
ar
X

iv
:0

90
4.

06
42

v1
  [

he
p-

la
t]

  3
 A

pr
 2

00
9

FortranMPI Checkerboard Code for SU(3) Lattice Gauge Theory I
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Abstract

We document Fortran MPI checkerboard code for Markov Chain Monte Carlo simulations of pure SU(3) lattice
gauge theory with the Wilson action on a D-dimensional double-layered torus. This includes the usual torus with
periodic boundary conditions as an optional case. We use Cabibbo-Marinari heatbath checkerboard updating.
Parallelization on sublattices is implemented in all D directions and can be restricted to less than D directions.
The parallelization techniques of this paper can be used for any model with interactions of link variables defined
on plaquettes.

Program Summary

Program title: STMC2LSU3MPI.

Program identifier: Not yet available.
Program summary URL: Not yet available.
Program available from: Temporarily from URL http://www.hep.fsu.edu/~berg/research

Programing language: Fortran 77 with MPI extensions.
Computer: Any capable of compiling and executing Fortran 77 code with MPI extensions.

Key words: Markov Chain Monte Carlo, Parallelization, MPI, Fortran, Checkerboard updating, Lattice gauge theory,
SU(3) gauge group.

PACS: 02.70.-c, 11.15.Ha

1. Introduction

Moore’s law [1] appears to be dead. Certainly
we have not seen CPU processor speed going up
by a factor of ten in the last five years. Instead,
we get now ten times as many processors (more
precisely cores) for the price of one five years ago.
PCs with 8 cores have become commodities and
soon one may expect 64 or more. The usefulness
of parallelization is no longer limited to large scale

supercomputer applications, but becomes relevant
for everyday calculations.
This motivates the present paper, which docu-

ments Fortran 77 MPI checkerboard [2] code for
Markov Chain Monte Carlo (MCMC) simulations
of pure SU(3) Lattice Gauge Theory (LGT) with
the Wilson action on D-dimensional lattices. Sub-
lattices are updated in parallel after collecting
boundary variables from other sublattices. The
introduced parallelization techniques apply to any
model with dynamical variables defined on links
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and their interactions on plaquettes.
The code of this paper implements the Cabibbo-

Marinari (CM) SU(3) updating [3] using for
the SU(2) subgroups the heatbath method of
Fabricius-Haan [4] and Kennedy-Pendleton [5]
(FHKP), which is more efficient than the older
Creutz heatbath [6]. CM with FHKP SU(2) up-
dating is also about three times more efficient than
Pietarinen’s [7] full SU(3) heatbath [8].
To synchronize the simulations on all pro-

cesses, we use FHKP updating in the multi-hit
accept/reject version [9]. Overrelaxation moves
[10] are presently not implemented, but would fit
seamlessly into the code. In extension of the usual
periodic boundary conditions (PBC), which define
the gauge system on a torus, our code allows for a
double-layered torus (DLT). These are two iden-
tical lattices, each using the other as boundary, a
geometry expected to be of relevance for studies
of the deconfining phase transition.
The next section gives an overview of the code

and explainsWeb access. Section 3 provides a num-
ber of verifications. Summary and conclusions fol-
low in section 4. Runs are setup in the code, which
reproduce the examples of this and a companion
paper [11]. Running on up to 1 296 CPU cores,
the companion paper studies performance as func-
tion of the number of MPI processes. It also dis-
cusses and resolves problems, which were encoun-
tered with MPI send and receive instructions for
large arrays.

2. Overview of the Code

The code for this paper is freely available as a
gzipped archive

STMC2LSU3MPI.tgz

that can be downloaded from the website of the
author

http://www.hep.fsu.edu/~berg/research .

With

tar -zxvf STMC2LSU3MPI.tgz

the folder structure of Fig. 1 is created. Main pro-
grams are located in ForProg. The LIBS folder con-

STMC2LSU3MPI

ProjectLibsForProg

Runs

Fortran MPI MPISU3    SU3    Add more

 Fortran-par   MPI-par

Fig. 1. Structure of our program package.

tains a number of libraries with plain Fortran 77
and Fortran 77 MPI code. Test and verification
runs are setup in subfolders of several Project
folders. Non-MPI SU(3) code and runs are in the
project tree STMCSU3.
We use checkerboard labeling [2] to divide lattice

sites into two sets of colors ic = 1, 2. Moving one
step in any direction changes the color. For spin
models with nearest neighbor interactions this al-
lows one to update spins at half of the sites in par-
allel. For SU(3) LGT the matrices are located on
lattice links and one can update at half of the sites
one of the link directions in parallel. This is em-
ployed to update sublattices in parallel after col-
lecting from other sublattices boundary variables,
which need no updating because they belong to an-
other checkerboard or link direction. For efficient
performance the sublattice volume to surface ratio,
each measured in numbers of variables, has to be
sufficiently large. Examples are discussed in [11].
To arrange storage of our SU(3) matrices and

other physical variables, we label lattice sites and
links following the book of the author [12]. Cor-
responding routines from ForLib of this reference
are taken over into Libs/Fortran of Fig. 1. In our
approach a lattice site is specified by a single inte-
ger is, which we call site number. The dimension
of the lattice is given by D. The Cartesian coordi-
nates of a site are chosen to be

xi = 0, . . . , ni − 1 for i = 1, . . . , D. (1)

The site number is defined by the formula
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is = 1 +

D
∑

i=1

xi ni
a, n

i
a =

{

1 for i = 1,
∏i−1

j=1
nj for i > 1, (2)

and calculated by the Fortran function isfun.f.
Vice versa, the coordinates for a given site number
is are obtained by an iteration procedure, which
relies on Fortran integer division (i.e., 1 = [5/3] =

[5/5], 0 = [4/5], etc.). Let ns =
∏D

i=1
ni be the

number of lattice sites. Then,

xD =

[

(is − 1)

