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Abstract

We propose a hybrid algorithm for the time integration of large sets of rate equations coupled by a relatively small number of
degrees of freedom. A subset containing fast degrees of freedom evolves deterministically, while the rest of the variables evolves
stochastically. The emphasis is put on the coupling between the two subsets, in order to achieve both accuracy and efficiency. The
algorithm is tested on the problem of nucleation, growth and coarsening of clusters of defects in iron, treated by the formalism
of cluster dynamics. We show that it is possible to obtain results indistinguishable from fully deterministic and fully stochastic
calculations, while speeding up significantly the computations with respect to these two cases.
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1. Introduction

The use of rate equations covers a wide range of applications
in fields such as chemistry, biology and physics. In material
science it has proved to be successful to study long term evolu-
tion processes that affect the microstructure of materials. This
approach, also known as “rate theory” or “cluster dynamics”,
enables one to study phenomena such as homogeneous pre-
cipitation under thermal ageing [1] or formation of voids and
interstitial loops under irradiation [2–4]. The system is consid-
ered as a gas of clusters, which are defined by their solute and
self-defect (vacancies, self-interstitials) content, and which can
emit and absorb mobile species. The evolution of each cluster
type is given by a rate equation, which also involves the number
or concentration of other types of clusters.

In general, such a set of ordinary differential equations
(ODE) is stiff, which roughly means that some modes have
very small time constants with respect to others. In such cases,
implicit integration methods are necessary, which implies the
solving, at each time step, of a linear system whose size is given
by the number of cluster types considered in the simulation.
Since it is customary to simulate large clusters (containing sev-
eral millions single species), the solving of such an ODE set can
become challenging, from a point of view of both computation
time and memory storage. It is all the more the case when multi-
component systems are treated: besides industrial alloys, some
simple cases include the modelling of pure metals with solute
impurities such as carbon, nitrogen, etc., and gas atoms, such as
helium and hydrogen [5]. When self-defects and a single type of
impurity are considered, some numerical approximations have
proved useful to reduce the number of equations [6, 7]. However,
alternatives must be envisaged once additional components are
included in the simulations.
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One interesting way to solve these equations is to use a
Monte Carlo algorithm [8], as suggested by Gillespie in a general
framework [9]. At variance with other fields, where stochastic
effects must sometimes be taken into account to correctly model
noisy systems [10], differences in the physical results are not
expected in our case, but using Monte Carlo simulations leads to
a tremendous decrease in memory storage. Since each reaction
firing has to be processed, it can however be computationally
demanding when reactions occur frequently; due to the stiffness
of the underlying ODE set, this case is quite common, and ap-
proximations are needed. Some methods rely on the grouping of
events [11], others are based on the partitioning between slow
and fast reactions, which are treated differently [12]. Recently, a
hybrid stochastic and deterministic algorithm has been devised
for small biochemical systems, with a stochastically exact cou-
pling [14]. We have adapted such an algorithm to the case of
a large set of species, coupled together by a small number of
species.

It should be emphasized here that the reason for the use
of such an hybrid method in material science is fundamentally
different from what motivates this kind of approach in biology.
In general, for biochemical systems, the deterministic equations
are introduced as a useful approximation of the chemical master
equation [13], but can lead to erroneous results if the approxima-
tion is not carefully controlled. In our case, we aim to speed up
simulation of systems which are already correctly described by
deterministic rate equations, by introduction of a stochastic part.

In the following we describe the algorithm in a general way
and present some simple test cases taken from material science,
namely the formation kinetics of voids and interstitial loops
in iron and in iron with helium under irradiation. Provided
an approximation is made to the initial algorithm devised for
small biochemical systems, hybrid simulations are found to
be significantly faster than the purely deterministic and purely
stochastic simulations.
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2. Background and notation

We consider a well-stirred system of species (labeled by
indices in a finite set Λ) interacting through reaction channels
(labeled by indices in a finite set R) in a volume V . The dy-
namical state of the system at time t is specified by the set
XΛ(t) ≡ {Xi(t)}i∈Λ, whose elements are the numbers of particles
of type i. The probability, given the state at time t, that a reaction
of type j ∈ R will occur in the time interval [t, t + dt] can be
written under general assumptions as [15]

P
(
reaction j during [t, t + dt] | XΛ(t)

)
= a j (XΛ(t)) dt, (1)

where a j is called the propensity function for the j-th reaction
channel. The change in the number of molecules of type i
produced by a reaction of type j is called the state-change vector
νi j. All propensity functions and state-change vectors completely
specify the reaction channels. Notice that information about
the space localization of the particles in the physical system is
completely neglected in this framework.

