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Abstract

Theorbifolder is a program developed inC++ that computes and analyzes the low-energy effective theory
of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum,
to identify the allowed couplings in the superpotential, toautomatically generate large sets of orbifold
models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their
vacuum-configurations.
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Program Summary
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Distribution format: tar.gz
Programming language:C++
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Word size:32 bits or 64 bits
External routines:None
Dependencies:Boost, GSL
Typical running time:Less than a second per model.
Nature of problem:Calculating the low energy spectrum of heterotic orbifold compactifications.
Solution method:Quadratic equations on a lattice; representation theory; polynomial algebra.
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1. Introduction

String theory is a candidate for a consistent unified quantumtheory of gravity and gauge interactions
and could thus provide us with an ultraviolet completion formodels of particle physics. The search for 4-
dimensional string vacua resembling the standard model (SM) (or its supersymmetric extension (MSSM))
is therefore one of the central questions in string theory research. Over the years, a wide landscape of 4-
dimensional string models has emerged and it remains to be seen how particle physics phenomena can be
incorporated within the scheme of string theory. Some hintspoint to a unification of gauge couplings within
the framework of exceptional groups (as e.g. E8) but a direct road from strings to particle physics has not
yet been identified. It is perhaps the time to step back, collect and classify existing model constructions and
try to identify properties relevant for a description of nature.

Here we present and analyze a specific approach that was studied already in the 1980s and has led
to interesting results since then: orbifold compactification [1, 2, 3] of the heterotic strings [4, 5]. The
reason for the success of this approach is “computability” paired with geometric intuition. Exact tools of
conformal field theory are here at our disposal [6, 7] that are usually not available in approaches based on
compactification on smooth manifolds. Besides, in particular E8×E8 as a gauge group allows a perturbative
inclusion of the standard model gauge group (as well as possibly grand unification).

A toroidal orbifold is flat with the exception of a number of fixed points or fixed tori. It gives rise to
a picture called the heterotic brane world scenario [8, 9, 10]: fields can either live in the 10-dimensional
bulk (untwisted sector) or can be localized at these fixed points or fixed tori (twisted sectors). The relative
location of these fields as well as the local gauge structure determines many properties of the 4-dimensional
string vacua and is the source of geometric intuition for model building. The orbifold point is a point of
enhanced symmetries (in the moduli space of compactification) and those symmetries might be relevant for
a description of nature. Models of particle physics seem to require many (discrete) symmetries, e.g. flavour
symmetries or symmetries to prevent too fast proton decay. Some of these symmetries could be slightly
broken to provide us with small parameters relevant for the description of hierarchies as e.g. observed in
the spectrum of quark and lepton masses. This supports our hope that orbifold compactification is not just
an approximation with increased “computability”, but thatit provides a realistic compactification: nature
might have chosen to live close to the orbifold point with enhanced symmetries.

Explicit orbifold model constructions in the last 5 to 10 years have been extremely successful [11, 12, 13,
14] (see [15, 16] for earlier reviews). Many of the properties of particle physics can be incorporated in the
scheme. This includes grand unification, gauge-Yukawa unification, satisfactory Yukawa textures, solutions
to theµ-problem, the creation of hierarchies and a successful incorporation of neutrino Majorana masses.
Discrete symmetries are identified to solve the flavour problem and to avoid too fast proton decay. These
properties have been identified in the so called Minilandscape (based on theZ6-II orbifold) [17, 18, 19] and
subsequent work [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

The search for such models requires a computer assisted scanthat incorporates the rules for a consistent
string theory construction (as e.g. modular invariance). The purpose of this work is to make the tools and
techniques available to the public. We hope that this will give more people the opportunity to contribute to
this exciting field of model constructions.

We present theorbifolder, a program developed inC++ that allows the calculation of the low-energy
spectrum of heterotic orbifold constructions. The programincludes routines to compute the massless spec-
trum and to identify the allowed couplings of the superpotential. It allows the construction of arbitrary
orbifold models, the identification of phenomenologicallyinteresting models and a classification of their
vacuum configurations.

Theorbifolder can be considered in some aspects as the stringy analog of programs such asSoftSusy,
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SuSpect andSPheno: The latter are devoted to the detailed computation of particle spectra, interactions and
phenomenological quantities, using as input a high scale supersymmetric model and imposing low-energy
constraints. Analogously, theorbifolder takes as a starting point the 10D heterotic strings and, provided
some geometric input describing the features of the six compactified dimensions, computes the (massless)
spectrum, interactions and symmetries of the resulting lower-energy effective 4D field theory.

After a short introduction to heterotic orbifold compactification in Section2, we explain how to down-
load and install theC++ program in Section3. Section4 discusses the explicit recipe to run the program,
while in Section5 we conclude and give an outlook for future research. Technical details are relegated to
the appendices and to the webpage [39, §Complementary notes].

2. Heterotic Orbifold Compactifications

In this section we give a brief introduction to heterotic orbifolds, in order to introduce our notation
and conventions used in theorbifolder. For more details on orbifold compactifications, we refer tothe
reviews [15, 16, 11, 13, 14].

In the context of heterotic string compactifications, we define an orbifold as the quotient of six-dimen-
sional real spaceR6 divided by the so-calledspace group S, where the quotient is taken using the equiva-
lence relationX ∼ gX for all g ∈ S andX ∈ R6. More specifically, the space group is chosen to consist of
two parts:

• discrete rotations that form the so-calledpoint group P. For simplicity, we chooseP to be Abelian.
To obtainN = 1 supersymmetry in 4D,P is eitherZM or ZM×ZN generated by rotation matricesθ
andω, where we useω = 1 for ZM. These matrices can be represented by so-calledtwist vectors v1
andv2 that give the three rotational phases in the three complex planes and the sum over all entries
integer to ensureN = 1. For example,v1 =

(

0, 1
3,

1
3,−

2
3

)

andv2 = 0 for theZ3 orbifold.

• translations generated by the vectorseα ∈ R6, for α = 1, . . . , 6. They form a 6D lattice denoted byΓ
and hence define a six-torus. Elements ofP must map the latticeΓ to itself.

In detail, an element of the space group is of the formg =
(

θkωl , nαeα
)

∈ S, wherek, l ∈ Z, nα ∈ Z (or in

some casesnα ∈ Q) and summation overα = 1, . . . , 6. It acts onX ∈ R6 asgX = θkωlX+nαeα. Using these
definitions, we can deal with all 6D Abelian and toroidal orbifolds including the cases of roto-translations
and freely acting involutions (see e.g. Ref. [34]).

Due to modular invariance, the geometric action of the spacegroup S has to be embedded into the
gauge degrees of freedom of the heterotic string, denoted byXI , I = 1, . . . , 16 in the bosonic formulation.
We restrict ourselves to the case of shift embedding, whereθ ֒→ V1,ω ֒→ V2 andeα ֒→Wα for α = 1, . . . , 6.
Then, the action ofS on X ∈ R6 induces an action onXI as

g X = θkωlX + nαeα ⇒ g XI = XI + kVI
1 + lV I

2 + nαW
I
α , (1)

whereI = 1, . . . , 16. The vectorsV1, V2 andWα are calledshiftsandWilson lines, respectively. They are
constrained by modular invariance [2, 35, 36], e.g.

M (V2
1 − v2

1) = 0 mod 2 and NαW
2
α = 0 mod 2, (2)

whereM is the order ofZM andNα the order ofWα. The combined group formed by the space group and
its action on the gauge degrees of freedom is called theorbifold group.
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From a model-building standpoint, we have now introduced all the input data to define a heterotic
orbifold model: the space groupS (consisting of the point groupP and the latticeΓ) and its embedding as
shiftsV1, V2 and Wilson linesWα.

