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Abstract

TheSpinorssoftware is alathematicgpackage which implements 2-component spinor calculus\asatkby Penrose
for General Relativity in dimension+3.. TheSpinorssoftware is part of theAct system, which is a collection of
Mathematicgpackages to do tensor analysis by computer. In this papeivee@ghorough description &pinorsand

present practical examples of use.
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Restrictions: The software only works on 4-dimensional

Lorentzian space-times with metric of signature
(1,-1,-1,-1). There is no direct support for Dirac
spinors.

Unusual features: Easy rules to transform tensor ex-
pressions into spinor ones and back. Seamless integration
of abstract index manipulation of spinor expressions with
component computations.

Running time: Under one second to handle and canon-
icalize standard spinorial expressions with a few dozen
indices. (These expressions arise naturally in the tramsfo
tion of a spinor expression into a tensor one or vice-versa).

* ltems marked with an asterisk are only required for
new versions of programs previously published in the CPC
Program Library.

1. Introduction

The concept ofspinor plays an important role in
certain areas of mathematical and theoretical physics.
Roughly speaking a spinor is a field which transforms
under aspinor representatiorof a given symmetry
group in our system. For example, if we are work-
ing in a pseudo-Riemannian manifold with a metric of
signature p, q) (p represents the number ofL andq
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the number of-1 entries in the canonical form of the Other computer algebra systems support compu-
metric), then a natural symmetry group is the group tations with spinors. For example in the con-
which transforms orthonormal frames into orthonormal text of Particle Physics we may quote the package
frames. This group i©(p,q) (SAp. q) if we restrict Spinors@Mathematic§B] which can be used in the

ourselves to transformations preserving tteme ori- evaluation of scattering amplitudes at tree and loop
entatior). The spin group is then the universal cover- level. The stand-alone packa@adabra[@] handles

ing of SAp, g) which, as is well-known, iSpinp, q) generic abstract spinor quantities in any dimension, with
and hence spinors transform under irreducible represen-emphasis in Field Theory, but no special support for
tations of this group. General Relativity or component computations. The

The above considerations are completely general andMaple built-in packag®ifferentialGeometrias exten-
they enable us to introduce the notion of spinor field sive support for component computations of multiple
in any pseudo-Riemannian manifold admittingsgain types, in particular the NP formalism, but no support
structure However, in the case of a 4-dimensional for abstract tensor computations. Another Maple pack-
Lorentzian manifold (the space-time model in General age handling the NP formalism IN;PSpinor[B].

Relativity) a more algebraic approach is desired. This The paper is organised as follows: in sectign 2 we
approach was pioneered by Penrdse [1] where he stu-give a mathematical introduction to spinor calculus.
died the main properties of the spinor algebra of those The aim of this introduction is to set the notation and
spinors arising from the spin group 8f((1, 3) and in conventions which are followed by tHgpinorsimple-
addition he developed a calculus adapted to the parti- mentation. Sectio] 3 explains how tBpinorssoftware
cular spin vector bundle which one can define in a 4- fits into the xAct framework and sectiofll 4 presents a
dimensional Lorentzian manifold admitting a spin struc- practical session witlSpinorsin which the main fea-
ture. Penrose’s spinor calculus revealed very useful in tures of the program are shown by means of practical ex-
certain contexts of General Relativity (GR) where the amples. The paper is finished in sec{ion 5 where a prac-
use of tensor methods results in very cumbersome com-tical computation involving theNester-Wittenspinor
putations. Perhaps the best known example is the spinorand theSparling identityis carried out withSpinors
formulation of the algebraic classification of the Weyl
tensor (Petrov classification). The spinor form of the
Weyl tensor is a totally symmetric 4-rank spinor and it
is very easy to show that such a spinor can only admit  |n this section we give an overview of the spinor cal-
four different algebraic types which are in correspon- culus in General Relativity, following a practical ap-
dence with the four distinct Petrov types. proach to introduce the subject and omitting most of the