(ns / nD)

]

=

[

(is − 1)

nD
a

]

(3)

and for i = D − 1, . . . , 1

xi = [(jis − 1) / ni
a)], jis = is −

i+1
∑

j=D

xj nj
a . (4)

The Fortran subroutine ixcor.f computes coordi-
nates from the site number, though somewhat dif-
ferently than by the formulas written down here.
The site number is allows one to store variables

at sites in 1D arrays A1(ns), independently of the
lattice dimension D. Variables on links are located
in 2D arraysA2(ns, nd), where the integer nd is the
lattice dimension D, nd ≥ 2 for LGT. One more
label is required to store SU(3) matrix elements in
a 3D array. For checkerboard labeling we arrange
the lattice variables in two arrays, corresponding
to the colors ic = 1, 2. The formula returning the
color assignment of a lattice site is

ic = 1 +mod

[

D
∑

i=1

xi, 2

]

. (5)

To update variables in array 1, neighbor variables
are collected from array 2, which remains un-
changed, and vice versa. LGT requires also to col-
lect variables from the same checkerboard, which
are not updated, because they are on links in other
directions than the one updated. The checker-
board algorithm requires even lattice extensions.
Otherwise PBC destroy the pattern.

2.1. Updating

Our code implements CM [3] SU(3) updating us-
ing for the SU(2) subgroups the FHKP [4,5] heat-

bath algorithm. In the original FHKP version pro-
posals are repeated until one is accepted, which is
by construction from the desired probability dis-
tribution. For parallelization this is inconvenient,
because all MPI processes have to wait until the
last one finished. As pointed out by Fredenhagen
and Marcu [9], one can terminate the inner loop
after a finite number of hits and keep the link ma-
trix at hand when none of the proposal has been
accepted. The new configuration is still proposed
with the local heatbath distribution.What changes
is the average stay time of the old configuration.
This time depends on the configuration at hand,
but drops out in the detailed balance equation. By
using CM heatbath in this Metropolis-like fashion
the MPI processes get synchronized. The 1-hit ac-
ceptance rate depends on β and is in the scaling
region of SU(3) LGT around 97%. Lower 1-hit ac-
ceptance rates are encountered for smaller β val-
ues. One may then increase the number of hits.
As usual, the updating step keeps track of the to-

tal action. Due to parallelization action differences
have to be added by the MPI process of the sub-
lattice on which the update is carried out. Then,
action fluctuation across boundaries can be cre-
ated, which lead in course of time to absurd sub-
lattice contributions, while the total action (their
sum) is still correct. To elaborate on this point,
we first need to define sublattice actions. Due to
links crossing boundaries, there is some amount of
freedom in that. We simply attribute the action of
a plaquette to the sublattice, which contains the
site from which two forward links of the plaquette
emerge. Now, updating one of the other links of a
plaquette, the action change is recorded in a wrong
sublattice, if the updated link emerges there.
As long as one is only interested in the total

action, it is sufficient to recalculate the sublattice
action once in a while directly to prevent an am-
plification of rounding errors due to differences of
large numbers (sublattice contributions can fluc-
tuate to negative values). However, if one wants
to attribute physical significance to sublattice ac-
tions, it is mandatory to recalculate them before a
measurement is recorded.
Our updating subroutine is cbsu3 2hbnhit.f

located in Libs/MPISU3. A call to this routine per-
forms one sweep, which is here defined by updat-
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Fig. 2. 2D Double layered torus.

ing each SU(3) matrix once in sequential order (see
section 2.4 for more details). Updating in sequen-
tial order fulfills balance and is more efficient than
updating link matrices in random order. This ob-
servation holds also for spin models [12].

2.2. Double-Layered Torus

This section can be skipped by readers, who are
only interested in simulations with PBC. The DLT
is, for instance, of interest for simulations onN3

s Nτ

lattices if one likes to have boundaries at a different
temperature than the interior of the lattice [13],
as it is the case for deconfined volumes created in
relativistic heavy ion collisions. The DLT is defined
by two lattices of identical size, each using the other
as boundary in all or just volume directions. In
the latter case distinct β values in the lattices lead
to different physical temperatures T through the
usual definition of T = 1/(aNτ ).
Even with identical β values in both lattices the

DLT has some intriguing properties as illustrated
in Fig. 2 for a 2DDLT of size (Ns)

2. The boundaries
are glued together as indicated by the arrows 1 .
While for PBC the shortest connection of a point
with itself through the boundary is of length Ns, it
is now of length

√
2Ns along the diagonal. The two

arrows in diagonal direction give an example of a
line, which is closed by DLT boundary conditions.

1 Note that interchanging the labels 3 and 4 on one of the
lattices of the figure leads to an undesirable situation in
which some sites pairs are connected by two links

Compared to a torus of size (Ns)
D, the effective

extension of a DLT with DLT boundary conditions
in all directions is

N eff
s = 21/D Ns , (6)

so that (N eff
s )D is the size of the DLT. One may ar-

gue that finite length corrections are exponentially
suppressed by

√
2Ns, which is for D > 2 larger

than N eff
s . Then one would for D ≥ 3 gain with

respect to the suppression of finite size effect com-
pared to the usual torus. However, simulations of
the 3D and 4D Ising model on a DLT [14] showed
an exponential suppression of finite size corrections
with N eff

s and not with
√
2Ns. The reason for that

has remained unclear.
When using two different β values, β0 6= β1, we

assign a unique βi, i = 0, 1 to each plaquette in a
slightly asymmetrical way: If any link of a plaque-
tte is from the second torus, we take β1, otherwise
β0. Technically this is done by tagging all links in
the first torus by 0 and in the second by 1. When
considering a plaquette, all these tags are added
up. If the sum is zero, β0 is used, otherwise β1. So
the β1 lattice becomes slightly larger than the β0

lattice.