We close this section with a very brief summary of the construction of massless spectra of heterotic
orbifolds. Given the input data, one distinguishes betweentwo kinds of closed (and massless) strings on
the orbifold: first of all ordinary closed strings, also calleduntwisted strings, being the remnants of the 10d
E8×E8 or SO(32) vector multiplet and the gravity multiplet. Secondly, there are closed strings from the
twisted sectorswhich close only up to the action of the orbifold group. To construct them, one needs to
identify the inequivalent non-trivial space group elements as the constructing elements of twisted strings:
i.e. forg ∈ S one can define a twisted boundary conditionX(τ, σ + π) = gX(τ, σ) on the string world-sheet.
Then, using standard CFT techniques, the equations for massless right- and left-movers with boundary
conditiong read

(

q+ vg

)2

2
−

1
2
+ δc = 0 and

(

p+ Vg

)2

2
+ Ñ − 1+ δc = 0 (3)

wherep is from the E8 × E8 or Spin(32)/Z2 weight lattice,q from the vector or spinor weight lattice of
SO(8),δc denotes the shift in the zero-point energy andÑ the number operator of left-moving oscillators.
Furthermore, we define thelocal twist vg = kv1 + lv2 and thelocal shift Vg = kV1 + lV2 + nαWα. In the
final step, one builds massless states as tensor products of massless right- and left-movers such that they are
invariant under the full orbifold action, i.e.

|q+ vg〉R ⊗ |p+ Vg〉L or |q+ vg〉R ⊗ α̃|p+ Vg〉L , (4)

whereα̃ denotes possible oscillator excitations. We define the shifted momentaqsh = q + vg and psh =

p+ Vg, wherepsh describes the transformation properties under gauge transformations. The states Eq. (4)
correspond to massless fields of the 4D effective field theory. They carry gauge charges (frompsh), discrete
Rcharges, modular weights (fromqsh and possible oscillator excitations) and discrete non-R charges (from
the constructing elementg ∈ S).

3. Download and Installation

The minimal requirements for compiling theorbifolderare the Boost C++ Libraries version≥ 1.0 [37]
and the GNU Scientific Library (GSL) version≥ 1.9 [38]. All components should come preinstalled on a
standard Linux distribution. If this should not be the case,they can easily be installed.

On ayum-based distribution like e.g. Fedora, the command “yum -y install gsl gsl-devel boost

boost-devel” will install the corresponding libraries (recommended).Alternatively, one can also directly
install from source or use the other download options available [37, 38].

The orbifolder is free software under the copyleft of theGNU General Public Licenseand can be
downloaded from [39]:

http://projects.hepforge.org/orbifolder/

To install the program, download the fileorbifolder-1.0.tgz to a directory of your choice, open a
shell and enter the following commands at the prompt:

1 tar xfvz orbifolder-1.0.tar.gz

2 cd orbifolder-1.0

3 ./configure
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4 make

5 make install

Note that the version number “1.0” may change over time and should be substituted accordingly. The
first line unpacks the tar-ball and creates a subdirectory structure with the source code. The second line
changes to the installation directory. The third line starts the configuration script that checks system re-
quirements and generates theMakefile. The fourth line compiles the code, and finally the fifth line installs
it on your system. After successful compilation and installation, the main program (namedorbifolder)
will be available in the current directory. We have disabledcustom installation using the--prefix switch
in the configuration script. The main programorbifolder can simply be copied to the directory of the
user’s choice by the standard shell commands. Detailed installation instructions can also be found in the
README file in the installation directory and on the website [39].

We have tested the installation process on

• a 32-bit system running Linux Ubuntu 11.04 with Boost 1.42 and GSL 1.14,

• a 64-bit system running Linux SuSE 11 with Boost 1.36 and GSL 1.11,

• a 64-bit system running Linux Fedora 15 with Boost 1.46 and GSL 1.14,

and ascertained that our code compiles correctly. Should there arise any problems during the installa-
tion, we request that the user send us the fileconfig.log and the output of themake command by email
(orbifolder@projects.hepforge.org).

4. How to run the program

There are three main ways to gain access to theorbifolder: through theprompt, through a web inter-
face and directly through theC++ source code. In the following we will present them in detail.

4.1. The prompt

The orbifolder can be controlled using a Linux-style command line called the prompt. Theprompt

offers an interactive access to almost all variables and functions of theorbifolder. It has the structure of
a file system where orbifold models appear as directories. Inthe following we explain how to start and use
theprompt.

4.1.1. How to get started
We begin with a small tutorial, see Tab. 4 in the additional material [39, §Complementary notes] for

a sample input and output. In general, theprompt can be started using the command./orbifolder or
./orbifolder [model file]. In the former case, no model is loaded automatically. In thelatter case, the
details of a model contained in the plain-text-basedmodel file are loaded (Further properties ofmodel files
are explained in Section4.4.2). As an example, run the program using the command

./orbifolder modelZ3.txt (5)

with parametermodelZ3.txt in order to load the standard embedding model of theZ3 orbifold from this
file. Having started the program, one enters theprompt in its main directory/>. The command

dir (6)
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lists all commands and subdirectories of the current directory. In our example, there is one subdirectory in
the main directory/> calledZ3StandardEmbeddingwhich corresponds to theZ3 model loaded. In general,
a (sub-) directoryA can be accessed using the commandcd A. In our example,

cd Z3StandardEmbedding (7)

results in the output/Z3StandardEmbedding> from where one can access, analyze or change the details of
theZ3 standard embedding model. Again, type in the commanddir to see all commands and subdirectories
of the current directory. For all orbifold model directories there are five subdirectories,

/model>, /gauge group>, /spectrum>, /couplings> and /vev-config>, (8)

containing commands of the respective category:

• /model>: Print and change the input data of the current orbifold model. SeeAppendix B.2.2.

• /gauge group>: Print details on the gauge group, change the U(1) basis and find accidental U(1)
symmetries. SeeAppendix B.2.3.

• /spectrum>: Print details on the spectrum of massless fields. SeeAppendix B.2.4.

• /couplings>: Create and analyze the superpotential and the resulting effective mass matrices. See
Appendix B.2.5.

• /vev-config>: Define and analyze various vev-configurations. SeeAppendix B.2.6. Each configu-
ration is specified by the distinction between observable and hidden sector of the gauge group and the
assignment of labels and vacuum expectation values to the fields (labels are assigned in a subdirectory
called/labels>, seeAppendix B.2.7).

Again, one can access these directories using thecd command. For example, trycd gauge group to enter
the subdirectory/gauge group> and use the commandsprint gauge group andprint simple roots to
see the gauge group (E6×SU(3)×E8) and (a choice of) the corresponding simple roots. In order to go back
one directory one uses the commandcd .. at the prompt. Next, try the subdirectory/spectrum> and use
the commandprint summary to get a summary table of all massless matter fields. The command cd ∼ is
used to go back to the main directory/>. Further standard commands of theprompt are described in Tab.1;
see alsoAppendix Bfor a glossary of commands.

command description

dir display commands and subdirectories of the current directory
cd A change the current directory toA (if A exists)
cd .. go back one directory
cd∼ go back to the main directory/>
exit exit the program if no process is running; use the parameter

orbifolder to enforce exit (also inside a script)

Table 1: Some standard commands in theprompt.

6



4.1.2. How to create new orbifold models
Being in the main directory/> of the prompt new orbifold models can be accessed basically in three

ways:

• load orbifolds(Filename): Load orbifold models from a model file. For example, load theZ6–II
orbifold MSSM of [40] using the commandload orbifolds(modelBHLR.txt).

• create orbifold(A) with point group(M,N): Create aZM or ZM×ZN orbifold namedA by spec-
ifying M andN (setN = 1 for ZM). After entering the new directory usingcd A, one is asked to
specify more details on the model like shifts and Wilson lines, seeAppendix B.2.2.

• create random orbifold from(A). See below.

Orbifold models can be created randomly by using the command

create random orbifold from(A) (9)

in the main directory/>. The parameterA must be either the name of an existing (loaded or previously
created) orbifold model or* for any existing orbifold model in theorbifolder. The command starts a new
process that runs in the background so that one can continue to work with theprompt (seeAppendix B.1.5
for more details on processes). One can specify several optional parameters:

• if(...): Specify the desired properties of the model:inequivalent in order to choose only mod-
els with inequivalent spectra andSM, PS or SU5 for models with a (net) number ofX generations of
Standard Model (SM), Pati-Salam (PS) or SU(5) gauge group plus vector-like exotics, whereX is 3 by
default and can be changed using the parameterXgenerations; c.f. the commandanalyze config

in Appendix B.2.6.

• save to(Filename): Save the models with the desired properties to a model file.

• use(1,1,0,1,...): Eight digits for two shifts plus six Wilson lines; either 1 if the corresponding
shift/Wilson line shall be taken from modelA, or 0 if it shall be created randomly.

• #models(X): Define how many models (with the desired properties, if specified) shall be created
randomly. Use#models(all) to create as many models as possible. If#models(X) is not used, only
one model shall be created.