In this article we describe thilathematicapackage  proofs (detailed studies can be found in €.gL[6, 7]). Let
Spinorswhich implements the spinor calculus in four | be a 4-dimensional real vector space endowed with
dimensional Lorentzian geometry as conceived by Pen- 3 real scalar produgf( , ) of Lorentzian signature and
rose. In this conception, spinors are tensor fields on a et S be a 2-dimensional complex vector space (com-
certain tensor bundle and therefore one can use the genplex conjugate of scalars will be denoted by an overbar).
eral ideas of tensor bundles to work with spinors. In par- The vector spac8is related to another complex vector
ticular the notion of spin covariant derivative, the curva- spaceS by an anti-linear, involutive transformation.
ture spinors or the relation between spinors and space- The vector spack and its dual * can be used as the
time tensors find here a natural formulation. Animpor-  starting point to build a tensor algebra in the standard
tant part of this formulation is the notion abstract in- fashion. Similarly a tensor algebra is built frof S
dexused to represent tensor fields on any tensor bundle.ang their respective dua®, S”. We denote these al-
This representation of tensor fields has been adopted ingepras byz(L), T(S) and(S) respectiveld. In this
the systgnxAct[E], which Spinorsis part of. The sys-  ork abstract indices will be used throughout to denote
temxActis a system to do tensor analysis by computer tensorial quantities: in this way lowercase Latin indices

in Mathematica both by working with tensors as lin- 5 . will denote abstractindices on elementsiE )
ear combination of basis tensors (component calculus)
and by working with tensors as symbolic names with
certain properties like rank or symmetry (abstract cal- ~ “Strictly speaking only the algebra§g(L) of tensors r-
culus). The systermAct consists of dierent modules c?ntravarlants—covanant can be defln_ed (and the same applles to
. . . TL(S)). To lessen the notation we will suppress the labels in
tailored for diferent tasks an@pinorsis one of these  he notation and they will only be made explicit when cordasinay

modules. arise.

2. Mathematical preliminaries




and capital Latin indice#, B, ... (resp. primed capital
LatinindicesA’, B, ...) will be used for abstract indices
of elements ifg(S) (resp.<(S)). The union of the ten-
sor algebrag(S), (S will be referred to as thepin
algebraand its elements will be called spinors. One can

also build tensor algebras by taking tensor products of T

elements inZ(L), T(S) and¥(S). Quantities in these
tensor algebras will be referred to asxed quantities
and they will carry abstract indices of tensor and spinor

type. All tensor algebras shall be regarded as complex

vector spaces.
SinceS is 2-dimensional, we deduce that the vector

space of antisymmetric 2-spinors is 1-dimensional and spinor counterpart

be only compatible with the signatureX, 1,1,1) ﬂ].
These properties enable us to relate tensors and spinors
in the following way

AALAA,  agay by AA, ApA,
BiB{..BeBy Tbl...bqo' B.B, Y B la 0a, s
(4)
abl...a:)p _ A;:E...;:)Aép o, BiB} o Bq B alA T O_apA "
1--Hq 1P1--Babq Pl 9 17 pAp
®)
a;.ap - . AlA’l...ApA;J .

whereT', " is an arbitrary tensor an@ly g " o its

therefore we can pick up a non-vanishing representative  ppnother important algebraic property of the soldering
eas Which generates such a vector space. We define nextigrm is

a spinofe*® by the relation

EABECB = (5Ac.

(1)

Where<SAC is the identity tensor (also known as theo-
necker deltaon the vector spac®. Indeed the spinors
eap, € B can be used to relate elementSiand elements
in S* in the following way

=P, 2)
whereé” is an arbitrary spinor iiS. Hence, the spinors
eag ande*® can be understood as a metric Srfsym-
plectic metric) and its inverse and the operation shown
in @) is the standard “raising and lowering” of indices.

A
e =¢EB,

These operations are extended to the full spinor alge-

bra without dificulty. In particular we can raise the in-
dices ofeag gettinge”® = €8 and from now on only
the symbok will be used for the symplectic metric and
its inverse. Note also the property

3)

Here the quantity,” is the Kronecker delta o8 and
6”5 is a derived quantity obtained from it by the raising
and lowering of indices. In particular this impliég® =

2. The spinorsag, €8 ands,? all have counterparts

(complex conjugates) defined in the algefi(8).