Eq. (1) lies at the heart of the Stochastic Simulation Algo-
rithm (SSA), introduced by Gillespie [9], which is based on the
observation that the probability at a given time t0 that the next
reaction is j and occurs in the time interval [t, t+dt] is p( j, t|t0)dt,
with

p ( j, t|t0) = a j (XΛ(t0)) exp [−(t − t0)AR (XΛ(t0))] , (2)

where we have introduced the total propensity

AR (XΛ(t)) =
∑
j∈R

a j (XΛ(t)) . (3)

Regardless of the reaction j, the probability that at a given time
t0, a reaction occurs in [t, t + dt] is p(t|t0)dt, with

p (t|t0) = AR (XΛ(t0)) exp [−(t − t0)AR (XΛ(t0))] . (4)

From Eq. (2) and (4), one infers that the probability that the
reaction occurring in [t, t + dt] is of type j reads

p ( j, t|t0)
p (t|t0)

=
a j (XΛ(t0))
AR (XΛ(t0))

. (5)

The evolution of the system is simulated by computing real-
izations of the continuous-time Markov chain XΛ(t). By calling
N j(t) the stochastic process counting the number of times that a
reaction of type j fires in the interval [0, t] (which is an inhomo-
geneous Poisson process of rate a j (XΛ(t)) by Equation (1)), one
has

dXi(t) =
∑
j∈R

νi jdN j(t). (6)

Operatively, at each time step t0 of the SSA the following opera-
tions are performed:

1. Compute all propensities a j (XΛ(t0)), together with their
sum AR (XΛ(t0)).

2. Select a reaction j with probability proportional to its
propensity a j (XΛ(t0)), following Equation (5).

3. Select a next-reaction time t by sampling the probability
distribution in Equation (4), which means that

t − t0 =
ξ

AR (XΛ(t0))
, (7)

where ξ is a random number exponentially distributed
with parameter 1.

4. Update time (t0 7→ t) and configuration (Xi 7→ Xi + νi j for
each i ∈ Λ).

A consequence of Equation (4) is that the larger the total propen-
sity AR is, the slower the evolution. In fact, the typical time
between two reactions is 1/AR. This problem is most painful
when the system is stiff — meaning that at least two very differ-
ent time scales are present — and just a few reaction channels
contribute most to the total propensity. In such a case the al-
gorithm spends most of the time performing fast reactions and
taking small time steps. Some solutions to speed up the simula-
tions have been proposed, based on diverse ideas such as reuse
of pseudo-random numbers [16], quasi-steady-state theory [17],
grouping of reactions (the so-called tau leaping methods) [11].
In many applications where stochastic noise is negligible for all
practical purposes, such as in cluster dynamics [4], a commonly
followed approach consists instead in solving a deterministic
system of equations describing the evolution of average quanti-
ties. More precisely, a well-known consequence of Equation (1)
is the chemical master equation (see for instance [18]), which in
turn implies the following rate equations, provided fluctuations
are neglected:

dXi(t)
dt

=
∑
j∈R

νi ja j (XΛ(t)) . (8)

In this equation, Xi are now real functions of time. The precise
conditions under which such an evolution “on average” is a good
approximation of the original jump process are described in
Reference [18]. In our case populations Xi are large for realistic
volumes V , so we will assume that these conditions are satisfied.
The rate equations can then be integrated deterministically using
various numerical methods adapted to ODE systems.

3. The algorithm

3.1. The hybrid method

The deterministic approach is not well-suited to situations
where the number of degrees of freedom is large, due to the
poor scaling of known numerical integration methods. What we
propose here is to adopt a strategy similar to the one already
proposed by Alfonsi et al. [14] for applications in biochemistry,
namely splitting the reactions into two sets, ideally according to
their typical time scale, and modeling one of them stochastically
through the SSA and the other one deterministically by using one
among the well-known numerical methods for ODE systems. In
this subsection we recall briefly the hybrid algorithm presented
in Reference [14].
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Let the set of reactions R be partitioned into two disjoint
subsets, R = D ∪ S. The evolution equation for Xi(t) will be
given by

dXi(t) =
∑
j∈D

νi ja j (XΛ(t)) dt +
∑
j∈S

νi jdN j(t), (9)

where Xi(t) are real variables. The idea is to evolve the system
deterministically by using only the reactions inD, and account
for the second sum in the right-hand side by performing reactions
in S stochastically. More precisely, we consider the reduced
system whose right-hand side function is given by the sum of
the reaction terms on the setD

dXi(t)
dt

=
∑
j∈D

νi ja j (XΛ(t)) , (10)

then at any given time t0 we compute its numerical solution, with
initial condition Xi(t0), up to the first-reaction time t > t0, when
we perform a stochastic reaction and update the configuration
accordingly. This stochastic reaction is instantaneous, in that it
causes a change in the variables (Xi 7→ Xi +νi j for i ∈ Λ) without
increasing time.