• print info: Print a short summary of the spectrum immediately when a newmodel with the desired
properties has been found.

• load when done: Load the created models into theorbifolder after the process has finished.

• do not check anomalies: Use this parameter to speed up the process.

• compare #couplings of order(X): If only inequivalent models are saved, this parameter refines
the comparison between two models: compare in addition the number of all superpotential couplings
up to the specified orderX. Slows down the process considerably.
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Examples.A typical example of how to use this command looks like

create random orbifold from(Z3StandardEmbedding) if(inequivalent) (10)

save to(Z3NewModels.txt) use(1,1,0,0,0,0,0,0) #models(10) print info

executed from the main directory/>. In this case a new process is started that constructs newZ3 orbifold
models using both shifts (i.e.V2 = 0) but no Wilson lines from modelZ3StandardEmbedding, saves only
inequivalent models to a model file namedZ3NewModels.txt, prints a brief summary of each new model
and stops after creating ten inequivalent models. In a second example, ten random models ofSM (Standard
Model) type are created starting from theZ6–II orbifold MSSM of [40] by using the command

create random orbifold from(Z6IIOrbifold BHLR) if(inequivalent SM) (11)

save to(Z6IINewMSSMModels.txt) use(1,1,1,1,1,1,0,0) #models(10)

print info load when done

in the main directory/>. The parameteruse(1,1,1,1,1,1,0,0) specifies that only the Wilson linesW5

and W6 are created randomly, i.e. the shifts and other Wilson linesare taken from the original model.
Furthermore, onlyinequivalent standard models (SM) are printed, saved to fileZ6IINewMSSMModels.txt
and finally loaded into theorbifolder after the process has finished. Note that these MSSM models should
be part of the Mini-Landscape [17, 19].

4.2. The web interface

Theorbifolder can also be accessed through a user-friendly web interface.Theorbifolder on-line

makes extensive use of theprompt explained in Section4.1 rendering it available to any user with access
to an internet browser, such as Mozilla Firefox version≥ 3.6, Google Chrome version≥ 2.1, and Internet
Explorer≥ 8.0. Consequently, the program is also available to users of all kinds of smartphones.

One of the advantages of the web interface is that one does notneed to install any program on the
local computer to be able to use most of the functions of theorbifolder. Another advantage is that it can
be executed from platforms that work with the most popular operating systems (without further auxiliary
applications): Windows, Linux and Mac.

On the less bright side, one shortcoming of this version is that it is not recommended to execute time-
consuming instructions since short interruptions in the internet service may affect the results. Furthermore,
a command running during more than 60 minutes is disabled automatically to avoid overload of the server.
Finally, for security reasons, commands involving file manipulation are extremely limited. Specifically, the
parameters and commands@begin/@end print to file(Filename), save to(Filename), load/save
couplings(Filename), load/save labels(Filename) are disabled.

Theorbifolder on-line can be used on our main page [39]
http://projects.hepforge.org/orbifolder/

which redirects to any of our mirror servers. To gain access,you must click on the linkorbifolder
on-line. This starts anorbifolder session on the selected server. The new page consists of three parts:

• History: The result of the latest instructions is shown. The buttondownload history provides an
RTF file containing the full history, i.e. not only the resultof the latest instructions, but the result of
all the commands used during the current session. The user can resize this window.

• List of Commands: This is the input area, where the commands of theprompt are typed. To execute
them, it is necessary to click on the buttonexecute commands. An additional help in this section is the
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buttonupload commands. This button can be used when files (not larger than 100Kb) in plain-text for-
mat containing (lists of) admissible commands have been prepared. The buttondownload commands

provides an RTF file containing the list of all the commands typed during the activeorbifolder
session.

Lists of useful commands and their use is provided in Section4.1andAppendix B.

• Help: The bottom part contains a list of all available commands for the current directory. Each
command in the displayed list is a link to a more precise description of its use.

To terminate anorbifolder on-line session, it suffices to click on the upper buttonEXIT. The buttons
provided on the resulting page allow the user to download thefull history of the current session and the
complete list of successfully executed commands.

Occasionally, errors in the input data may cause theorbifolder to crash. In those cases, the web
interface shall close your session, giving you the opportunity to download the list of instructions (button
download commands) to be used if you restart theorbifolder. Please, make sure that the downloaded list
of commands does not contain the instructions that led to thefailure of the program. We encourage users
to contact the authors reporting any failure in the program,preferably by using the linkcontact us on the
main page of theweb interface.

4.3. TheC++ source code

The orbifolder is written in C++, distributed over several files. Many physical quantities,as briefly
introduced in Section2, have been encapsulated into classes, for example

• CSpaceGroup for the space groupS andCSpaceGroupElement for its elementsg ∈ S,

• CTwistVector for the twistsvi andCShiftVector for the corresponding shiftsVi,

• CWilsonLines for the set of six Wilson linesWα,

• COrbifoldGroup for the orbifold group,

• CMasslessHalfState for finding massless left- and right-movers, i.e. solutionsto Eq. (3),

• CHalfState for the weights ofCMasslessHalfState sorted with respect to their transformation prop-
erties under the elements of the centralizer,

• CState for orbifold-invariant tensor products of massless left- and right-movers, see Eq. (4),

• COrbifold for the full orbifold compactification,

• CField for a field of the effective 4-dimensional theory,

• CMonomial for (gauge invariant) monomials of fields corresponding toD = 0 solutions,

and many more. In addition there are technical classes. For example, there are several classes devoted to
group theory (likedynkin, freudenthal, gaugeGroupFactor andgaugeGroup), the classCAnalyseModel
contains functions to analyze models for their phenomenological properties, the classCPrint contains all
printing commands and the classCPrompt contains the source code of theprompt. As there are in total more
than 40 classes we cannot explain them in detail here. We givefurther details of some of the more important
classes inAppendix Aand a short example program inAppendix A.1.
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4.4. Files defining an orbifold model

There are two files that define an orbifold model: i) Thegeometry filecontains, as the name suggests,
the geometrical information about the orbifold, such as thespace group, and ii) themodel filecontains shifts
and Wilson lines, i.e. the action of the orbifold on the gaugesector of the heterotic string. In the following
we give some more details. Examples are given in the additional material [39, §Complementary notes].

4.4.1. The geometry file
The geometry file basically contains information about

• the space group, i.e. the order of the twist(s), the six lattice vectors ofΓ and the generators of the
space group,

• the discrete (R and non-R) symmetries of the orbifold (important for the computationof allowed
superpotential couplings),

• the inequivalent fixed points specified by their constructing elements
(

θkωl , nαeα
)

and

• for each constructing element a list of centralizer elements, i.e. elementsh ∈ S with [h, g] = 0.

We give two examples in the additional material [39, §Complementary notes]: Tab. 1 gives a detailed
description of a geometry file using theZ3 example and Tab. 2 explains how to create a new geometry file
of, for example, model (1-3) of Ref. [34].

4.4.2. The model file
The model file contains a list of orbifold models, where each model is specified by

• the name of the model (will be used as the name of the corresponding directory in theprompt),

• the name of the geometry file,

• the type of heterotic string (i.e. Spin(32)/Z2 or E8 × E8),

• two shiftsV1, V2 (where theV2 = 0 forZM orbifolds),

• six Wilson linesWα,

• optionally, the parameters of (generalized) discrete torsion a, bα, cα anddαβ as defined in Ref. [36],

• optionally, some of the U(1) generators,

• optionally, one can specify a script that is executed automatically after the model has been loaded.

An example for the case of aZ3 orbifold with standard embedding is given in the additionalmaterial [39,
§Complementary notes].
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5. Conclusions and outlook

With the tools provided here it should be possible to thoroughly investigate the landscape (in particular
the MSSM-like landscape) of orbifold compactification of the heterotic string. This “heterotic braneworld”
provides a coherent geometric picture of MSSM-like models.Crucial properties of the scheme depend on
the geography of fields in extra dimensions. This leads to theconcept of “Local Grand Unification” and a
geometric understanding of e.g. Yukawa couplings, theµ-term, neutrino masses and proton decay. Detailed
properties of models can be computed reliably within the context of conformal field theory.