(6)

This equation is a direct consequence of the irreducible
decomposition of the produet,” s opac according to
theoreniL below and the algebraic properties of the sol-
dering form. Starting fron{6) we can derive formulas
for the products of soldering forms with all their spinor
indices contracted (these are useful to translate spinor
expressions into tensor ones). For example

A A —
Oa AObAC T+ 0 aACObh A = UJab EacC.

’

DC A
0dpD =

U'aAA(U'bAC’ O¢
(7)

wherenapcq is the volume form of the metrigq,. It

is possible to generalise this formula for the case of a
product of more soldering forms. These can be written
as contracted products of the quantity

1.
§(|Ucdab+ OabOcd + JebOda — 9caldb) »

1.
Gabed = E('Uabcd + QadObc — OacObd + JabJcd).  (8)

Combining eq.[{I7) and its complex conjugate we obtain
the spinor counterpart afpcq, Written as follows

a b c d
Nabcd0 AANO BBO CcCOU DD’

i(eaceBDEN D ER'c’ — €EADEBCEAC ERD)- (9)

It is possible to relate tensors and spinors by means We finish this review about spinor algebra by recalling

of the soldering form This is a mixed quantity- A%
fulfilling the algebraic properties

a - a AA a
O aAn0aBB = EBAEB'A O an0p = 6b N
O_aAA’ — O'aAA.

The last of these properties implies tha, 5, is hermi-
tian. This is only compatible with the metric signature
(1,-1,-1,-1). Choosingo?,, anti-hermitian would

an important result dealing with the decomposition of an
arbitrary spinor into irreducible parts under the Lorentz

group [6].

Theorem 1. Any spinorfAl...ApB/l...B&, p,q € N can
be written as the sum of a totally symmetric spinor
E(ag-p)(B;--By) PIUS terms which are products of the spin
metric eag (Or its complex conjugatey ) times totally
symmetric spinors of lower rank.



2.1. Spinor calculus

So far all our considerations were algebraic in nature,
but we can also perform our construction for the case
of a Lorentzian manifold 1, g) as follows: the con-
struction performed in previous paragraphs is carried
out taking as vector spade the tangent spac€p(M)
of an arbitrary poinp € M which is endowed with the
Lorentzian scalar produdjp. In this way it is possi-
ble to introduce a complex vector spagand a quan-
tity o,**|,. Now the seS(M) = Upen Sp is a vector
bundle with the manifold\ as the base space and the
group of linear transformations of’ as the structure
group. We will call this vector bundle thgpin bundle
and the sections d&(M) are the contravariant rank-1
spinor fields onM. We can now define the tensor al-
gebrasT(Tp(M)), ng(sp) and, use them to construct
vector bundles withM as the base manifold. These

arising from the tensorial part consists of the Christof-
fel symbolgRicci rotation coéficients and the Riemann
tensor of the covariant derivative restricted to the tan-
gent bundler (M). The group coming from the spino-
rial part contains the connection components and the
curvature tensor of the covariant derivative restricted to
the spin bundI&S(M) (or S(M)). We will refer to these

as theinner connectiorand theinner curvaturerespec-
tively. See [7] 9] for an in-depth discussion of these
concepts.

Definition 2 (Spin covariant derivative). Suppose that
S(M) admits a spin structure A%, We say that a co-
variant derivative Q defined onS(M) is compatible
with the spin structurer ¥ if it fulfils the property

Dao™ = 0. (10)

bundles are tensor bundles and we denote each of thes@he covariant derivative Pis then called a spin covari-

tensor bundles bﬁg';(M), where the meaning of the
labelsr, R, s, S is the obvious one. In general we will
suppress these labels and use just the not&tioW) as

ant derivative with respect to the spin structarg™~.