2.3. Parameter files

As indicated in Fig. 1 runs are kept in subfolders
of project folders, one run per subfolder. The rel-
evant parameters are set in two files: latmpi.par
and mc.par. Before the compile step the parame-
ters are transferred by a simple preprocessing pro-
cedure into subroutines and, in particular, used
to dimension common blocks properly (see sec-
tion 2.4). Due to this procedure it is mandatory

that runs and their parameter files are kept two
levels down from the STMC2LSU3MPI root directory.
As an example the parameter files of the run in

1MPICH/08x08y08z04t5p65b2f3d

are given below.

latmpi.par
c Bernd Berg Jan 11, 2009. MPI Checkerboard lattice:

c cfln Part of data file name.

c lbcex Boundary exchange T/F.

c lsd2mpi .true. distinct random number seeds on each process,

c .false. identical random number seeds (for tests).

c nd Dimension of the lattice space
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c nl1 Lattice extension in first directions. Also used as

c label for the entire lattice. (nl2, nl3, nl4 lattices

c extension in directions 2, 3 and 4).

c nltau Disfunctional. Planned option for nlat=2 to subdivide

c the nl4 direction of one torus (gives higher T).

c Presently not implemented: nltau=nl4 required.

c mxs Number of space sites, mxsc same per checkerboard.

c ms Number of sites, msc per checkerboard.

c mlink Number of links, mlinkc links per checkerboard.

c mp Number of plaquettes (mpc plaquettes per checkerboard).

character cfln*6,cfile*18

parameter(cfln="SU3LGT",lbcex=.true.,lsd2mpi=.true.)

parameter(nd=4,ndm1=nd-1,n2d=2*nd,nl1=4,nl2=4,nl3=4,nl4=4)

parameter(nltau=nl4) ! Always (purpose not implemented).

parameter(mxs=nl1*nl2*nl3,mxsc=mxs/2,ms=mxs*nl4,msc=ms/2)

parameter(mlink=nd*ms,mlinkc=nd*msc)

parameter(mp=ms*(nd*(nd-1))/2,mpc=mp/2)

c nptime Number of timelike plaquettes.

c npspace Number of spacelike plaquettes.

parameter(mptime=ms*(nd-1),mpspace=mp-mptime)

c nlat 1 or 2 layers (not other values allowed).

c lat2 must be false for nlat=1, active (false or true) only for

c nlat=2: .true. boundary exchange between DLT layers;

c .false. no boundary exchange between DLT layers.

c lat2test .true. sets identical random numbers in both layers.

c ndmpi Dimension of the MPI lattice.

c mpifactor Number of sublattices per ndmpi direction.

c msmpi Total number of MPI sublattices (MPI processes) per layer.

c mpmpi Total number of plaquettes over all sublattices (one layer).

c mscb Size of one checkerbord boundary.

c mbcs Extra storage size for boundaries, which

c enters definition of nmat below.

c mbcsh Extension of pointer array sizes to gather boundaries.

c noffset For definition of receive position in 1. gather/scatter.

parameter(nlat=1,lat2=.false.,lat2test=.false.)

parameter(ndmpi=3,mpifactor=2,msmpi=mpifactor**ndmpi)

parameter(n2dmpi=2*ndmpi,mpmpi=msmpi*mp)

parameter(mscb=nl2*nl3*nl4/2,mbcs=n2dmpi*mscb)

parameter(mbcsh=mbcs/2,noffset=msc+ndmpi*mscb)

c nddmpi Number of combinations of two ndmpi directions.

c ns1fbb Number of matrices for gather in 2. gather/scatter,

c which is for corner plaquettes.

c nsfbb For check on number of corner plaquetted in cblgtpnt2.f.

c It enters definition of nmat below.

c nmat Number of SU3 matrices including those gathered from

c neighbouring sublattices.

c n18 Number of SU3 matrix elements.

parameter(nddmpi=ndmpi*(ndmpi-1),ns1fbb=nl3*nl4/2)

parameter(nsfbb=nddmpi*ns1fbb,nmat=msc+mbcs+nsfbb,n18=18)

C Array sizes in latmpi.dat have to be consistent!!!

Central are the sublattice extensions, nl1, nl2,
nl3, nl4 in 4D, and the MPI parameters ndmpi,
mpifactor. For mpifactor = 1 there is only one
process and the entire lattice agrees with the sub-
lattice. For mpifactor > 1 the extensions of the
entire lattice agree with those of the sublattice
in directions larger than ndmpi, which exist for
ndmpi < nd, and there are mpifactor sublattices
in each of the ndmpi directions. The sublattices
themselves form a lattice of dimension ndmpi with

msmpi = mpifactor ∗ ∗ndmpi (7)

points, which we refer to as MPI lattice. To allow
for variable extensions, the sublattice values are
stored in an array nla. To make use of the same
routines, the MPI lattice extension mpifactor is
similarly stored in an array nla mpi. Both arrays
are initialized in the file latmpi.dat:

data nla/nl1,nl2,nl3,nl4/,nla_mpi/ndmpi*mpifactor/

Usual PBC are simulated for nlat = 1, the
DLT for nlat = 2. For PBC the number of
MPI processes in msmpi, while for the DLT it
is 2*msmpi. We will get familiar with choices of
other latmpi.par parameters when we perform
verification and test runs in the next section.
The example file for mc.par is:

c Bernd Berg, Jan 11, 2009.

c Definition of parameters for SU(3) LGT simulations.

c Output units iuo, iud1, iud2 (off/on with lud2), iud3.

c Job number njob and seeds iseed1, iseed2.

parameter(iuo=6,iud1=11,iud2=12,lud2=.false.,iud3=13)

parameter(njob=1,iseed1=njob,iseed2=0)

c Parameters for equilibrium and data production sweeps:

c beta0,1: beta_g=2/g^2 inverse bare coupling.

c istart: 1 ordered start all matrices 1; 2 disordered start.

c nhit: Number FHKP proposals made.

c nreq: Number of repititions of nequi equilibrium sweeps.

c nequi: Number of equilibrium sweeps.

c nrpt: Number of repititions of nmeas measurement.

c nsw: Number of sweeps between measurements.

c nmeas: Number of measurement sweeps per repitition.

parameter(beta0=5.65d00,beta1=beta0, istart=1,nhit=1)

parameter(nreq=1,nequi=2**12,nrpt=32,nsw=2,nmeas=nequi)

The purpose of most parameters should be ob-
vious from the comments. The MCMC run struc-
ture is that defined by nequi, nrpt and nmeas in
Ref. [12]. After equilibration measurements are
saved in nrpt blocks to allow for a conveniently
binned analysis, employing jackknife methods
when suitable. There are nsw sweeps done between
measurements.