The models constructed here should be compared (and possibly related) to other regions of the MSSM-
like landscape, as e.g. fermionic formulations [41, 42, 43], tensoring of conformed field theories [44],
smooth compactifications of the heterotic string [45, 46, 47, 48, 49, 50], type II (intersecting) brane-
models [51, 52, 53, 54, 55], M- and F-theory constructions [56, 57, 58, 59, 60, 61, 62]. It would be
interesting to identify similarities and differences of the corresponding schemes. All these cases rely on
a (sometimes hidden) geometric interpretation that definesthe properties of the models such as the appear-
ance of grand unification, values of Yukawa-couplings and the existence of hierarchies.

One of the important observations in the framework of the heterotic braneworld concerns the crucial
role played by discrete (gauge) symmetries. They arise as remnants of the gauge symmetry as well as sym-
metries due to the special location of fields in extra dimensions. They control properties of the scheme,
as e.g. flavor universality and the question of proton stability. At the orbifold point we encounter an en-
hancement of discrete symmetries and particle spectra. These symmetries are a basic ingredient of model
building. Slightly broken, they might give us an explanation for the appearance of hierarchies in particle
physics (as e.g. the ratio of Yukawa couplings). At the orbifold point we can rely on exact conformal field
theory techniques that could be useful to understand the blow-up procedure [6, 7, 63, 64, 65, 30, 66] of
orbifold singularities in a controlled way and thus connectto smooth compactifications.

With a better knowledge of the MSSM-landscape we might hope to relate the various constructions
and improve the calculational power in those models where westill have to rely on an effective low-energy
supergravity and/or large volume approximation. The future of the field requires reliable calculational tools
(as e.g. conformed field theory techniques) which are up to now only applicable in some corners of the
landscape. But we might be lucky and nature might have chosento live close to such a corner.
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Appendix A. Glossary of relevant classes

The orbifolder makes extensive use of the class structure offered byC++. The information of an
orbifold model is distributed according to the following classes.

ClassCAnalyseModel. The classCAnalyseModel contains several functions that analyze the phenomenol-
ogy of orbifold models, mainly for the cases of the Standard Model, Pati Salam or SU(5) gauge group.

ClassCField. A CField object contains all physical information about a massless field, such as the rep-
resentation, the U(1) charges, theqsh charges, the localization and its vev. In addition, it contains a list
of indices which specify its weightspsh (stored in the member variablevector<CVector> Weights of the
associatedCMasslessHalfState object).

ClassCFixedBrane. A CFixedBrane object contains all information about all (untwisted or twisted) strings
with constructing elementg =

(

θkωl , nαeα
)

∈ S. The left-moving part of the string is computed using
the local shiftVg = kV1 + lV2 + nαWα. Hence, the solutions of the equation for massless left-movers,
Eq. (3), are stored here in a vector ofCMasslessHalfState objects, one entry for each different choice
of oscillator excitation. After the massless solutions have been identified, they are sorted with respect to
their centralizer eigenvalues and stored in a corresponding vector ofCHalfState objects (one entry for each
different choice ofÑ with different eigenvalues). In the last step, the massless right-moving CHalfState

objects fromCSector are tensored together with the massless left-movingCHalfState objects stored here
to form orbifold-invariant string states. These states arestored invector<CState> InvariantStates.

ClassCHalfState. A CHalfState object descends from aCMasslessHalfStateobject by sorting the mass-
less solutions (i.e. the weightsqsh or psh for right- or left- movers) with respect to their centralizer-
eigenvalues. The indices of the weights (as listed invector<CVector> Weights of the corresponding
CMasslessHalfState object) having the same eigenvaluesvector<double> Eigenvalues are stored in
vector<unsigned> Weights.

ClassCMasslessHalfState. A CMasslessHalfState object stores the solutions of the equation for mass-
less right- or left-movers, respectively, see Eq. (3). The constructorCMasslessHalfState(MoversType
Type, const S OscillatorExcitation &Excitation) needs two parameters: the first parameterMovers-

Type can be eitherLeftMover or RightMover and the second one specifies the oscillator excitation. Then,
one can call the member functionbool SolveMassEquation(const CVector &constructing Element,

const SelfDualLattice &Lattice) to create the solutions of Eq. (3), whereconstructing Element de-
notes the local twistvg or the local shiftVg andSelfDualLattice can be eitherE8xE8, Spin32 or SO8. The
solutions are stored invector<CVector> Weights.

ClassCOrbifold. A COrbifold object contains all information about a single orbifold compactification.
The main member variable isvector<CSector> Sectors, i.e. a vector ofM timesN CSector objects, one
for each sector of aZM×ZN orbifold. The first element corresponds to the untwisted sector and the rest to
the various twisted sectors.

ClassCOrbifoldGroup. A COrbifoldGroupobject basically contains the space group and its gauge embed-
ding as objects of classCSpaceGroup, CShiftVector andCWilsonLines. Furthermore, it contains a vector
of all inequivalent constructing elements (vector<COrbifoldGroupElement>) and a corresponding vector
of centralizer elements (vector<vector<COrbifoldGroupElement> >).
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ClassCPrint. TheCPrint class contains all printing commands. For the constructorCPrint(OutputType

output type, ostream *out) one needs to specify theOutputType, being eitherTstandard,Tmathematica,
or Tlatex, and aostream object to set the destination of the output, either to the screen using&cout or to a
file using anofstream object.

ClassCSector. A CSector object contains all information about an untwisted or twisted sector. It is mainly
specified by the local twistvg (or in other words byk andl sincevg = kv1+ lv2). As the oscillator excitations
and the right-moving part of the string only depend on the local twist, see Eq. (3), they are identical for all
strings from a given sector. Hence, this data is stored inCSector.

ClassCSpaceGroup. A CSpaceGroup object contains the details about the space group of an orbifold model,
as explained in Section2. All constructing and centralizer elements are stored inCSpaceGroupElement

objects. Additionally, it includes the geometrical information of the compact space, such as the 6D lattice,
its symmetries and the order of the associated Wilson lines.

ClassCState. A CState object is basically an orbifold-invariant combination of amassless right-moving
CHalfState object and a massless left-movingCHalfState object.

Appendix A.1. Example source code

We present a sample program that computes and analyzes the spectrum of theZ6–II orbifold model of
[9]. In the source code distribution, the corresponding file issrc/examples/samplemain01.cpp.

1 #include <stdio.h>

2 #include "cprompt.h"

3 using namespace std;

4

5 int main(int argc, char *argv[])

6 {

7 ifstream in("modelKRZ_A1.txt");

8 if((!in.is_open()) || (!in.good()))

9 exit(1);

10

11 CPrint Print(Tstandard, &cout);

12 string ProgramFilename = "";

13

14 COrbifoldGroup OrbifoldGroup;

15 if (OrbifoldGroup.LoadOrbifoldGroup(in, ProgramFilename))// load from file

16 {

17 cout << "\n-> Model file \"modelKRZ_A1.txt\" loaded." << endl;

18 COrbifold KRZ_A1(OrbifoldGroup); // create the orbifold

19 cout << "-> Orbifold \"KRZ_A1\" created.\n" << endl;

20

21 cout << "-> Print shift and Wilson lines:" << endl;

22 Print.PrintShift(OrbifoldGroup.GetShift(0));

23 Print.PrintWilsonLines(OrbifoldGroup.GetWilsonLines(), true);

24

25 cout << "\n-> Print spectrum, first with and then without U(1) charges:" << endl;

26 Print.PrintSummaryOfVEVConfig(KRZ_A1.StandardConfig); // print with U(1)s

27 SConfig VEVConfig = KRZ_A1.StandardConfig; // create new vev-config.

28 VEVConfig.ConfigLabel = "TestConfig"; // rename new vev-config.
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29 VEVConfig.SymmetryGroup.observable_sector_U1s.clear(); // change obs. sector

30 Print.PrintSummaryOfVEVConfig(VEVConfig); // print without U(1)s

31

32 cout << "-> Analyze model:" << endl;

33 vector<SConfig> AllVEVConfigs;

34 bool SM = true; // look for SM

35 bool PS = true; // look for PS models

36 bool SU5 = true; // look for SU(5) models

37 // analyze the configuration "KRZ_A1.StandardConfig" of "KRZ_A1"

38 // and save the result to "AllVEVConfigs"

39 CAnalyseModel Analyze;

40 Analyze.AnalyseModel(KRZ_A1, KRZ_A1.StandardConfig, SM, PS, SU5,

41 AllVEVConfigs, Print);

42 if (SM || PS || SU5) // if one of the three possibilities is true

43 {

44 cout << "-> Model has 3 generations plus vector-like exotics:" << endl;

45 const size_t s1 = AllVEVConfigs.size(); // print all new configs.