Given that any quantity antisymmetric in two spinor

a generic symbol for these tensor bundles. Sections onindiceés must contain the spin metric as a factor we have

S (M) are written using abstract indices and we follow

the same conventions as in the case of the vector spaces

L andS. Sections of any of the bundlﬁgzg(M) are
calledspinor fieldsor simplyspinors As usual there is

a complex conjugate counterpart of this bundle, denoted

by G(M).

Definition 1 (Spin structure) If the quantityo ¥,
varies smoothly on the manifoldi, then one can de-
fine a smooth section, denoted &y*”. When this is
the case we call the smooth sectioff a smooth spin
structure on the Lorentzian manifo{dé, g).

Clearly a spin structure can be always defined in a
neighbourhood of any poimt € M but further topolog-
ical restrictions are required if the spin structure is to be
defined globally (see e.d.|[8]).

We turn now to the study of covariant derivatives de-
fined on the bundle§(M), G(M). Let D, denote such
a covariant derivative. Then the operaly can act on
any quantity with tensor indices afod spinor indices.
As a result, wherD, is restricted to quantities having
only tensor indices we recover the standard notion of
covariant derivative acting on tensor fields/of. If D,
is restricted to quantities having only spinor indices then
D, is the covariant derivative acting on spinor fields.
The consequence of this is that the connectiorfcoe
cients and the curvature @, will be divided in two
groups: quantities arising from the tensorial part and
guantities arising from the spinorial part. The group

4

Daéag = da€as .  Aa = €'PDaens, (11)
whereD, is any covariant derivative defined on the bun-
dle 6(M). WhenD, is in addition a spin covariant
derivative then, combining (10) and{11) we easily de-
duce the additional properties

(12)

DaO'bAA/ =0, DcQab= (Ac+ /Tc)gab~

The last equation implies that any spin convariant
derivative gives rise to aemi-metricconnection |_L_1|0]
when restricted to the space-time tensor bundle. If fur-
thermoreD, has no torsion, then it is known as/gyl
connection The spin covariant derivative gets fixed if
we demand additional properties on it (see el:b. [61)

Theorem 2. There is one and only one torsion-free spin
covariant derivativeV, with respect to the spin struc-

ture o, which fulfills the property
Vaéas = 0. (13)
Acting with suchV, on (8) gives
Vagbc = O, (14)

which shows that the restriction 8, to quantities with
tensorial indices is just the Levi-Civita covariant deriva
tive of gap.



Consider now any spinor field® and any spin co-
variant derivativeD,. Then the commutation db,, Dy
acting ong” is given by [7]

DaDpé® — DpDag® — T'yDré” = Fapp¢”  (15)
whereT",, is the torsion ofD,. The mixed quantity
FabAB is the inner curvature mentioned above. It is
antisymmetric in the tensorial indices and it fulfils the
Bianchi identity{7]

B
bc A

B

DraF dr A=

+ T'apF 0. (16)
The spinor counterpart of the inner curvature is repre-
sented byF . pp 42 and it can be decomposed as fol-
lows

Fcopoas = Xasepec o + Pascp €cp. 17)
The spinorsXagcp and ®agcp: are calledcurvature
spinorsand they enjoy the symmetries
(18)

Xagcp) = Xagcp,  Papcp) = Pasen'-

We can also introduce a spin®f* .., representing
the torsion. Its irreducible decomposition reads

T ace = QM acerc + O 5 erc, (19)
where Qaasc is the torsion spinorand it fulfills the
symmetries
(20)

The inner curvature and the Riemann tensobgfare
indeed related. To find the relation between them one
computes the Ricci identity for an arbitrary veciét
and then particularises it for the special case in which
Va =g, 8N The resultis

Qaneo) = Qanse.

d_ D— D ,F D_ Dy._CC d
Rave = (Fanc €~ + Fape & )oc ™ 0 ppr-

In the important particular case of a torsion-free con-
nection which is compatible with the metric (Levi-
Civita connection) the curvature spinors gain further
symmetries. These are

(21)

Xapep = Xapep»  XaBcD = XcDAB »

Dapcp = Pasep -

Given these additional symmetries we find that the
spinor®apep is already in its irreducible form and it
is called the Ricci spinor. The irreducible decomposi-
tion of the spinoiXagcp yields

Xagcp = Pascp + A(eapesc + eacesp). (22)

whereWagcp is a totally symmetric spinor called the
Weyl spinorandA is related to the scalar curvature by
the formulaA = R/24. The curvature spinors and the
torsion spinor are defined up to a constant scalar factor.