The problem of how to compute this reaction time is non-
trivial. Indeed, contrary to the standard SSA, propensities evolve
between two reactions treated stochastically due to the determin-
istic evolution of the system. As shown by Alfonsi et al. [14], it
is possible to find the first-reaction time by solving the following
equation:

g(t|t0) ≡
∫ t

t0
AS (XΛ(τ)) dτ = ξ, (11)

where ξ is an exponentially distributed random number with
parameter 1 and AS is the total stochastic propensity

AS (XΛ(t)) =
∑
j∈S

a j (XΛ(t)) . (12)

One can see that Equation (11) is a straightforward generaliza-
tion of Equation (7) to the case when propensities vary between
two stochastic reactions.

3.2. Partitioning the variables

With the foregoing discussion, the original problem has been
split into a deterministic and a stochastic part, in such a way
that the latter is faster than a full SSA algorithm, provided that
the sum of all stochastic propensities (12) is less than the total
propensity (3). On the other hand, inspection of Equation (9)
shows that we have not gained much on the deterministic side,
since the number of equations to be treated has not changed. In
fact, reaction terms with j ∈ D are still involved in the equations
for all the variables Xi with i ∈ Λ. In the type of hybridization
proposed in the biochemical literature one can afford having
the deterministic solver handle all species XΛ because one is
typically in the situation where the number of degrees of freedom
is modest and a full SSA would be slower. In the present case
instead we want to take advantage of both approaches and tackle
systems with a large number of degrees of freedom.

In order to address the problem in a general way, we propose
to split the variables into two sets (in the same spirit as in [19]),
by identifying a proper subset ∆ of Λ and treating variables
with indices inside or outside ∆ differently. A partition of the
reactions is induced by the choice of ∆. We impose that a
reaction is treated deterministically if and only if every species
involved in it (both the reactants and the products) belongs to ∆.
With this definition we can rewrite Equation (9) as

dXi∈∆(t) =
∑
j∈D

νi ja j (X∆(t)) dt +
∑
j∈S

νi jdN j(t)

dXi<∆(t) =
∑
j∈S

νi jdN j(t)
(13)

where X∆(t) is a shorthand for the set of all Xi with i ∈ ∆. Species
outside ∆ evolve only through stochastic terms. Moreover, the
deterministic reactions in the other set of equations now only
depend on the species inside ∆ so that the deterministic part
of the method must deal with a reduced number of degrees of
freedom. Namely, all one has to do in between two successive
stochastic reactions is to solve the upper-left corner of the system
(13), that is

d
dt

Xi∈∆(t) =
∑
j∈D

νi ja j (X∆(t)) . (14)

Stochastic reactions are then triggered by looking at the time-
change function g (11). General knowledge about deterministic
solvers and the SSA, together with the discussion at the begin-
ning of this subsection, suggest that we should choose ∆ so that a
few (fast) degrees of freedom are treated deterministically, while
the bulk of them should be left to the stochastic part.

3.3. Decoupling and the final algorithm
Actual implementation of the hybrid method as it is de-

scribed above brings out some technical difficulties. The main
problem resides in the abrupt changes in Xi caused by the
stochastic reactions, since such variations in the right-hand side
function can considerably slow down the deterministic solving
of the ODE set. In order to reduce the severity of this behavior
we introduce an approximation.

We define another subset D of Λ, such that D ⊆ ∆, and
decouple the deterministic and stochastic dynamics inside D.
What this means is that whatever stochastic reaction occurs,
only the variables Xi with i ∈ ∆ \ D will be updated, while
those inside D will be left unchanged. One of course has to
compensate in some way for the modification imposed to the
dynamics. We do this by adding an effective source term ρi to
each equation in D, crafted in such a way as to approximately
balance the discrepancy. Namely, we take ρi to be the mean —
over all possible stochastic reactions j — of the change that Xi

would have undergone if it were not decoupled, weighted by the
reaction’s propensity:

ρi =
∑
j∈S

νi ja j (XΛ(t)) . (15)

Since Xi is not updated when a stochastic reaction occurs if
i ∈ D, the deterministic solving is much more efficient, provided
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most stochastic reactions involving species in ∆ actually involve
species in D and no species in ∆ \ D. A possible source of
slowing down for the deterministic solver is the abrupt change
of propensities in ρi when a stochastic reaction occurs. However,
in general the firing of a single stochastic reaction does not
change ρi appreciably, so the deterministic solver is virtually not
affected. We are not going to give analytical estimates of the
errors this approximation introduces to the dynamics; we justify
it a posteriori by checking the numerical results against exact
simulation methods. Let us just note here that inclusion of such
effective source terms essentially restores the full right-hand side
of Equation (8) for the species in D.