46 for (unsigned i = 0; i < s1; ++i)

47 Print.PrintSummaryOfVEVConfig(AllVEVConfigs[i], LeftChiral, true);

48 }

49 }

50 return EXIT_SUCCESS;

51 }

First, we define anifstream object calledin that contains the model filemodelKRZ A1.txt. Then, we
define the orbifold group as aCOrbifoldGroup object and load the content ofin. If no error occurs, the
orbifold is defined as aCOrbifoldobject. After calling the constructor ofCOrbifoldwith aCOrbifoldGroup
parameter, the spectrum of the orbifold model is computed and checked for consistency. Next, we print the
shift, the Wilson lines and the massless spectrum of the model using theCPrint class. In the last part,
a CAnalyseModel object is constructed in order to analyze the phenomenological properties of the vev-
configurationKRZ A1.StandardConfig.

Appendix B. Glossary of commands

In this appendix, we give short explanations for all commands of theprompt and of the web interface.
In Appendix B.1we start with some concepts and general commands. Then, inAppendix B.2we list all
commands available in the various directories of theprompt.

Appendix B.1. Concepts and general commands

The basic quantities of theprompt are fields of the 4D effective field theory (Appendix B.1.1). In order
to access them easily one can define sets of fields (Appendix B.1.2). Furthermore, gauge invariant monomi-
als of fields are used to describe solutions of theD = 0 condition (Appendix B.1.3). For many commands
dealing with fields one can use the parameterif(condition) to choose only those fields that fulfill the
condition (Appendix B.1.4). Finally, this section describes the concept of processes(Appendix B.1.5),
the use of vectors (Appendix B.1.6), how to change the typesetting tomathematica or to latex style
(Appendix B.1.7), the use of system commands and variables (Appendix B.1.8).
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Appendix B.1.1. Field labels
For a given orbifold model and vev-configuration, fields of the 4D effective field theory are tagged with

labels, for exampleq 1, q 2 andq 3 for the three left-handed quark doublets. A label consists of a name
(q) and a generation index (1, 2 and3 in our example). One can access several fields simultaneously using
their common name, for exampleq for the three quarks. Furthermore, one can access all fields of a given
model using*. In addition, one can obtain the intersection of all fields namedA but not namedB usingA-B.
Examples for intersections are:n-n 1 to get all fields namedn except forn 1 and*-n for all fields except
for the ones namedn.

Field labels are stored in the currently used vev-configuration of the orbifold model. They can be
viewed and changed in the directory/vev-config/labels>, seeAppendix B.2.7. Note that in a given
vev-configuration one can define several labels for each field.

Finally, in mathematica typesetting, for example, the labelq 1 is displayed asfldq1.

Appendix B.1.2. Sets of fields
One can access several fields simultaneously not only by their field labels but also using sets of fields.

These sets are stored in the currently used vev-configuration of the orbifold model. (Consequently, one
cannot access a set in a different vev-configuration than in the one where it was created.) For more details
on vacua, seeAppendix B.2.6. Note that sets are on the same footing as field labels1. I.e. one can build
intersections like:

• A-B for the intersection of two setsA andB,

• *-A for the intersection of all fields* and a setA,

• A-q for the intersection of a setA and all fields of nameq or

• q-A for the intersection of all fields of nameq and a setA.

The commands to create and manipulate sets are displayed in any orbifold model directory of the prompt
using the command

help sets . (B.1)

The commands are:

Commandcreate set(SetLabel). Create an empty set with nameSetLabel and save it in the currently
used vev-configuration. Optionally, this command allows for the parametersfrom monomials or from

monomial(MonomialLabel) in which case all fields from either all monomials or only frommonomial
MonomialLabel will be inserted into the new set. SeeAppendix B.1.3for more details on monomials.

Commanddelete set(SetLabel). Delete the setSetLabel of the currently used vev-configuration.

Commanddelete sets. Delete all sets of the currently used vev-configuration.

Commandinsert(fields) into set(SetLabel). Insert fields into the setSetLabel. Optionally, the
parameterif(condition) can be used to insert only thosefields into the setSetLabel that satisfy the
condition. For details onif(condition) seeAppendix B.1.4.

1Both, fields and sets of fields, will be denoted asfields in the explanations of the following sections.
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command description

create set(Test) create an empty set namedTest
insert(F1 F 2 F 3 F 4 F 5) into set(Test) insertF i, i = 1, . . . , 5 into the setTest
remove(*) from set(Test) if(#osci. != 0) remove fields with non-zero number operatorÑ (i.e. F 5)
print sets print all sets

Table B.2: Short example for the use of set-commands in the directory/Z3StandardEmbedding>of theZ3 standard embedding

model (using the standard labelsF i of the vev-configurationTestConfig1).

Commandprint set(SetLabel). Print the content of the setSetLabel.

Commandprint sets. Print all sets defined in the currently used vev-configuration. One can use the
optional parameterif not empty to print only the non-empty sets.

Commandremove(fields) from set(SetLabel). Removefields from the setSetLabel. Optionally, the
parameterif(condition) can be used to remove only those fields that satisfy the condition.

Command#fields in set(SetLabel). Count the number of fields in the setSetLabel.
A short example showing some of the basic commands for sets isgiven in Tab.B.2.

Appendix B.1.3. Gauge invariant monomials
(Holomorphic) gauge invariant monomials (short: monomials) are used to describe solutions to the

D = 0 supersymmetry condition [67, 68, 69, 70]. A (sub-)set of solutions can be found using the command
find D-flat(fields) described inAppendix B.2.6. More details and examples can be seen using the
command

help monomials (B.2)

in any orbifold model directory.

Appendix B.1.4. If conditions
Many commands that deal with fields allow for the parameterif(condition) (or several copies thereof)

so that only those fields are chosen that fulfill all the conditions. An explicit example was already given in
Tab.B.2. In general, a condition consists of three parts:

• the left hand side gives the variable (e.g.Q i for the fieldsi-th U(1) charge,vev for the fields vacuum
expectation value or#osci. for the number of oscillators),

• the middle gives the comparison operator (e.g.== for equal or!= for unequal) and

• the right hand side gives a value (e.g. a rational number or 0).

More details and examples can be seen using the command

help conditions (B.3)

in any orbifold model directory.
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Appendix B.1.5. Processes
The following commands start new processes that run in the background so that one can continue to

work with theprompt:

• /> create random orbifold from(OrbifoldLabel)

• /A/couplings> create coupling(fields)

• /A/vev-config> find D-flat(fields)

• /A/gauge group> find accidental U1s

Each process has an ID, the so called PID. Similar to the Linuxcommand line one can see all running
processes using the commandps and terminate a process with PIDA usingkill(A). One can also kill all
active processes using the commandkill(all). In a script the commandwait(X) might be useful in order
to check everyX seconds if all processes have finished and to continue with the next commands afterwards.
More details can be seen using the command

help processes (B.4)

in any orbifold model directory.

Appendix B.1.6. Vectors
Many commands need a vector of rational numbers as a parameter. Examples include the commands

set shift V(i) = <16D vector> and set torsion b = <6D vector>. In these cases there are several
possibilities of how to write the vector. For example, the following forms of a<4D vector> are possible:

(1/3 1/1 0/1 0/1) = (1/3 1 0 0) = (1/3, 1, 0, 0) = (1/3, 1, 0ˆ2) = 1/3(1 3 0ˆ2) (B.5)

In addition, for the first four forms of the example-vector, one can leave the brackets away.

Appendix B.1.7. Output for mathematica or in latex style
Often it is useful to transfer data from theorbifolder to mathematica, for example, in order to use

STRINGVACUA [71], SINGULAR [72], NonAbelianHilbert [69, 70] or DiscreteBreaking [73, 74]. Therefore,
many commands allow for the parameter

@mathematica (B.6)

so that the output of the command will be printed in a mathematica compatible style (if available). For
example,

print list of charges @mathematica (B.7)

in the directory/spectrum>. Similarly, the parameter@latex can be used in order to get the output in latex
code (again, if available). In addition, one can set the default typesetting tomathematica, latex or back to
standard using the commands

@typesetting(mathematica), @typesetting(latex) or @typesetting(standard) , (B.8)

respectively. Finally, the parameterno output can be used to suppress the output of the current command.
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Appendix B.1.8. System commands and variables
System commands start with the symbol@ and are used to change the output’s style and destination.