When working with a spin covariant derivatii, it
is convenient to introduce theftirential operator

Dan = O'aAAr Do, (23)

which enables us to render any expression containing
spin covariant derivatives as an expression containing
only spinor indices. Also the commutati®@ny Dgg —
Dgg Dan can be formally decomposed into irreducible
parts as follows

DaxDgg — DeeDan = ennas + easllar, (24)
where
(aeg = Deaar DA"B) . Oae = Dan DAB/) , (25)

are linear diferential operators. The action of these op-
erators on a spinor of any rank is obtained from the
spinor expression of the Ricci identity @, and the
expression of the Riemann tensor in terms of the curva-
ture spinors. The results for the case of a rank-1 spinor
are

Oect® = Xpact® — QP Dpat®  (26)

3. The packageSpinorsand its relation to xAct

The packageSpinors is a Mathematica package
which implements the spinor calculus as described in
the previous sectionSpinorsis part ofxAct [E], which
is a system to do tensor analysis by computer written
mostly in theMathematicgprogramming language with
a smaller part in C. The composition is roughly 16000
lines of Mathematicacode and 2700 lines of C code.
As of October 2011 the version afActis 1.0.3. and
the complete system is free software available under the
terms of the GPL license.

The systemxAct is organised as a suite of inter-
dependentMathematicapackages which can be re-
garded as dierent-purpose modules loadable on-
demand. The packages and the relations among them
are depicted in figurel1. The arrows indicate which
packages of the suite a given package relies upon and
we can see that there are three packag€sie xPerm
andxTenso) which act as kernel for the whole imple-
mentation. This means that these packages yield the ba-
sic framework to set up any computation requiring ten-
sor analysis. In addition the modutperm.cis a piece
of code in C language devised to speed-up the group



The xAct system Finally the formulae relating spinors and tensors had to

Componas e g be studied and coded from scratch (this was perhaps one

. Vi G nd of the most time-consuming tasks in the development of
Spinorg. The conclusion of all of this is that spinor the-
ory is complex enough to develop a new package for the

XActsuite.

The package spinors has already been used by a num-

ber of authors in their research. An example of this is

_ _ the invariant construction d€err initial datain [IE,]

Zr (see aIso|E7] for a generalisation of these results). The

present authors have also usgginorsin the investiga-

Harmonics
"Tensor spherical harmonics"
D. Brizuela, J.M. Marti;

Spinors
"Spinor calculus in GR"
A. Garcia-Parrado and
J.M. Martin-Garcia.

xTensor
Abstract tensor algebra

o ] tion of the invariant properties of type D vacuum solu-
lathematica tools -language module . i A X .
tions of the Einstein’s field equations [18].
Figure 1: Graphical depiction of the xAct packages and ttiepen- 4. Working with Spinors
dencies. The packages coloured in yellow can be regardén: ay$-
tem Kernel and have been developed by J.M. Martin-Garcia. AssumingxActhas been installed one loagginors

in aMathematicasession by typing

theoretical computations neededdanonicalizetensor In[1]:= << xAct Spinors
expressiondﬂl]. When loading any other package of
. Package xAct‘Spinors‘ version 1.0.2, {2011,10,25}

XACT, allthe necessary paCkageS are loaded SequentlallyCopyRight (C) 2006-2011, Alfonso Garcia-Parrado Gomez-Lobo
fO”OWing the order shown in f|gu 1. ax}d Jose M. Martin-Garcia, under the General Public