Finally, the complete algorithm is as follows:

1. At time t0 generate random number ξ exponentially dis-
tributed with parameter 1.

2. Compute ρi for each i ∈ D as in (15).
3. Evolve the variables Xi(t) with i ∈ ∆ following

d
dt

Xi∈D(t) =
∑
j∈D

νi ja j (X∆(t)) + ρi

d
dt

Xi<D(t) =
∑
j∈D

νi ja j (X∆(t)) .
(16)

Keep track of the evolution of the total stochastic propen-
sity (12) (which depends also on variables in ∆) and of
the time-change function g (11).

4. When g(t|t0) = ξ, choose a stochastic reaction j ∈ S
with probability proportional to its propensity and update
Xi 7→ Xi + νi j for each i ∈ Λ \ D

5. Update t0 and go back to step 1.

3.4. Remarks on the implementation

The method presented above leaves some open choices to
the implementer. Apart from the parameters V , ∆ and D (the
tweaking of which should be done on a case-by-case basis;
see Section 4), some freedom is left as far as other details are
concerned.

Let us consider the computation of the effective term ρi at
step 2 of the algorithm. One could choose not to compute it at
every stochastic step, but rather to update it just once every nρ
reactions. Moreover, one could choose to sample and hold its
value between two updates, thus neglecting its smooth depen-
dence on the variables inside the deterministic region ∆ between
two reactions. We tested these different approximations for the
cases described in Section 4 and found no big differences in
performance or precision for values of nρ between 1 and 105.

An important design-related issue concerns the data struc-
ture used to store the variables outside ∆, which should be the
large majority. For the most frequently used reaction types [20],
propensity functions are such that some of them vanish whenever
a variable takes on the special value 0. The best choice is then
to use a dynamical structure, so that slots are assigned to Xi∈Λ\∆

only when it gets above zero, and they are released whenever
it goes back to zero, in such a way as to take full advantage of
the shape of the distribution XΛ and avoid the computation of

useless propensities. This is the implementation we use in the
next section.

In order to solve the stiff set of ordinary differential equa-
tions in the hybrid model (as well as in the fully deterministic
simulations that will be used as reference), a multistep method
with backward differentiation formulas is used, as implemented
in CVODES from the SUNDIALS package [21]. This solver
contains a root-finding procedure, which we use to detect time t
when g(t|t0) = ξ, i.e. when a stochastic reaction occurs. Since
the method is implicit, it requires the solving of a nonlinear
system, which is done using Newton iteration. The solving of
linear systems in the Newton iteration is carried out by a dense
direct solver. Although more sophisticated methods can be used
for the solving of the linear system, this one is chosen for its
simplicity of implementation.

4. Results

4.1. Cluster dynamics model

The model we use here, called cluster dynamics, describes
the time evolution of defect clusters in materials, within a mean-
field approach [4]. Clusters (or species) can absorb and emit
some species that diffuse in an effective medium. Generally, the
set of mobile species is limited to small clusters.

In the following we assume that clusters are made of two
elements, namely self-defects and solute (S) atoms, but the
method could be extended to more complicated clusters. Self-
defects can either be vacancies (V) or self-intertitial (I) atoms.
Clusters are thus identified by i = (n, p) ∈ Z×Z+\{(0, 0)}, where
|n| is the number of self-defects (n is positive for self-interstitials
and negative for vacancies) and p ≥ 0 is the number of solute
atoms in the cluster. When no solute is present, clusters are
simply labeled by i = n ∈ Z \ {0}. Extended defects, such as
dislocations, grain boundaries and surfaces, are treated as sinks
and sources for mobile clusters. The evolution equation for the
concentration or number Xi of species of type i is

d
dt

Xi = Gi +
∑
l∈Mi

Ji−l,i−
∑
l∈M

Ji,i+l−
∑
l∈Λ

Jl,i+l−kiDi(Xi−Xe
i ). (17)