Moreover, theprompt allows for some pre-defined variables which are particularly usefull in scripts. They
start and end with the symbol$.

Command@typesetting(Type). Change the output’s typesetting, seeAppendix B.1.7.

Command@begin print to file(A). Start printing output to fileA and not to the screen. In contrast, one
can use the parameterto file(A) so that the output of only the current command is printed to file, e.g.
print summary to file(Summary.txt).

Command@end print to file. Stop printing output to file.

Command@status. Display the destination of the output (e.g.screen) and the style of the typesetting (i.e.
standard, latex or mathematica).

Variables. There are three pre-defined variables:$OrbifoldLabel$, $VEVConfigLabel$ and$Directory$.
When executed, a variable is replaced by a corresponding string, being the label of the current orbifold
model, the label of the current vev-configuration or the pathof the current directory, respectively. They are
particularly usefull in scripts, e.g. used asto file($OrbifoldLabel$.txt).

Appendix B.2. The directories

The structure of theprompt consists of a main directory/> and subdirectories that correspond to orbifold
models. Each orbifold model directory has further subdirectories /model>, /gauge group>, /spectrum>,
/couplings> and/vev-config>. They offer commands of the respective category. In this section we give
an alphabetically ordered glossary of directory-commandsand explain their use in detail.

Appendix B.2.1. The main directory/>
In the main directory one can basically create, load and saveorbifold models.

Commandcreate orbifold(OrbifoldLabel) with point group(M,N). Create an empty orbifold model
directory for an orbifold of specified point group orders (use N= 1 forZM orbifolds).

Commandcreate random orbifold from(OrbifoldLabel). Randomly create new orbifold models. De-
tails are given in Section4.1.2. More details and examples can be seen using the main directory’s />

command
help create random . (B.9)

Commanddelete orbifold(OrbifoldLabel). Delete the orbifold model directoryOrbifoldLabel.

Commanddelete orbifolds. Delete all orbifold model directories.

Commandload orbifolds(Filename). Load all orbifold models from the model file namedFilename.

Commandload program(Filename). Load a script from fileFilename and execute the commands con-
tained in that file.

Commandsave orbifolds(Filename). Save all orbifold models of the main directory to a model file
namedFilename.
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Appendix B.2.2. The directory/model>
In the directory/model> the input data (e.g. point group, twists, shifts, Wilson lines, etc.) of the current

orbifold model can be displayed and changed.

Commandcreate suborbifold with factor(i). Starting from an orbifold with space groupS, one can
create a so-called suborbifold based on a subgroupS′ ⊂ S.

ForZM orbifolds the subgroupS′ ⊂ S is specified by one number,i being a divisor ofM. Denote the
ZM twist generator of the space group byg ∈ S. Then, the subgroupS′ ⊂ S is based on the twist generator
gi ∈ S′ ⊂ S which generatesZM/i . One can use the optional parameterand(j) to choosegi ∈ S′ ⊂ S and
g j ∈ S′ ⊂ S (with i, j coprime andi, j divide M) to generatorZM/i×ZM/ j .

In the case ofZM×ZN orbifolds (with twist generatorsg1, g2 ∈ S) one has to specify two numbers
create suborbifold with factor(i,j) (wherei dividesM and j dividesN) for the new generatorgi

1g j
2

of the subgroupS′ ⊂ S. Again, one can use the optional parameterand(k,l) to specify a second generator
gk

1gl
2.
Note that this command is particularly useful to analyze the6D orbifold GUT limit of an orbifold model.

For example, start with theZ6–II orbifold MSSM of [40]. Then the commandcreate suborbifold with

factor(2) will produce the 6DZ3 orbifold GUT limit as analyzed in [75].

Commandprint available space groups. Print a list of all geometry files compatible with the speci-
fied point group. The geometry files are searched by theorbifolder in the directory/localdirectory/
Geometry> (of the local PC). For more details on the content of geometryfiles, see Section4.4.1.

Commandprint discrete symmetries. Print the discrete (R and non-R) symmetries as defined in the
geometry file. Note thatR symmetries need to be defined in the geometry file in order to beused in the
computation of allowed superpotential couplings.

Commandprint discrete torsion. Print the (generalized) discrete torsion parametersa, bα, cα anddαβ
as defined in Ref. [36].

Commandprint massless A-movers. whereA can beleft or right. Print the massless left- or right
movers before some of them are projected out by the action of the centralizer.

Commandprint orbifold label. Print the orbifold label (i.e. the name of the current orbifold directory).

Commandprint point group. Print the point group. The output reads, for example,Point group is

Z 3.

Commandprint shift. Print the shift(s) as 16D vector(s). The output reads e.g.

V 1 = ( 1/3 1/3 -2/3 0 0 0 0 0) ( 0 0 0 0 0 0 0 0) . (B.10)

Commandprint space group. First, print the point group and the root-lattice. Next, print the generators
of the space group. The output reads e.g.

Space group based on Z 3 point group and root-lattice of SU(3)^3. (B.11)

Generators are:

(1, 0) ( 0, 0, 0, 0, 0, 0)

(0, 0) ( 1, 0, 0, 0, 0, 0) · · ·
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where (k,l) (n 1, ..., n 6) corresponds to the element
(

θkωl , nαeα
)

of the space group. Note that
roto-translations and freely-acting involutions are allowed as generators of the space group. For exam-
ple in Ref. [34], one of the generators of the (0-2) model reads(0,1) (0,0,0,0,1/2,0) corresponding to
(

ω, 1
2e5

)

and one of the generators of the (1-1) model reads(0,0) (0,1/2,0,1/2,0,1/2) corresponding to
(

11, 1
2(e2 + e4 + e6)

)

.

Commandprint twist. Print the twist(s) as four-dimensional vector(s). The output reads e.g.

v 1 = ( 0 1/3 1/3 -2/3) . (B.12)

Commandprint Wilson lines. Print the relations among the Wilson lines (e.g.W1 = W2 for Z3), their
order (e.g. order 3 for 3Wi ∈ Λ for Z3) and the Wilson lines themselves as 16D vectors. The output reads,
for example,

Wilson lines identified on the orbifold: (B.13)

W 1 = W 2, W 3 = W 4, W 5 = W 6

Allowed orders of the Wilson lines: 3 3 3 3 3 3

W 1 = ( 0 0 0 0 0 0 0 0) ( 0 0 0 0 0 0 0 0)

· · ·

Commandprint #SUSY. Print the number of supersymmetry in 4D. The output reads, for example,

N = 1 SUSY in 4D. (B.14)

Commandset heterotic string type(type). Define the 16D gauge lattice of the heterotic orbifold
model. Here,type can beE8xE8 or Spin32.

Commandset shift standard embedding. ChooseV = (v1, v2, v3, 013) for ZM orbifolds or V1 =

(v1
1, v

2
1, v

3
1, 0

13), V2 = (v1
2, v

2
2, v

3
2, 0

13) for ZM×ZN orbifolds. (The notation 013 means 13 times the entry
“0”.)

Commandset shift V = <16D vector> or set shift V(i) = <16D vector>. Define the shift vectorV
of ZM orbifold models or one of the two shift vectorsVi (with i= 1, 2) of ZM×ZN orbifold models as 16D
vector, see Eq. (1). For more details on vectors seeAppendix B.1.6.

Commandset torsion a = n/d, b = <6D vector>, c = <6D vector> or d = <15D vector>. Set the
(generalized) discrete torsion parameters as defined in [36], i.e. a, bα, cα and dαβ (for α, β = 1, . . . , 6;
dαβ = −dβα has 15 components). Note that the parameters are not checkedfor modular invariance and
hence might cause inconsistent spectra. For more details onvectors seeAppendix B.1.6.

Commandset WL W(i) = <16D vector>. Define the Wilson lineWi as a 16D vector (withi= 1, . . . , 6),
see Eq. (1). For more details on vectors seeAppendix B.1.6.

Commanduse space group(i). with i= 1, . . .. Load the space group from thei-th geometry file, where
the indexi corresponds to the position in the list of geometry files as displayed using the commandprint
available space groups.
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Appendix B.2.3. The directory/gauge group>

In this directory one can print and change some details of thegauge group for the currently used vev-
configuration. In more detail, one can display the U(1) generators and the simple roots, change the basis
of U(1) generators, define a B-L generator and identify accidental U(1) symmetries of the superpotential.
Note that all gauge-group-editing commands are not available in the vev-configurationStandardConfig1.