ThexActsystem can be enlarged by adding new pack- Lcenee
ages for specific purposes, as long as the dependencies
just described are kept. Some of the packages shownThis will load the packag&pinorstogether with the
in figure[d have been already described in the literature. other packages of theActsuite whichSpinorsrelies on.
This is the case ofPerm[L1], Invar [12,[13] andxPert These arxCore xPermandxTensor(see sectiohl3 and
[14]. In addition to these references, each package in- figure[d). In this work we will only explain the features
cluded inxActhas a documentation file, which explains of these packages which are required for our implemen-
its main features and contains a tutorial. tation and we refer the reader to their documentation for

ThexActsystem provides support to define and work further details.
with general vector bundles on any manifold and dimen- ~ Néxt we need to declare a 4-dimensional Lorentzian
sion. This means that the main features of spinor alge- manifold by means of the standardctmachinery:
bra and spinor calculus are generically built ixact In[2]:= DefMamifold[M4, 4, fa, b, ¢, d, £, b, pl]
for any dimension. However, in the particular case of 1,(3).= pemetricr(t,3,0), gl-a,-bl, o]
Lorentzian geometry in dimension four, extra features
arise as described in sectibh 2 and hence it was nec-The list ja, b, ¢, 4, £, n, p} corresponds to the space-
essary to develop a new package to take care of theseime abstract indices which will be used in tensor ex-
features. For example the presence of the antisymmet-pressions and the ligt,s, 0} in pesretric Servesto indicate
ric metric eag forces us to be careful with the con- the canonical form of the metric tensgfits canonical
ventions to raise and lower indices. Also we need to form contains once-1, three times -1 and zero times 0,
decide which index configuration represents Hasic thus it corresponds to a Lorentzian metric). The sym-
Kronecker delta and which index configuration repre- bol co represents the Levi-Civita connection compatible
sents a derived quantity. In our case all these conven-with the metricg and in addition a number of quantities
tions were laid in egs.[2](3) and one needs to take (the Riemann tensor, the Ricci tensor, the Weyl tensor,
these particular conventions to the software implemen- etc) are also created automatically after issuing the com-
tation. Another delicate task is the 2-index representa- mandoesmetric.
tion of the spin covariant derivatives and their proper-  So far we have used commands belongingTiensor
ties (eqs.[(23){(24)). This representation only occurs in and we have now the set-up necessary to start working
the spinor calculus and hence we had to code the corre-with Spinors The first step is the introduction ofsgpin
sponding properties explicitly for th&pinorspackage. structure This is achieved as follows




In[4]:= DefSpinStructurelg, Spin, (A, B, C, D, F, P}, ¢, o, Also we can modify the printing output of any tensor or
cbe] spinor

Several new objects are defined alongside this com- mn(8l:= Printasfet] "= "&";

mand. These are the spin bundjen, its abstract in-

dicesi, B, ¢, 0, F, p}, the spin metric, the soldering The commandeconposition Can be used to find the
form - and the spin covariant derivatiee: compatible decomposition into irreducible parts of any other curva-
with both the space-time metricand the spin metric  ture spinor (itis possible to indicate the curvature spinor
e. The spin bundlepint together with its structures and  being decomposed as an additional argument). For ex-
the curvature spinors are automatically defined with this ample

command. For example the Weyl and Ricci spinors are | .. _ SP RiemamnCDI-A, -Af, -B, -B1,~C, -Ct, D, -D1]

In[5]:= {PsiCDe[-A, -B, -C, -D], PhiCDe[-A, -B, -Ct, -Dt1]} // Decomposition

0ut[51= (¥[Vlasco. P[Vlascrot) Out [91= B o
P[V]taeore easeco — @[ Vlasprcr éncenrsr — 2A[V](eap escenrpr evrcr —
eacesp eacrearp’) — P[Vlpcasr eas €orcr + P[V]apcearsr oo

Additional options controlling the displayed form of
the diferent quantitites automatically defined can be The spin covariant derivativee can be handled as a 2-
supplied tOpetspinstructure. FOr example we may add index covariant derivative ...

the options
In[10]:= CDe[-F,-Ft]@PsiCDe[-A,-B,-C,-D]

