

7 0.8291 0.4927 0.4921 1.001

8 0.8630 0.6478 0.6486 0.9987
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9 0.8971 0.9284 0.9278 1.001

10 0.9316 1.579 1.580 0.9993

11 0.9698 6.013 6.043 0.9951

12 0.9886 13.45 16.44 0.8179

13 1.029 1.759 1.760 0.9992

14 1.064 0.9512 0.9502 1.001

15 1.098 0.6343 0.6361 0.9973

16 1.132 0.4694 0.4686 1.002

17 1.166 0.3649 0.3645 1.001

18 1.199 0.2937 0.2942 0.9985

19 1.233 0.2435 0.2436 0.9999

20 1.267 0.2071 0.2053 1.008

3) itest := 3 – the generation of ρ(φk) distribution and comparison with the
analytical cross section corresponding to the third formula in (15)

itest=3

phik generation

rgen is generated probability

rcalc is calculated probability

Ebeam=.850 GeV

Q**2=.200 GeV**2

vmin=0.10E-01 GeV**2

vcut=0.00 GeV**2

PL*PN=-1.00 lepton polarization times nucleon polarization

thetapn=48.0 degrees angle between target polarization

vector and beam momentum in Lab system

phipn=0.00 degrees athimutal angle in Lab system

number of bins 20

number of radiative events 100000000

initial random number 12

t= 0.5218 GeV**2

v= 0.7962 GeV**2

bin phik rgen rcalc rgen/rcalc

rad rad**(-1)

1 -2.984 0.1890E-01 0.1884E-01 1.003

2 -2.668 0.2043E-01 0.2036E-01 1.004

3 -2.351 0.2388E-01 0.2381E-01 1.003

4 -2.035 0.3031E-01 0.3027E-01 1.001

5 -1.718 0.4189E-01 0.4197E-01 0.9980

6 -1.402 0.6354E-01 0.6381E-01 0.9959

7 -1.085 0.1062 0.1069 0.9927

8 -0.7682 0.1961 0.1988 0.9864

9 -0.4529 0.3922 0.4013 0.9773

10 -0.1470 0.6982 0.7223 0.9667
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11 0.1470 0.6981 0.7223 0.9665

12 0.4530 0.3924 0.4012 0.9779

13 0.7682 0.1960 0.1988 0.9862

14 1.085 0.1061 0.1069 0.9919

15 1.402 0.6351E-01 0.6380E-01 0.9955

16 1.718 0.4192E-01 0.4197E-01 0.9988

17 2.035 0.3036E-01 0.3026E-01 1.003

18 2.351 0.2389E-01 0.2381E-01 1.003

19 2.667 0.2036E-01 0.2036E-01 1.000

20 2.983 0.1888E-01 0.1884E-01 1.002

4) itest := 4 – the cross-check of the accuracy of the vector reconstruction for
5 random radiative events

itest=4

variable reconstruction

Ebeam=.850 GeV

Q**2=.200 GeV**2

vmin=0.10E-01 GeV**2

vcut=0.00 GeV**2

PL*PN=-1.00 beam polarization times target polarization

thetapn=48.0 degrees angle between target polarization

vector and beam momentum in Lab system

phipn=0.00 degrees athimutal angle in Lab system

number of bins 20

number of radiative events 5

initial random number 12

-------------------------------------------

event= 1

test v reconstruction

v=0.206247E-01 GeV**2 reconstructed v from 4-vector

v=0.206247E-01 GeV**2 generated v

test t reconstruction

t=0.202340 GeV**2 reconstructed t from 4-vecto

t=0.202340 GeV**2 generated t

m2gamma= 0.157778E-10 GeV**2 real photon mass square

-------------------------------------------

event= 2

test v reconstruction

v=0.579509 GeV**2 reconstructed v from 4-vector

v=0.579509 GeV**2 generated v
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test t reconstruction

t=0.119041 GeV**2 reconstructed t from 4-vecto

t=0.119041 GeV**2 generated t

m2gamma=-0.855924E-08 GeV**2 real photon mass square

-------------------------------------------

event= 3

test v reconstruction

v=0.328652E-01 GeV**2 reconstructed v from 4-vector

v=0.328652E-01 GeV**2 generated v

test t reconstruction

t=0.203009 GeV**2 reconstructed t from 4-vecto

t=0.203009 GeV**2 generated t

m2gamma= 0.249049E-10 GeV**2 real photon mass square

-------------------------------------------

event= 4

test v reconstruction

v=0.579878 GeV**2 reconstructed v from 4-vector

v=0.579878 GeV**2 generated v

test t reconstruction

t=0.117210 GeV**2 reconstructed t from 4-vecto

t=0.117210 GeV**2 generated t

m2gamma=-0.340940E-08 GeV**2 real photon mass square

-------------------------------------------

event= 5

test v reconstruction

v=0.412302E-01 GeV**2 reconstructed v from 4-vector

v=0.412302E-01 GeV**2 generated v

test t reconstruction

t=0.193803 GeV**2 reconstructed t from 4-vecto

t=0.193803 GeV**2 generated t

m2gamma= 0.124488E-10 GeV**2 real photon mass square

4) itest := 5 – the cross-check of the accuracy of the analytical and numerical
integration over t for unpolarized scattering
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itest=5

comparison of the analytical and numerical integration over t

rnum is the numerically integrated cross section

ran is the analytically integrated cross section

Ebeam=4.00 GeV

Q**2=3.00 GeV**2

vmin=0.10E-01 GeV**2

vcut=.200 GeV**2

PL*PN= 0.00 beam polarization times target polarization

bin t rnum ran rnum/ran

GeV**2 nbarn*GeV**(-4)*rad**(-1)

1 2.340 0.8162E-06 0.8179E-06 0.9979

2 2.382 0.2651E-05 0.2656E-05 0.9980

3 2.424 0.4847E-05 0.4857E-05 0.9980

4 2.466 0.7560E-05 0.7575E-05 0.9981

5 2.509 0.1102E-04 0.1104E-04 0.9981

6 2.551 0.1561E-04 0.1564E-04 0.9982

7 2.593 0.2194E-04 0.2198E-04 0.9983

8 2.635 0.3111E-04 0.3116E-04 0.9984

9 2.677 0.4521E-04 0.4528E-04 0.9985

10 2.720 0.6865E-04 0.6874E-04 0.9986

11 2.762 0.1122E-03 0.1124E-03 0.9988

12 2.804 0.2096E-03 0.2098E-03 0.9990

13 2.846 0.5433E-03 0.5436E-03 0.9994

14 2.889 0.5977E-02 0.5971E-02 1.001

15 2.931 0.1018E-01 0.1017E-01 1.001

16 2.973 0.2645E-01 0.2641E-01 1.002

17 3.015 0.4498E-01 0.4490E-01 1.002

18 3.057 0.1006E-01 0.1004E-01 1.001

19 3.100 0.3106E-03 0.3109E-03 0.9991

20 3.142 0.2593E-04 0.2598E-04 0.9982
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