Commanddelete accidental U1s. Delete the accidental U(1) charges of all fields.

Commandfind accidental U1s. Take the superpotential (as far as it has been created in the directory
/couplings>, seeAppendix B.2.5) and identify its accidental U(1) symmetries. The command starts a new
process that runs in the back of theprompt. The results are saved in the currently used vev-configuration.
Presumably, the accidental U(1) symmetries will be broken explicitly by higher order terms, but nevertheless
might be of phenomenological relevance, e.g. for the strongCP problem [27] and proton decay [31].

Optionally, one can use the parameterfields with zero charge(fields) in order to find only those
accidental U(1) symmetries under which the fields offields are uncharged. On a technical level, this is
achieved by inserting, during this analysis, each field offields as a linear term into the superpotential.

Commandload accidental U1s(Filename). Load accidental U(1) charges from a file namedFilename.

Commandprint anomalous space group element. Print details on discrete anomalies using the discrete
symmetries defined in the geometry file and identify the so-called anomalous space group element [76].

Commandprint anomaly info. Print details on gauge and gravitational anomalies and check their uni-
versality relations. In detail, in the case ofN = 1 SUSY in 4D, beside the pure non-Abelian anomalies, the
relations2

1
24

tr Qi =
1

6|ti |2
tr Q3

i =
1
2

tr ℓQi =
1

2|t j |
2
tr Q2

j Qi =

{

const., 0 if i = 1, i.e. i = anom
0 otherwise

(B.15)

(with i , j) are verified, whereti is a 16D vector corresponding to thei-th U(1) generator so that a field
with shifted left-moving momentumpsh carries the chargeQi = psh · ti and tr sums over the contributions
from all massless left-chiral fields.

Commandprint B-L generator. Print the U(1)B−L generator as a 16D vector.

Commandprint FI term. Print the Fayet-Iliopoulos term (i.e. trQanom as in Eq. (B.15)), if there is an
anomalous U(1).

Commandprint gauge group. Print the observable and hidden part of the gauge group for the currently
used vev-configuration.

Commandprint simple root(i). Print thei-th simple root as 16D vector.

Commandprint simple roots. Print (a choice of) simple roots of all non-Abelian gauge group factors as
16D vectors.

2In theorbifolder, the convention for the quadratic Dynkin index is such thatℓ = 1 for the fundamental
representation of SU(N) groups.
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Commandprint U1 generator(i). Print thei-th U(1) generator as 16D vector.

Commandprint U1 generators. Print all U(1) generators as 16D vectors.

Commandsave accidental U1s(Filename). Save the accidental U(1) charges to a file namedFilename.

Commandset B-L = <16D vector>. Define U(1)B−L as a 16D vector. Since in theorbifolder all U(1)
generators are demanded to be orthogonal to each other, but U(1)B−L is in general not orthogonal to hyper-
charge, B-L is stored as an additional vector. One can use theoptional parameterallow for anomalous

B-L if U(1)B−L is allowed to mix with the anomalous U(1). For more details onvectors seeAppendix B.1.6.

Commandset U1(i) = <16D vector>. Change the basis of U(1) generators by specifying a 16D vector as
the i-th generator. The new generator must be orthogonal to all simple roots and to thej-th U(1) generator,
for j < i. Note that thek-th U(1) generators withk > i will be changed automatically such that, at the end,
all generators are orthogonal to each other. For more details on vectors seeAppendix B.1.6.

Appendix B.2.4. The directory/spectrum>
This directory offers access to all information about the massless spectrum. In detail, for each mass-

less field one can obtain the SUSY multiplet type (i.e. forN = 1 supersymmetry in 4D:left-chiral,
right-chiral, vector andmodulus), the localization (corresponding to its constructing space group ele-
ment), the shifted left-moving momentumpsh, the non-Abelian representation, the U(1) charges, the B-L
charge (if defined), the shifted right-moving momentumqsh, the oscillator excitations, theR charges, mod-
ular weights (if defined), the label of the field and finally itsvev. Note that complex conjugate representa-

tions are printed as negative integers; for example,-3 denotes the conjugate fundamental representation3
of SU(3).

Commandfind potential blowup modes(fields). Print a list of potential blow-up modes considering
fields only, i.e. print allfields for each fixed brane/point.

Commandfind random blowup modes(fields). print a random list of blow-up modesfields, one per
fixed brane/point. The result can be saved to a setSetLabel using the optional parametersave to

set(SetLabel).

Commandprint(fields). Print some details offields. There is one optional parameter,with internal

information, that displays some internal information about how the fields’ data can be accessed in theC++

source code of theorbifolder.

Commandprint all states. Print details of all fields (including left-chiral superfields, vector superfields
of the (non-Abelian) gauge bosons, moduli and their CPT-partners).

Commandprint list of empty fixed branes. Print a list of all fixed branes/points that potentially
could carry left-chiral fields but are empty for the current orbifold model.
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Commandprint list of charges(fields). Print gauge and discrete charges offields. For example,

( -1/3 -1/3 2/3 0 0 0 0 0) ( 0 0 0 0 0 0 0 0) ( -1/3 2/3 -1/3) ( 2 0 0 1) "F 10" (B.16)

( -1/3 2/3 -1/3 0 0 0 0 0) ( 0 0 0 0 0 0 0 0) ( -1/3 2/3 -1/3) ( 2 0 0 1) "F 10"

( 2/3 -1/3 -1/3 0 0 0 0 0) ( 0 0 0 0 0 0 0 0) ( -1/3 2/3 -1/3) ( 2 0 0 1) "F 10"

for the fieldF 10 of theZ3 orbifold with standard embedding. Each line consists of three parts:

• first the 16D shifted left-moving momentumpsh (printed as two eight-dimensional vectors in the case
of E8 × E8),

• theRcharges: (R1,R2,R3) = (−1
3,

2
3,−

1
3) in the example,

• the charges with respect to the discrete non-R symmetries: (k, n1 + n2, n3 + n4, n5 + n6, ) = (2, 0, 0, 1)
in the example,

• the label of the corresponding field,

where, in general, theR and non-R symmetries must be specified in the geometry file, see Section4.4.1.
Note that it can be very helpful to use the optional parameter@mathematica for this command in order to
transfer the information about the fields to mathematica, seeAppendix B.1.7.

Commandprint summary. Print the gauge group and a summary table of the massless matter fields. Im-
portant optional parameters are:

• of sectors

• of fixed points

• of fixed point(X)

where the fixed pointX can be specified in three ways: i) usingk,l,n1,n2,n3,n4,n5,n6, ii) using
loc of F i whereF i is the label of a twisted field and iii) by a fixed point label as specified in the
directory/vev-config/labels>.

• of sector T(k,l) where k and l label theθkωl twisted sector. Useof sector T(0,0) for the
untwisted sector.

In all these cases one can use in addition the following, optional parameters:

• with labels: print the currently used labels of the fields as specified in the directory/vev-config/
labels>.

• no U1s: do not print the U(1) charges of the fields.

• type of SUSY multiplet, e.g.vector, gravity, modulus or anykind for all types; if not specified the
left-chiral fields are printed only.

More details and examples can be seen using the command

help print summary (B.17)

in the directory/spectrum>.
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Commandtex table(fields). Print a latex table with information aboutfields. The table contains
the (gauge) charges with respect to the observable sector ofthe currently used vev-configuration and the
discrete charges as specified in the geometry file (see Section 4.4.1). One can use the optional parameter
print labels(i,j,..) in order to list thei-th, j-th ... label(s) of the fields.

Appendix B.2.5. The directory/couplings>
The directory/couplings>allows to identify and analyze allowed terms of the superpotential (i.e. terms

that are invariant under all gauge and discrete symmetries). The (in general moduli-dependent) coefficients
are not computed. Furthermore, one can analyze mass matrices (e.g. of vector-like exotics).

Note that couplings and mass matrices are stored in the currently used vev-configuration. Hence, they
can only be accessed in the vev-configuration where they havebeen defined. For simplicity, the abbrevia-
tionsmm for mass matrix andmms for mass matrices apply to all commands.