) ) ) Out[10]= Vep¥[V]asco

SpinorPrefix-> SP, SpinorMark-> "S".
The symboks will be prepended to the tensor (spinor) or as a covariant derivative in a vector bundle
counterpart of any spinor (tensor) and the string In[11]:= SeparateSolderingForm[] [%]
will be used in the displayed representation (see be- Outl11]l= o%p Va¥[V]agco.
low for explicit examples). From now on it will be un-
derstood that these options were used in the command! € COMMandeparatesolderingrorn €NaAbIES US to trans-
DefSpinStructure ADOVE. form-spmor |nd|.ces into tensor ones (§4.1 for more

Primed indices are entered with the “dagger” symbol details about this). o
t (entered via the keyboard short@sedgesy). Take . Spinors are defined by meanswfspinor, Which is
now the RicCi tensoiceicn-a, -b. Its spinor counter-  JuSt @ special call to theActcommandetensor (by de-

part is represented By Riccicor-a, -at, -8, -81] where fault the optiorvagger->conp1ex is assumed).

spwas the tag declared through the optigfiorpresix in In[12]:= DefSpinor[x[-A, -At], M4]

Defspinstructure. Again, this tag is used to construct the » DefTensor: Defining tensor «[-A, -At].
symbol defining the spinor counterpart of any tensorial ** PefTenser: Defining tensor «1[-AT, -AJ.
guantity, in the way illustrated by this example. In the

. o If one wishes to work with Hermitian spinors then this
mathematica notebook this is

is done by using the optiobkgger -> Hermitian ON the
In(6]:= SP_RicciCDI-A, -Af, -B, -Bf] commanaesspinor. Under this assumption one has that

«[-4,-41] iS invariant under complex conjugation
0ut [6]= SR[V]aatest

In[13]:= «[-A,-At] // Dagger // InputForm
The linking symbol * ” (entered through the key combi-  out[131= «[-A,-A1]

nationseseu[4esy serves to link the symbol chosen to
represent the spinor prefix with the symbol representing
the tensor. This linking symbol is stored in the vari-
ablesrinkcharacter Which can be freely modified. In ad-
dition to this, it is possible to modify the default print-
ing options and obtain outputs similar to the formulae
described in sectiofl 2. This is done as follows for the
primed indices

The canonicalizer ofActis Tocanonica1 and it can deal
with the canonicalization of spinor expressions without
any additional user input. Itis beyond the present article
to explain the workings of the canonicalization proce-
dure and the reader is referred ftol[11] and xffensor
documentation for additional details. Similarly, thé&ct
commandontract¥etric takes care automatically of the
conventions for raising and lowering indices in spinor
In[7]:= PrintAs[Af] "="A""; PrintAs[Bf] "="B'"; expressions. We present next some explicit examples
PrintAs[Ct] "="C’"; PrintAs[Dt] "="D'"; PrintAs[Ft] "="F'"; abOUt these iSSUeS



In[14]:= DefSpinor[u[A], M4]

** DefTensor: Defining tensor u[A].
** DefTensor: Defining tensor ut[At].

In[15]:

{u[-Blel[A,B],ulBle[-B,-A],et[Ct,AL]

CDe[-A,-At]leu[-Bl}

Out[151= (€*Bug, epap®, €A Vanrus)

In[16]:
Out [16]

In[17]:

ContractMetric[%]
P, ka, VA us)

{ wlAJul-A], «[-A, -Btlu[Bt], CDe[-F, -Ft]@CDe[-A,

Ft]@PsiCDe[-B, -C, -D, -P]+ CDe[-F, Ft]@CDe[-A,
-Ftl@PsiCDe[-B, -C, -D,-P] }

Out[171=  {uar®, ks i, Ver VAT W[ VIscop + VET Vae W[ V]scoe)

In[18]:
Out [18]