In Eq. (17), Gi is a creation rate of species i by irradiation, ki

is the sink strength due to dislocations, grain boundaries or sur-
faces, Di is the diffusion coefficient and Xe

i is the concentration
or number of species i in thermodynamical equilibrium with the
sinks (only valid for self-defects). Λ is the set containing all
species and M contains only mobile species. The set Mi is a
subset of M, to ensure that the species involved in the flux Ji−l,i

exist (the number of solute atoms of i − l must be non-negative).
The flux Ji,i+l is defined by

Ji,i+l = βi,lXiXl − αi+l,lXi+l, (18)

where βi,l and αi+l,l are absorption and emission rates respec-
tively. The absorption rate is defined by solving the diffusion
equation in stationary state around an isolated cluster, which
leads to

βi,l = ri,lDl/V, (19)
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Figure 1: (Color online) Partition of the set of clusters. Shaded areas correspond
to the deterministic (∆), decoupling (D) and mobile (M) regions. The arrows
describe an emission reaction; the hollow point represents a cluster whose
variable is not affected by the reaction, since it lies inside D.

where ri,l has the dimension of a distance and is related to the
geometry of clusters i and l, and V is the total simulation volume
if X is a number of species, or is equal to 1 if X is a concentration.
The emission coefficient is defined by

αi+l,l =
ri,lDl

Vat
exp

(
−

Fi+l,l

kBT

)
. (20)

In this equation Vat is the atomic volume, Fi+l,l is the binding
free energy of species l to cluster i + l, kB is the Boltzmann
constant and T is the temperature.

The number of ODEs to solve can amount to several mil-
lions with only vacancies, self-interstitials and solute atoms. In
addition the propensities can be different by several orders of
magnitude. The resolution of such a stiff system must be done
by an implicit method, which involves the resolution of a linear
system based on the jacobian matrix. This can considerably
slow down the computations and even render the simulations
impractical, mainly for memory storage considerations.

However, the distribution of clusters is often sparse, which
means some concentrations can be considered as zero with a
good approximation. This is one of the motivations to use a
stochastic method: as only data related to clusters that exist in
the simulation box are stored in memory, and since the inversion
of a linear system is no longer necessary, we can expect to solve
the memory problems. Contrary to biochemical systems for
example, where stochastic methods have proved necessary to
obtain reliable results [10], we do not expect effects due to the
stochastic nature of the processes, mainly because the elemen-
tary species that contribute most to the kinetics are present in
large numbers.

The equations of cluster dynamics (17) are coupled to each
other by mobile clusters, which are supposed to be small clus-
ters. Each stochastic reaction will affect at least one cluster
in M, modifying the corresponding variable. It is then natural
to choose the decoupling zone D in such a way as to include
at least all these small and active clusters, in order to smooth
out part of their fluctuations. Let M be a rectangular region
[−mV,mI]× [0,mS] as in Figure 1 (in general, if the set of mobile
clusters is bounded it suffices to take the smallest rectangle that

contains it). Correspondingly, we define D = [−DV,DI]×[0,DS]
for the decoupling region and ∆ = [−∆V,∆I] × [0,∆S] for the
deterministic one (all these sets do not contain (0, 0), but we
will omit this in the notation for clarity). Consider a non-mobile
cluster made of n > mI interstitial atoms and p > mS solute
atoms, corresponding to X(n,p). If n ≤ ∆I − max(mV,mI) and
p ≤ ∆S−mS then no stochastic reaction can affect X(n,p) (the same
reasoning holds symmetrically for vacancy-type clusters). There-
fore, any choice of D such that mI < DI ≤ ∆I − max(mV,mI),
mV < DV ≤ ∆V − max(mV,mI) and mS < DS ≤ ∆S will have
the same effect on the algorithm. To highlight the advantages
of such a choice, it is useful to specify more precisely the rate
equations for clusters in D under the same form as Eq. (16):

d
dt

Xi =
∑
j∈D

νi ja j (X∆(t)) + ρ+
i i ∈ D \ M (21)

d
dt

Xi =
∑
j∈D

νi ja j (X∆(t)) + ρ+
i − ρ

−
i Xi i ∈ M. (22)

For i ∈ D \ M, ρ+
i is simply equal to Gi ; although in previous

sections, this term was formally included in the reaction terms,
we write it here separately for more clarity, restricting reaction
terms to fluxes between clusters. It should be noted that, as a
consequence of the choice of D, Eq. (21) is the full evolution
equation for clusters in D \M and requires no additional stochas-
tic contribution. This is not the case for i ∈ M, where stochastic
contributions are in general very large since these clusters are
coupled to all existing clusters. However, these stochastic con-
tributions are all contained in the source term ρi, which can be
written in terms of two quantities:

ρ+
i = Gi +

∑
l

αl+i,iXl+i + kiDiXe
i (23)

ρ−i =
∑

l

βl,iXl + kiDi, (24)

where the summation is performed on all indices that are not
taken into account through reactions in D, i.e. on l such that
l ∈ Λ \ ∆ and/or l + i ∈ Λ \ ∆. In practice, these source terms are
updated every nρ = 1000 reactions. In order to avoid the entire
recomputation of these source terms, it is useful to keep track of
the changes induced by the stochastic reactions by updating a
copy of ρ+

i and ρ−i at every stochastic reaction.

4.2. Iron under irradiation
As a first application we consider the cluster dynamics de-

scription of pure α-iron under irradiation by neutrons. The set Λ

labeling the species is the set of non-zero integer numbers (no so-
lute is present), and the deterministic and decoupling regions are
punctured intervals in Z \ {0}. The dynamical variables Xn will
represent the number of clusters of type n, but will nonetheless
be treated as continuous quantities in the deterministic sector ∆.
Vacancy clusters are mobile up to size mV = 4 and interstitial
clusters up to mI = 3. The creation rate is adapted to describe
cascades and is non zero for monomers (n = ±1), clusters of
4 interstitial atoms and of 8 vacancies. The total irradiation
time reached is around 106 s (≈ 11.6 days) and the damage
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Figure 2: (Color online) Cluster distribution at t = 4 · 105 s for pure iron at
300◦C (simulation volume is V = 10−13 cm3). Red crosses (a) correspond to the
hybrid algorithm; pink squares (b) are histograms of width 1000, obtained from
the same data-set; the dashed blue line (c) is obtained by a purely deterministic
method. The inset shows a close-up for small clusters.

rate is 3.9 × 10−8 dpa/s (dpa: displacements per atom). Other
parameters of the model are taken from Reference [22].

The choice of ∆ is found to have no influence on the physical
result, so it should only be driven by performance considerations.
A minimal requirement for ∆ is that it should include all species
produced by cascades, since irradiation is a potentially fast re-
action channel. Apart from that, the choice of ∆V and ∆I has
to be adapted to the characteristics of the system. In the α-iron
case we expect that the distribution of Xn becomes hollow in
the vacancy sector at large times, at least for sufficiently high
temperatures due to thermal dissociation of clusters, with one
peak at small sizes (due to the creation by irradiation) and one at
large negative values of n. The best choice for ∆V then probably
lies in the middle. In the following we will report performance
results for two different choices of the ∆ region.

Figure 2 shows the distribution of clusters Cn ≡ Xn/V at
t = 4 · 105 s and T = 300◦C. Results obtained both by our
hybrid algorithm in a single run and by a purely deterministic
method are presented. The simulation volume is V = 10−13 cm3;
clearly, all points in the stochastic region outside ∆ lie on or
above the threshold 1/V . In order to obtain points more easily
comparable with the exact solution, we consider binned data
(see figure caption). The shape of the distribution is correctly
reproduced, both in the stochastic and deterministic regions, the
sole deviations being close to the interface. The distribution of
small clusters is indistinguishable from the expected one on the
scale of the figure: the effective corrections (15) are successful,
even if their values are not updated at every iteration.

Figure 3 shows the CPU time as a function of the phys-
ical time reached (simulations were carried out on an Intel
Xeon X5650 2.66 GHz). We report the performances for a
purely deterministic method, a standard SSA algorithm and
our hybrid algorithm. The SSA simulation was done with a
volume V = 10−13 cm3. The performances obtained by the hy-
brid algorithm are shown for two different simulation volumes
(V = 10−14 cm3, 10−13 cm3) and two choices of the determinis-
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Figure 3: (Color online) CPU time versus physical time (pure iron at 300◦C)
for different methods and several choices of the parameters (∆1 = [−300, 300],
∆2 = [−450, 600], V1 = 10−14 cm3, V2 = 10−13 cm3). Pink triangles correspond
to the purely deterministic method; the dot-dashed green line to the SSA; the
remaining four lines are obtained by the hybrid algorithm, the two dashed blue
lines corresponding to the wider ∆ and the two solid red lines to the narrower.