Commandauto create mass matrix(A B). Create the couplings relevant for the effective mass matrix
Mi j AiB j. Optionally, one can specify the the label of those fields whose vevs generateMi j using the pa-
rametersinglet(N) (with default valueN=n) and the maximal orderX in singletsN using the parametermax
order(X).

Commandcreate coupling(fields). Find the allowed superpotential-couplings betweenfields and
store the result in the currently used vev-configuration. For example, all trilinear couplings are created
using the command

create coupling(* * *) . (B.18)

Optionally, one can restrictfields using the parameterallowed fields(...), e.g. the commandcreate
coupling(n n n) allowed fields(SetA) creates all trilinear couplings of fieldsn from SetA.

Commandfind(fields). Displays a list of allowed couplings involving the fieldsfields.

Commandfind effective(fields). As find(fields), but only the effective couplings, i.e after replac-
ing fields with non-zero vev by their vevs.

Commandload couplings(Filename). Load couplings from fileFilename into the currently used vev-
configuration. This command is disabled in the web interface.

Commandmass matrix(A B). Create the mass matrixMi j AiB j (from the current superpotential) and save
it in the currently used vev-configuration.

Commandprint effective superpotential. Similar to the commandprint superpotential but print
only the effective couplings, i.e after replacing fields with non-zero vev by their vevs.

Commandprint list of mass matrices. Print all mass matrices of the currently used vev-configuration.

Commandprint mass matrix(i). Print the i-th mass matrix. The optional parametermax order(X)

specifies the orderX in the fields up to which a matrix entry shall be printed explicitly.

Commandprint superpotential. Print the superpotential of the currently used vev-configuration.

Commandprint vanishing couplings. Print all cases of vanishing couplings as lists of highest weights
in Dynkin labels. See the commandremove vanishing couplings.
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Commandremove vanishing couplings. Remove couplings that vanish because of symmetry/anti-sym-
metry of repeated identical fields, e.g. letℓ be an SU(2) doublet, then the gauge invariant couplingℓℓ =
ℓiℓ jǫ

i j = 0 vanishes. This command requires additional user input.

Commandsave couplings(Filename). Save all couplings of the currently used vev-configuration to a
file. One can optionally save only couplings of orderX using the parameterof order(X). This command is
disabled in the web interface.

Appendix B.2.6. The directory/vev-config>
In this directory one can define several vev-configurations.Each of them is characterized by a choice

of hidden and observable gauge group, a labeling of the fieldsand by their vev. In addition, one can
analyze phenomenological properties and supersymmetric configurations (F = D = 0) in this directory and
determine the unbroken gauge group of a given vev-configuration.

For each orbifold model there are two standard vev-configurations: StandardConfig1andTestConfig1.
The first one cannot be changed, but the latter one can be and isused as default. In both configurations the
full gauge group is selected as the observable sector and fields are labeledF 1, F 2, F 3, . . ., all with zero
vev.

Note that the labels of the fields (seeAppendix B.1.1), sets of fields (seeAppendix B.1.2), monomials
(seeAppendix B.1.3), allowed couplings and mass matrices (created in the directory /couplings>) are
saved in a vev-configuration. Hence, these data can only be accessed in the vev-configuration where they
have been defined. In addition, note that all configuration-editing commands are not available in the vev-
configurationStandardConfig1.

Commandanalyze config. Automatically check whether the current vev-configurationof the orbifold
model allows for vacua with Standard Model, Pati-Salam or SU(5) gauge group,

SU(3)C × SU(2)L × U(1)Y , SU(4)× SU(2)L × SU(2)R or SU(5), (B.19)

respectively, three generations of quarks and leptons and vector-like exotics. In the case theorbifolder
is not able to identify one of these possibilities for the current orbifold model one obtains the outputNo

vev-configuration identified. Otherwise, corresponding new vacua will be created and convenient
labels will be assigned to all matter fields (e.g.q 1, q 2 andq 3 for the three generations of quark doublets).

The command allows for two optional parameters:print SU(5) simple roots to print the simple
roots of an intermediate SU(5) group that has been used in order to identify the hypercharge generator and
Xgenerations with X= 0, 1, 2, 3, . . . to specify the (net) number of generations.

Commandcompute F-terms. Compute theF-terms using the superpotential that was created for the cur-
rently used vev-configuration (in the directory/couplings>. The optional parametermax order(X) allows
to set an upper limitX on the order of superpotential couplings.

Commandcreate config(ConfigLabel). Create a new vev-configuration. Optionally, one can specify
the origin of the new vev-configuration using the parameterfrom(AnotherConfigLabel). If this parameter
is not used the origin of the new vev-configuration is the standard vev-configurationStandardConfig1.

Commanddelete config(ConfigLabel). Delete the vev-configurationConfigLabel.
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Commandfind D-flat(fields). Identify gauge invariant monomials offields as solutions to theD = 0
supersymmetry condition, seeAppendix B.1.3. This command allows for two parameters: i)with FI to
allow for monomials with non-vanishing anomalous U(1) charge in order to cancel the FI term and ii)save
to set(SetLabel) to save those fields in a set calledSetLabel that are involved in the new monomials.

Commandfind unbroken gauge group. Depending on the vev assignment specified in the currently used
vev-configuration, identify broken and unbroken (Abelian and non-Abelian) gauge group factors. In addi-
tion, the U(1) charges of all fields are re-computed in the newU(1) basis. There is one optional parameter:
print info to display some details.

Commandprint gauge group. Print the choice of observable and hidden sector of the currently used vev-
configuration, where the hidden sector gauge group factors are marked by brackets, e.g.[SU(4)].

Commandprint configs. Print an overview of all vacua defined for this orbifold model. The currently
used vev-configuration is highlighted by an arrow-> in front, e.g.-> "TestConfig1".

Commandrename config(OldConfigLabel) to(NewConfigLabel). Change the name of a vev-configura-
tion fromOldConfigLabel to NewConfigLabel.

Commandselect observable sector: parameters. Assign a choice of observable and hidden gauge
groups in the current vev-configuration. Admissibleparameters are:

• gauge group(i,j,...), where the indicesi,j = 1, 2, . . . refer to the different non-Abelian gauge
group factors sorted as displayed byprint gauge group. The indices provided are chosen as part of
the observable sector.

• full gauge group All non-Abelian group factors are assigned as observable sector.

• no gauge groups No non-Abelian group factor is assigned as part of the observable sector.

• U1s(i,j,...), where the indicesi,j = 1, 2, . . . refer to the different U(1) gauge symmetries. The
indices provided are chosen as part of the observable sector.

• all U1s All U(1)s are assigned as part of the observable sector.

• no U1s No U(1) is taken for the observable sector.

For example, assuming that the gauge group is E6×SU(3)×E8, the instructionselect observable sector:

gauge group(1,2) selects E6×SU(3) as the observable and E8 as the hidden gauge groups.

Commanduse config(ConfigLabel). Change the currently used vev-configuration toConfigLabel.

Commandvev(fields) = .... Change the vevs offields to new values. For example,vev(*) = 0 turns
off the vev of all fields,vev(SetA) = rand assigns random vevs to the fields of the setSetA andvev(n 1)

= 0.1 sets the vev ofn 1 to 0.1.

Appendix B.2.7. The directory/vev-config/labels>
In this directory one can define, for each vev-configuration,appropriate labels for the fields. The main

commands areprint labels and create labels. In both cases, a summary table of massless fields is
printed, sorted by those representations and U(1) charges that belong to the observable sector of the currently
used vev-configuration. The observable sector can be changed using the commandselect observable

sector:... in the directory/vev-config>, seeAppendix B.2.6.
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Commandchange label(A i) to(B j). Change the label of the fieldA i to B j.

Commandassign label(Label) to fixed point(k,l,n1,n2,n3,n4,n5, n6). AssignLabel to the fixed
brane/point specified by(k,l,n1, n2,n3,n4,n5,n6).

Commandcreate labels. First, a summary table of massless fields is displayed. Then the user is asked
to specify a name for each line of the table.

Commandload labels(Filename). Load labels from the file namedFilename. This command is disabled
in the web interface.

Commandprint labels. Print a summary table of the currently used labels displaying the gauge repre-
sentations with respect to the observable sector only.

Commandsave labels(Filename). Save the labels to the file namedFilename. This command is disabled
in the web interface.

Commanduse label(i). Change the currently used labels to thei-th labeling.
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