2.4. Program structure

We trace the code structure and that of a typical
run from the main program

cbsu3 dlt{a, b, c}.f . (8)

The program comes in three versions {a, b, c},
where b is obtained from a by simply replacing ev-
erywhere in the code mpia by mpib, and similarly
for c. As discussed in [11], differences lie in the
coding of MPI send and receive instructions. We
were unable to find a single solution which works
on all MPI platforms on which we performed tests.
The a version, which uses the simplest (plain)
subroutines for boundary transfers, is listed in the
following.

program cbsu3_dlta ! Berg Jan 11 2009.

C MPI checkerboard for SU3 nhit with Cabibbo-Marinari. Perodic

C boundary conditions and double-layered torus with two beta values.

C Version a: Plain send/receive (mpia extensions).

C Version b: Buffered send/receive (replace mpia by mpib).
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C Measurements of action, spacelike, timelike plaquettes.

C Recalculation of action before each measurement is only

C needed for nlat=2, lat2=.true..

include ’../../Libs/Fortran/implicit.08’

include ’mpif.h’

include ’../../Libs/Fortran/constants.08’

character cmy*4

include ’latmpi.par’

include ’mc.par’

include ’../../Libs/MPI_par/common_cblat.f’

include ’../../Libs/MPISU3/common_cbsu3.f’

ltest=.true.

ltest=.false.

call mpi_init(ierr)

call mpi_comm_rank(mpi_comm_world,my_id,ierr)

if(my_id.eq.0) call

& write_progress(iud1,"mpia: nreq,nequi,one:",nreq,nequi,one)

c

if(my_id.eq.0) write(iuo,’(/,"MPI cbsu3_dlt: nlat,",

& "nhit,beta0,beta1 =",I2,I3,2F12.8)’) nlat,nhit,beta0,beta1

if(nhit.le.0.or.nhit.gt.3) ltest=.true.

c

write(cmy,’(i4.4)’) my_id

if(lud2) open(iud2,file="MPI"//cmy//".d",form=’formatted’,

& status=’unknown’)

call cbsu3_2init_mpi ! Initialization.

if(lud2) write(iud2,’(" cbsu3_dlt: cbsu3_2init_mpi done.")’)

if(ltest) then ! -------------------------------------------

if(my_id.eq.0) write(iuo,’(/,"cbsu3_dlt_mpi: ltest",/)’)

if(lud2) write(iud2,’(/,"cbsu3_dlt_mpi: ltest.",/)’)

if(lud2) close(iud2) ! iud1 should already be closed.

call mpi_finalize(ierr)

stop "cbsu3_dlt: ltest."

endif ! ----------------------------------------------------

call cbsu3_actdif_mpi(actdif,actsum1,actsum2,my_id)

if(lud2) write(iud2,’(" cbsu3_dlt: actdif ok after start.")’)

if(my_id.eq.0) write(iuo,’(/," call write_act_mpi:")’)

call write_act_mpi(my_id,izero,acpt,actdif,actsum1,actsum2)

call mpi_barrier(mpi_comm_world,ierr)

c

if(lud2) write(iud2,’(/," Equi: nreq, nequi =",2I10)’) nreq,nequi

if(my_id.eq.0) write(iuo,’(/," Equilibration started...")’)

do ireq=1,nreq

if(my_id.eq.0) call

& write_progress(iud1,"ireq,nreq,act:",ireq,nreq,act)

do iequi=1,nequi ! Sweeps for reaching equilibrium.

call cbsu3_2hbnhit_mpi(my_id) ! Heatbath DLT.

end do ! Check action:

call cbsu3_actdif_mpi(actdif,actsum1,actsum2,my_id)

acpt=acpt/a0prop

end do

call write_act_mpi(my_id,izero,acpt,actdif,actsum1,actsum2)

if(lud2) write(iud2,’(/," Equilibration done acpt =",F10.4)’) acpt

if(my_id.eq.0) write(iuo,’(/," Equilibration, actdif done,",

& " acpt, a0prop =",F10.4,G15.6)’) acpt,a0prop

if(lud2) write(iud2,’(" actdif,act1,act2:",3G15.6)’)

& actdif,(actsum1/mpmpi),(actsum2/mpmpi)

call mpi_barrier(mpi_comm_world,ierr)

c

c Writing header information into file time series (action)

open(iud1,file=cfln//cfile//".D",form="unformatted",

& status="unknown")

write(iud1) beta0,beta1,nd,nlat,ms,mlink,nla,ndmpi,msmpi,nla_mpi,

& nreq,nequi,nrpt,nmeas,nsw

close(iud1)

if(my_id.eq.0) write(iuo,’(/,1X,"irpt,act,actdif,acpt,tsa(1),",

& "tspr(1),tspi(1),tsk1r(1),tsk1i(1):",/)’)

if(lud2) write(iud2,

& ’(/,5X,"irpt, action/mp, rounding error, acpt rate:",/)’)

do irpt=1,nrpt ! Repetitions.