tic interval (∆ = [−300, 300], [−450, 600]). The deterministic
curve was obtained by first running a hybrid simulation up to
t = 106 s and noting the size of the largest populated interstitial
and vacancy clusters (let us call them I(t) and V(t) respectively)
at several intermediate times ti. Afterwards, purely deterministic
solutions were calculated at said times, for the system consti-
tuted of the N(ti) = I(ti) + V(ti) equations describing interstitial
clusters not larger than I(ti) and vacancy clusters not larger than
V(ti). One of the advantages of our hybrid approach is that the
number of stochastic species is not fixed before the simulation,
and the number of degrees of freedom involved in the compu-
tation automatically follows the growing number of populated
species. As the plot reveals, the hybrid algorithm outperforms
both the purely deterministic solving and the standard SSA solv-
ing, and has the additional advantage of being highly tunable.

Changing V and ∆ has a big impact on the algorithm’s be-
havior. Increasing V has the direct consequence of decreasing
the threshold 1/V and thus increasing the number of clusters par-
ticipating in stochastic reactions: the total stochastic propensity
AS increases approximately linearly with V (see Figure 4); as a
consequence, the CPU time it takes to reach a certain physical
time increases with the volume. Decreasing the width of the
deterministic interval ∆ has a positive effect in the short term,
since it decreases the strain on the deterministic solver, but it
affects negatively the long-time behavior, for the total propensity
stays larger. The mutual influence of ∆ and V on the perfor-
mance is a model-dependent aspect that has to be considered
carefully when trying to find the best trade-off between speed
and precision.

It is important to note that coping with the growth of N(t)
is the main weakness of purely deterministic methods. If the
number of equations is fixed, then a deterministic solution of
the equations is asymptotically faster than the SSA. Indeed, for
our problems, increasingly large time steps are taken by the
solver in the fully deterministic scheme, whereas in the hybrid
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one the time step is constrained by the root finding procedure,
i.e. by the firing of stochastic reactions. However, since in
the Newton iteration the matrix to be inverted is considered as
dense and a direct linear solver is used, the CPU time scales
as N3, and the memory storage as N2. The memory storage
issue can even render calculations unfeasible. In the hybrid case,
N should be replaced by the size of the deterministic region
(∆I + ∆V + 1) × (∆S + 1), which is far smaller than N2. This
is why if N(t) is an increasing function of time, the hybrid
algorithm becomes better in the long run from the point of
view of CPU time and memory storage. In the present case,
N(t) grows sublinearly in t. A fit of the form N(t) ∝ tα gives
α ≈ 0.35. Systems where N(t) grows faster than this will benefit
even more from the hybrid approach (see Section 4.3).

As we already mentioned, raising the temperature yields
peaked distributions. The dynamic implementation of the stochas-
tic part of our algorithm (see Section 3.4) permits to take advan-
tage of these situations by neglecting the degrees of freedom
corresponding to the hollow regions. An example of such a case
is shown in Figure 5, where a second peak is present, correspond-
ing to very large vacancy-type clusters. Again, the position and
shape of the peak (as well as the distribution at small sizes) are
well reproduced.

4.3. Iron/helium under irradiation

The case of helium in iron is a particulary interesting one,
from both physical and numerical point of views. From the phys-
ical side, helium is created by transmutation during irradiation
with neutrons. As a noble gas, its interaction with iron atoms is
repulsive and it thus tends to agglomerate in vacancies and va-
cancy clusters, forming helium bubbles [23]. Due to the helium
pressure inside these bubbles, the emission rate of vacancies
is reduced as the helium-to-vacancy ratio increases. At high
temperature, only bubbles containing enough helium remain
stable, which can lead to sparsely populated distributions. This
is a case where the SSA and hybrid simulations should perform
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Figure 5: (Color online) Cluster distribution at t = 4 · 105 s for pure iron at
400◦C (simulation volume is V = 10−13 cm3). See the caption to Figure 2 for an
explanation of the symbols.

particularly well. Very recently, SSA calculations have been
performed in iron containing both helium and hydrogen [24].

For clusters containing no helium, the parametrization is
the same as in the previous section, except the source term
which corresponds to ion irradiation [22]. The damage rate is
10−4 dpa/s and the helium-to-dpa ratio is 10−4. We intend to
model irradiation conditions close to those obtained by dual ion
beam experiments, where one beam is used to create damage
(vacancies and self-interstitials), while the other one injects he-
lium into the sample. Compared to irradiations performed with
neutrons, where helium is created by transmutations, the helium
content can be significantly higher in dual beam irradiations, so
a role of helium can be more clearly highlighted.