iact=nint(act)

if(my_id.eq.0) call

& write_progress(iud1,"irpt,iact,acpt:",irpt,iact,acpt)

acpt=zero

a_min=act

a_max=act

do imeas=1,nmeas ! Measurements loop.

do isw=1,nsw

call cbsu3_2hbnhit_mpi(my_id) ! SU3 Cabbibo-Marinari.

end do

call cbsu3_actdif_mpi(actdif,actsum1,actsum2,my_id)

tsa(imeas)=act/mp ! Data collection (measurement).

call cbsu3_wloops_mpi(imeas,my_id)

end do

acpt=acpt/a0prop

call cbsu3rw_meas(irpt,iud1,iud3,ione) ! Write measurements.

if(lud2) write(iud2,’(I9,2G16.7,F9.3)’) irpt,act/mp,actdif,acpt

if(my_id.eq.0) then

write(iuo,’(I6,4G15.6)’) irpt,act,actdif,acpt,tsa(1)

write(iuo,’(6X,4G15.6)’) tspr(1),tspi(1),tsk1r(1),tsk1i(1)

endif

call mpi_barrier(mpi_comm_world,ierr)

end do

call write_act_mpi(my_id,izero,acpt,actdif,actsum1,actsum2)

c

close(iud1)

if(lud2) close(iud2)

call mpi_finalize(ierr)

stop

end

BLOCK DATA

include ’../../Libs/Fortran/implicit.08’

include ’../../Libs/Fortran/constants.08’

include ’latmpi.par’

parameter(npointer=nd*(msc+mbcsh))

include ’../../Libs/MPI_par/common_cblat.f’

include ’latmpi.dat’

C For test purposes only:

data ipf1/npointer*mione/, ipf2/npointer*mione/

data ipb1/npointer*mione/, ipb2/npointer*mione/

END

C Modular Fortran routines:

include ’../../Libs/Fortran/isfun.f’

include ’../../Libs/Fortran/ipointer.f’

include ’../../Libs/Fortran/ixcor.f’

include ’../../Libs/Fortran/lat_init.f’

include ’../../Libs/Fortran/nsfun.f’

include ’../../Libs/Fortran/razero.f’

include ’../../Libs/Fortran/ranmar.f’

include ’../../Libs/Fortran/rmafun.f’

include ’../../Libs/Fortran/rmaset.f’

include ’../../Libs/Fortran/rmasave.f’

include ’../../Libs/Fortran/sum_fun.f’

include ’../../Libs/Fortran/write_progress.f’

C LGT Checkerboard:

include ’../../Libs/Fortran/istoic.f’ ! Checkerbord ic from is.

C SU2 routine:

include ’../../Libs/Fortran/su2_a0nhit.f’ ! Generates SU2 a0.

C SU3 modular routines:

include ’../../Libs/SU3/su3init0.f’ ! SU3 matrix put to 0.

include ’../../Libs/SU3/su3init1.f’ ! SU3 matrix put to 1.

include ’../../Libs/SU3/su3add_m_m.f’

include ’../../Libs/SU3/su3addb_m_m.f’

include ’../../Libs/SU3/su3copy_m_m.f’

include ’../../Libs/SU3/su3mult_mh_mh_m.f’

include ’../../Libs/SU3/su3mult_m_mh_m.f’

include ’../../Libs/SU3/su3mult_m_m_m.f’

include ’../../Libs/SU3/su3reunit.f’

include ’../../Libs/SU3/su3_b2nhitupdt.f’ ! nhit update.

include ’../../Libs/SU3/csu3_start.f’ ! Start configuration.

C Modular MPI routines:

include ’../../Libs/MPI/lat2a_init.f’ ! Double-layered torus:

include ’../../Libs/MPI/lat2b_init.f’ ! Couple lattice 1 and 2.

C LGT MPI checkerboard routines:

include ’../../Libs/MPI_par/cblat_init.f’

include ’../../Libs/MPI_par/cblgtpnt2.f’ ! Final LGT pointers.

include ’../../Libs/MPI_par/cblgtpointer.f’

include ’../../Libs/MPI_par/cbpointer.f’

include ’../../Libs/MPI_par/cpointer.f’

include ’../../Libs/MPI_par/isglobal.f’

include ’../../Libs/MPI_par/write_act_mpi.f’ ! Write act.

C SU3 MPI checkerboard routines:

include ’../../Libs/MPISU3/cbsu3_act_mpi.f’ ! Calculate action.

include ’../../Libs/MPISU3/cbsu3_actdif_mpi.f’! Check action.

include ’../../Libs/MPISU3/cbsu3_bnd_mpi.f’ ! Gather boundary.
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include ’../../Libs/MPISU3/cbsu3_bnd1a_mpia.f’! Gather boundary.

include ’../../Libs/MPISU3/cbsu3_bnd1b_mpia.f’! Gather boundary.

include ’../../Libs/MPISU3/cbsu3_bnd2a_mpia.f’! Gather boundary.

include ’../../Libs/MPISU3/cbsu3_bnd2b_mpia.f’! Gather boundary.

include ’../../Libs/MPISU3/cbsu3_wloops_mpi.f’! Measures Wloops.

include ’../../Libs/MPISU3/cbsu3rw_meas.f’ ! R/W measurements.

C Double-layered torus SU3 routines:

include ’../../Libs/MPISU3/cbsu3_2init_mpi.f’ ! Initialize SU3.

include ’../../Libs/MPISU3/cbsu3_2hbnhit_mpi.f’! MCHB updating.

include ’../../Libs/MPISU3/cbsu3_bstaple1.f’ ! Staple checkb. 1.

include ’../../Libs/MPISU3/cbsu3_bstaple2.f’ ! Staple checkb. 2.

include ’../../Libs/MPISU3/cbsu3_iba_mpi.f’ ! Define iba arrays.

In the first lines of the program, after the com-
ments, the general structure is defined. Variables
are declared throughout the entire code by includ-
ing the implicit.08 file of the Fortran library
folder:

implicit real*8 (a-h,o-z)

implicit logical (l)

This has the advantage that the type of a vari-
able follows from its first letter. An exception to
this rule are character variables, which are explic-
itly declared, though their first letter is always c.
No complex variables are used. MPI is setup by
including the system provided file mpif.h and a
number of constants are defined by including the
file constants.08 (see inside the file).
The program is compiled by a file mpimake, or

similar, of which a copy is located in each project
folder and listed here as used for Open MPI 2 .

cp *.par ../../Libs/Fortran_par/.

mpif77 -O -Wall $1

rm ../../Libs/Fortran_par/*.par

The mpimake command transfers the parameter
files into the Fortran par folder and removes them
from there after the compile step. This creates
a hyperstructure, which transfers to all subrou-
tines identical parameter values and dimensions
common blocks properly. As already mentioned,
to keep this structure intact runs must be carried
out in subfolders, which are two levels down from
STMC2LSU3MPI. Job submission is subsequently
done by run* executables, which are kept in the
run subfolders.

2 Similar mpichmake files are included in the MPICH fold-
ers. For runs on the Cray the compile step is in the job
q.run* control cards, because of the queuing system there.
In our Open MPI installation we had to use the b version
of the program, c on the Cray, while the a version is suffi-
cient for some of the runs we performed on the Cray and
all the MPICH runs documented in this paper.

All library routines needed by the program are
explicitly included at the end of the main program.
So their source code can be easily located. Excep-
tions are calls to MPI routines (all routines with
names starting with mpi), which have to be looked
up in MPI manuals or tutorials (for instance [12],
see [11] for subtle points with send and receive).
Step by step the execution of a run is explained in
the following.
(i) MPI initialization by mpi init.
(ii) Calculation of the rank (identity my id of the

MPI process) by mpi comm rank.
(iii) Some printout from MPI process zero, setup

of printout for each process if lud2 is true.
(iv) A call to cbsu3 2init mpi initializes the run,

setting up many important features:
(a) A call to rmaset initializes Marsaglia’s

(pseudo) random number generators
[15,12] used throughout this code. For
lsd2mpi true the process rank is in-
voked in the seed, so that a different
generator is used for each MPI process.

(b) Definition of pointer arrays for checker-
board labeling and exchange of bound-
aries by calls to lat init, for nlat=2

also to lat2a init and lat2b init,
then to cblat init, for lbcex true
(means MPI boundary conditions ex-
change) to cblgtpointer and, finally,
for ndmpi≥2 to cblgtpnt2.

(c) For the DLT a call to cbsu3 iba mpi as-
signs a unique β to each plaquette. This
routine has to be called before the start
configuration is initialized, because it
uses the SU(3) matrix array for tempo-
rary storage. Tags are finally stored in
the arrays iba1 and iab2 of the com-
mon block common cbsu3.f and point-
ers to the β values in the array ba(0:4).

(d) A call to csu3 start generates a SU(3)
start configuration.

(e) A call to cbsu3 act mpi calculates the
initial action.

(v) Calls to cbsu3 actdif mpi check whether
the action kept on record during the updat-
ing process agrees with the one obtained by
direct calculation. Process 0 writes action
information to the formatted output file
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(unit iuo) through calls to write act mpi.
(vi) Calls to mpi barrier are supposed to syn-

chronize the MPI processes, but may indeed
have no effect.

(vii) Calls to write progress by MPI process 0
write information to a file progress.d,which
is opened and closed, so that the user can
look up the file during run time.

(viii) For equilibration a double loop (nreq and
nequi) of calls to the updating routine
cbsu3 2hbnhit mpi is performed. The pur-
pose of a double loop is that the run can
be interrupted when the total equilibration
time exceeds the CPU time allowed for a
single run. The updating routine relies on a
number of subroutines:
(a) cbsu3 bstaple1 calculates the staple

for updating a link matrix on checker-
board 1 (cbsu3 bstaple2 correspond-
ingly on checkerboard 2). These rou-
tines use various matrix manipulation
routines from Libs/SU3.

(b) su3mult m m m multiplies SU(3) matri-
ces of the first two arguments and re-
turns the result in the third argument.

(c) su3reunit reunitarizes a SU(3) matrix.
(d) cbsu3 bnd1a mpia collects boundaries

(no corners) from a sublattice checker-
board 1 and sends them to other sublat-
tices (cbsu3 bnd2a mpia for collection
from checkerboard 2). A subtle point
is in gauge systems that one needs for
ndmpi>1 corner links from two neigh-
boring sublattices like the links emerg-
ing from sites 2 and 3 in Fig. 3. This is
handled by one more routine:

(e) cbsu3 bnd1b mpia collects for ndmpi>1
boundary corners from checkerboard 1
and sends them to other sublattices
(cbsu3 bnd2b mpia for collection from
checkerboard 2).

(ix) Updating sweeps with measurements are
carried out in a triple loop (nrpt, nmeas

and nsw). Measurements are done every
nsw sweeps and kept in time series arrays
of length nmeas. To write reasonably sized
unformatted arrays to disk is considerably
faster than writing after each measurement

1

2

3

Fig. 3. Links emerging at sites 2 and 3 are needed for
updates of links emerging from site 1 (the broken lines
indicate a division into sublattices).

step. Increasing nsw prevents strongly cor-
related measurements. A good choice for
nsw is between 1% and 10% of the expected
integrated autocorrelation time τint [12],
which depends not only on β and the lattice
size, but also on the observable. Using a too
large value for nsw destroys the possibility
to estimate τint from the run data.

(x) Measurements are temporarily stored in ar-
rays of the common block common cbsu3. For
spacelike and timelike plaquettes they are
done by cbsu3 wloops mpi and kept in the
times series (ts) arrays tsws and tswt.