Other input data of our model, specific to helium, include
the diffusion coefficient of helium, deduced from first princi-
ple calculations [25], and binding energies of helium atoms,
vacancies and interstitials to bubbles. These data are taken
from first principle calculations for small clusters [26] and
extrapolated from molecular dynamics calculations for larger
sizes [27]. For the sake of simplicity, interstitial clusters are
assumed to contain no helium atoms. In the following we fix
the volume to V = 10−13 cm3 and the deterministic region to
∆ = [−10, 10] × [0, 2]. The temperature is set to 500◦C.

Adding a solute atom to the picture heavily affects the com-
putational cost of a completely deterministic approach, since
the space of cluster types is now two-dimensional. This has an
impact both on the speed of the simulations and on the memory
requirements. The latter are especially important in the present
case, where 1.3 GB of RAM are needed in order to reach t = 3 s
in a fully deterministic computation. Clearly, reaching much
longer times with such an approach is unfeasible. On the other
hand, the memory requirements of the hybrid algorithm are
much less demanding (less than 10 MB for all the times con-
sidered), since the deterministic region is fixed and the number
of variables in the stochastic region follows the shape of the
distribution, as explained above.

This distribution is shown at t = 1000 s in Fig. 6, where
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Figure 6: (Color online) Distribution of clusters at t = 1000 s obtained by the
hybrid algorithm in the iron/helium case, at 500◦C. Data have been averaged
on 50 simulations and smoothed by taking histograms: each point in the mesh
represents the average on a region of size 1000 × 20 around it. The inset shows
the distribution of interstitial clusters, containing no helium, obtained by taking
histograms of size 2000. Concentrations C(n,p) are in cm−3.

data have been averaged on 50 simulations and grouped into
histograms. Only a small part of the set of clusters is popu-
lated, which supports the use of a dynamical structure to store
concentrations, neglecting non-populated classes. If such an
approach were not considered, the memory needed at t = 1000 s
would amount to around 3 GB instead of the few MB previously
mentioned.

Concerning the computation time, the hybrid method is
shown to be faster than standard SSA by more than one or-
der of magnitude for small times and roughly three times faster
at t = 500 s. Deterministic calculations could only be performed
until 3 s of physical time due to memory requirements and are
considerably slower than SSA and hybrid calculations. The
number of equations N(t) corresponding to all species inside
the rectangle containing the set of clusters grows as N(t) ∼ tα,
with α = 1.6, which is much faster than the strongly sublinear
growth observed for pure iron. This is why the deterministic
solving fails so early. However, it should be noted that using
a dense solver is clearly not optimal in the present case, since
the jacobian matrix is sparse. Using a sparse direct solver, a
deterministic algorithm could prove to be convenient. Since
any improvement on the linear solver will be reflected in the
hybrid algorithm, in general the hybrid algorithm should per-
form at least as well as the deterministic one, while possibly
relieving technical difficulties associated with the solving of
large matrices.

5. Conclusions

We proposed a new hybrid method for dealing with large
sets of stiff rate equations, coupled by a small set of degrees
of freedom, as those appearing in cluster dynamics. In this
approach deterministic and stochastic strategies work in parallel
across the time evolution. Essentially, a fixed small number
of fast degrees of freedom is treated deterministically, while a
non-constant (and possibly very high) number of the remaining
variables is treated stochastically. The coupling between the
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Figure 7: (Color online) CPU time versus physical time (iron/helium case). Pink
triangles correspond to the purely deterministic method, the dashed green line
to the purely stochastic (SSA) method, and the blue solid line to the hybrid
algorithm.

two sectors is realized by the introduction of effective source
terms for a small number of equations, where fluctuations due
to the stochastic reactions are averaged out. This approximation
does not yield appreciable errors in the results, and is helpful in
reducing the time needed for the simulations.

We tested the hybrid method in the cluster dynamics descrip-
tion of two physical phenomena: the formation of voids and
interstitial loops in pure iron under irradiation, and the nucle-
ation and growth of helium bubbles in the same system. In the
two cases, a significant decrease in computation time is observed
with respect to both deterministic solving and standard SSA al-
gorithm. Since the number of variables treated deterministically
in the hybrid algorithm is far lower than in a fully deterministic
solving, the memory storage is also orders of magnitude lower,
and comparable to SSA. We emphasize that we have used a
dense solver for the deterministic and hybrid methods; using
a sparse solver would improve the performance of these two
methods with respect to SSA. In particular, a larger number of
deterministic variables could be used in the hybrid method, to
keep a balance between the solving of the deterministic and
stochastic parts.
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