3. Verifications

Although our code is written for a variable
lattice dimension D, tests have so far been lim-
ited to 4D. The programs and routines are only
moderately cleaned up. Many parts have disabled
(ltest=.false.) or commented out test options.
They are presently left in the code, because they
could come into use again.
This section deals with verifications, which were

performed on a 2 GHz AMD Athlon 64 XM Dual
Core Processor 3600+ at Leipzig University. MPI
runs with mpifactor > 1 use both processors, sin-
gle processor runs one of them. Fortran 77 com-
pilation was done with the g77 compiler based on
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gcc version 4.3.2 (Debian 4.3.2-1.1).MPI runs were
performed with MPICH version 1.27p1. Compiler
warnings about slow initialization of large aggre-
gate areas have been ignored as the produced code
works just fine. MoreMPI runs using up to 16 cores
on a PC cluster and up to 1 296 on a Cray are doc-
umented in [11].
A strong test for the correct implementation of

exchange of boundaries is provided by using iden-
tical random numbers on each sublattice. Then re-
sults from all sublattices have to agree and be iden-
tical with a run on a single lattice of this size with
PBC. After such tests, real production runs were
performed to compare action expectation values
with results from the literature [16] and from our
conventional (non-MPI) SU(3) code used before in
Ref. [13] (they are setup in the STMCSU3 project
folder in essentially the same way as the MPI pro-
grams in the main tree).
Because there are no IEEE (Institute for Electri-

cal and Electronics Engineers) standards for For-
tran functions, the precise numbers obtained in
trial runs depend on the computing platform due
to rounding errors, which lead at some point to dis-
tinct accept/reject steps. For averages agreement
in the statistical sense has to hold. This is still very
restrictive as the statistical errors are often small.

3.1. Periodic boundary conditions

This section deals with verifications for simula-
tions with PBC, i.e., the parameter values

nlat = 1 and lat2 = .false. .

All parameters of specific runs are kept in the sub-
folders of the project

1MPICH .

3.2. Identical random numbers on sublattices

With the

lsd2mpi = .false.

option identical random numbers are used in all
sublattices. We performed such simulations on 44

sublattices with parameters

nmeas = nequi = 212, nrpt = 32, nsw = 2 (9)

at β = 5.5, 5.6 and 5.7 using ordered and disor-
dered starts. The average actions of the MPI runs
are obtained by running the analysis program

ana2sublatsu3.f (10)

and the values were found in statistical agreement
with those from a conventional single processor
SU(3) Fortran program: The average over the Q
values of Gaussian difference tests [12] between
these six runs was close to 0.5 as it should.
We document here only the

β = 5.6 runs with ordered starts .

The analysis is kept on ana2.txt files. We ob-
tained for the mean action per plaquette with MPI
code (error bars are given in parenthesis and al-
ways rounded upwards in their second digit)

act = 0.53811 (19) , (11)

versus with single processor code

act = 0.53770 (18) , (12)

leading to an acceptable Q = 0.12 in the Gaus-
sian difference test. The integrated autocorrela-
tion time of these runs is estimated to be τint =
49.5 (3.4). So an error bar calculation with respect
to 32 bins is appropriate.
MPI runs were repeated for the pairs (1,1), (2,1),

(2,2), (2,3), (2,4), (3,1), (3,2) of the parameters

(mpifactor, ndmpi) (13)

giving (due to lsd2mpi false) always to the same
average action (11). The corresponding numbers of
MPI lattice points (MPI processes) msmpi (7) are
1, 2, 4, 8, 16, 3 and 9.
Parameters of the runs of this section are kept in

{F}nnxnnynnznntnpnbnfnd (14)

subfolders of 1MPICH, where F indicates lsd2mpi =
.false. and is omitted for lsd2mpi = .true.. The
letters n indicate numbers, which can be different.
Lattice extensions are given by nnx, nny, nnz and
nnt. This is followed by npnb for β0 = β1=n.n,
by n from nf for mpifactor = n, and n from nd

for ndmpi = n. In the folder names extensions of
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the full lattice are used, whereas data set names
created by the program (8) are of the form

SU3LGTndnfndnnnxnnntnnnn.D , (15)

showing sublattice extensions of the x and t direc-
tions. The program calculates also the extensions
of the full lattice from latmpi.par and prints them
in the readable output file. Another way to find
sublattice extensions is from the folder name by di-
viding the full lattice extensions by mpifactor for
the ndmpi directions. The results have to be inte-
gers without rest term. As folder names are created
by hand, the output file from the run is authorita-
tive in case of a discrepancy.
The other acronyms in the data set name (15)

are the lattice dimension D = n of the first nd,
then mpifactor = n from nf, and the MPI lattice
dimension ndmpi = n from the second nd. The
extension nnnn.D labels data files by their process
number. Each of the created data files corresponds
to one of the sublattices. After data production,
the 1-processor MPI program

su3datcollect.f (16)

condenses these data files into a single one for
which the extensions tnnnn.D are reduced to t.D.
When disk space fills up it is sufficient to keep
only the *t.D files.
To give an example, the subfolder name

F08x080y40z04t5p6b2f2d

corresponds to lsd2mpi = .false. runs on 44 sub-
lattices at β = 5.6 with a full lattice size 82 42. The
MPI run produces four sublattice data sets

SU3LGT4d2f2d004x004tnnnn.D

with nnnn from 0000 to 0003. After data collection
with (16) the file

SU3LGT4d2f2d004x004t.D

results, which can be analyzed further.

3.3. Different random numbers on sublattices

We set

lsd2mpi = .true. and mpifactor = 2

Table 1
Runs with np MPI processes, mpifactor=nf, ndmpi=n on

a periodic 83 4 lattice at β = 5.65.

np nf n nl1 nl2 nl3 nl4 time actm Q

− − − 8 8 8 4 248 m 0.538547 (70) −

1 1F 8 8 8 4 282 m 0.538471 (61) 0.41

1 1 8 8 8 4 287 m 0.538471 (61) 1.00

2 2 1 4 8 8 4 147 m 0.538584 (71) 0.23

4 2 2 4 4 8 4 150 m 0.538562 (63) 0.82

8 2 3 4 4 4 4 158 m 0.538468 (81) 0.36

in latmpi.par and produce data at β = 5.65 from
simulations of 83 4 lattices, which are partitioned
into different numbers of sublattices. Average ac-
tion densities are compiled in table 1. The statis-
tics of each run is the same as before (9). Each Q
value in the table corresponds to the Gaussian dif-
ference test with the action value in the row above.
The number ofMPI processes agrees with the num-
ber of sublattices given by (7). The time column
contains the CPU time measured on the Athlon
PC. The non-MPI run for the first row uses the
FHKP heatbath in the repeat until accepted ver-
sion. Whether it is slower of faster than the MPI
program run for one process (nf = 1) depends
on the Fortran compiler and the MPI installation.
Here it turns out to be faster, but that is not the
case on the PCs used in [11]. For nf = 1 one can
turn off the boundary exchange in the MPI pro-
gram by setting lbcex = .false., indicated by 1F
in the nf column. Results stay number by number
identical and the small speedup is negligible for
practical purposes, indicating that MPI send and
receive is very efficient as long as communication
stayswithin the same computer node. The decrease
of CPU time from msmpi = 1 to mspi = 2 reflects
the gain in real time due to using both cores of the
PC. It is given by a factor slightly larger than 1/2
due to communication overhead. The parameters
of these runs are setup in the

08x08y08z04t5p65bnfnd

subfolders of 1MPICH, where the notation is as in-
troduced in (14).
Results from 163 4 lattices, which allow for com-

parison with spacelike and timelike plaquette aver-
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Table 2
Spacelike and timelike plaquette expectation values for

comparison with Ref. [16] (B in the np column): Runs on a
163 4 lattice at β = 5.65 using our non-MPI program and
MPI code with np processes (sublattices).

np spacelike Q timelike Q

B 0.537638 (17) − 0.537692 (19) −

− 0.537650 (15) 0.60 0.537711 (14) 0.42

1 0.537647 (17) 0.89 0.537701 (17) 0.65

2 0.537650 (16) 0.90 0.537704 (17) 0.90

4 0.537648 (16) 0.93 0.537708 (16) 0.86

8 0.537661 (18) 0.59 0.537714 (17) 0.80

ages of the literature [16], are compiled in table 2.
For our runs the statistics (9) was used again. The
estimates of [16] rely on 20 000 to 40 000 sweeps af-
ter thermalization. After collection of our data by
running (16), the analysis program

anaw cbsu3.f

estimates the expectation values for spacelike and
timelike plaquettes. Again, Q values correspond to
Gaussian difference tests with the row above. The
slight increase of all values with increasing numbers
of processes is accidental and not reproduced when
using different random number generator seeds.

3.4. Double-layered torus

This section deals with verifications for simula-
tions with

nlat = 2

and folders of the runs are kept in

2MPICH .

For lat2 = .false. the exchange of boundaries is
turned off and one performs independent runs on
two lattices with PBC. This is not very interesting
and we discuss only runs with lat2 = .true..
With exchange of boundaries turned on, a strong

verification test is to run with different random
numbers on the sublattices of a torus, but identical
β values and random numbers on each torus. These
are the parameter options

lsd2mpi = .true. and lat2test = .true. ,

designed to reproduce the action values of the
run with PBC for which statistics and sublattices
match. For tori of size 834 and β0 = β1 = 5.65
these are values of table 1. These test runs worked
out as required and are setup in the

T08x08y08z04t5p65bnfnd

folders of 2MPICH, where the initial T indicates that
lat2test is set to true.

Table 3
Runs with np MPI processes, mpifactor=nf, ndmpi=n on
a double-layered 83 4 lattice at β = 5.55, disordered starts.

np nf n nl1 nl2 nl3 nl4 actm Q

2 1 1 8 8 8 4 0.510608 (33) −

4 2 1 4 8 8 4 0.510671 (28) 0.15

8 2 2 4 4 8 4 0.510597 (24) 0.04

16 2 3 4 4 4 4 0.510676 (32) 0.05

Proper simulations on a DLT are performedwith
lat2test=.false.. Table 3 gives reference values
for the action at β0 = β1 = 5.55 (at β = 5.65
one needs more statistics due to autocorrelations
that become important for small error bars). The
Q values refer to Gaussian difference tests as in
previous cases. They are a bit on the low side, but
it is clear that simply reordering the comparison of
data would change that. Also runs with a different
compiler gave (in the same order as listed in the
table) Q = 0.97, 0.09, and 0.30.

4. Summary and Conclusions

The code of this paper allows Markov chain
Monte Carlo calculations of pure SU(3) lattice
gauge theory on computers which have MPI in-
stalled. Besides the usual periodic boundary con-
ditions, the geometry of a double-layered torus is
implemented, which allows for distinct inside and
outside environments (the “inside” of one lattice
is the other’s “outside” and vice versa). A consid-
erable number of non-trivial verification are in-
cluded in this paper. The CPU time performance
of the code as function of the number of proces-
sors (more precisely CPU cores) is documented in
a companion paper [11].
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Should the a-version of the program “hang-up”
without producing an error message, the cause are
likely MPI send and receive problems which are
discussed and partially resolved in [11]. Although
designed for arbitrary D≥2 dimensions, the code
has presently only been tested in 4D. Hence, it is
unlikely to work straightaway for other D values
(nd in lat.par), though required fix-ups are ex-
pected to be minor. Of course, it is in the respon-
sibility of the final user to perform stringent tests
before applying the provided code to any purpose.
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