Also
tives shown in[(24) is implemented

ToCanonical [%]
{0, —xa® f1gs, O}

the commutation of the spin covariant deriva-

In[19]:= CDe[-C,-Ct]@CDe[-B,-Btl@x[-A,-At]-
CDe[-B,-Bt]@CDe[-C,-Ct]@x[-A,-At]

Out[19]= - V' Veokaar + Voo Vs Kaar

In[20]:
Out [20]

The diferential operatar]ag can be written in terms
of the spin 2-index covariant derivatives as illustrated in

SortSpinCovDs [%,CDe]

ecrp (U Vicekaar) + eca(C[V]erer kans)

the following example

In[21]:
Out [21]

In[22]:
Out [22]

In[23]:
Out [23]

In our previous examples we worked with the spin co-
variant derivative arising from the Levi-Civita connec-
tion but we can introduce other arbitrary spin covariant

BoxCDe[-A,-B]ex[-C,-Ct]
O[V]askcer

BoxToCovD [%,BoxCDe]

1 , ,
3(Vaar V8 kcer + Vear Va? ko)

BoxToCurvature [%%,BoxCDe]

- O[V]pgarcrkc” = X[VpcaskPcr

derivatives. For example

In[24]:= DefSpinCovD[nb[-al, o, SymbolOfCovD-> {"|","D"},
Torsion->True]

As we see in the example the commaéspincovd
shares some similarities with theTensorcommand
petcovd. IN addition to the spin covariant derivative out-

Also, a number of quantities are automatically de-
fined in addition to the spin covariant derivative
Since we used the optiotbrsion->True the torsion is
among those and one can work with both its tensor and
spinor forms.

In[26] := SeparateSolderingForm[]@Torsionnb[a,-b,-c]

Out[26]= STDI* garco oanr 068 0

In[27]:= PutSolderingForm@Decomposition@%

0ut [27]= PP (Q[D] toprercr e + QD] prpecesrcr)

In[28]:= ContractMetric@}
Out[28]= QD] t*A 5o eac + QID]A Pecen

The first step finds the relation between the torsion
tensor and the torsion spinor and the second step com-
putes its irreduccible decomposition according to eq.
(I9). Any spin covariant derivative can be represented
in single index and two-index notation.

In[29]:= nb[-A,-At]ou[-C]
Out [29]1= Daaruc

In[30]:= SeparateSolderingForm[] [%,nb]
Out [301= o®sa’Dauc

Finally we remark that it is possible to define a spin
structure for a metric connection with torsion. In this
Caseesspinstructure defines the torsion spinors automat-
ically.

4.1. Relations between tensors and spinors

One of the strongest points 8pinorsis its ability to
transform tensor expressions into spinor ones and back.
The transformation rules are ilustrated bl @)-(5) and to
work out these expressions in explicit examples we need
to repeatedly usd]8). To illustrate how this works in
Spinorslet us consider the following example: suppose
that we have the Riemann tensor associated to the Levi-
Civita connection and we wish to find its spinor form by
following (4)). The procedure is then

In[31]:= PutSolderingFormO@RiemannCD[-a,-b,-c,-d]
Out[31]=  R[V]apca2an’ 0Pger 0co 09ppr

In[32]:= ContractSolderingForm@y
Out [32]= SR[V]aa’Be’ccpD!

The Riemann spinor can be transformed back into a

put symbols, we also need to specify the spin structure {€nsor as follows

which the spin covariant derivative is compatible with

(this iso- in our example). Hence

In[25]:
Out [25]

{nb[-al@o[b, -A, -At], nbl-ales[-b, A, Af] }
0, O

In[33]:= SeparateSolderingForml[o] [%]
Out [33]1= R[V]abcaran’ 0 88 o°cor opor

In[34]:= PutSolderingForm@Y
Out [34]= R[v]abcd



As we see in this simple example a tensor (resp.
a spinor) is transformed into a spinor (resp. a ten-
sor) by contracting it with a number of soldering forms
in the appropriate way. The insertion of soldering
forms is achieved with the command:soideringForm
and the elimination of their dummy indices with
ContractSolderingForm. The C0mmandeparateSolderingForm
also inserts a number of soldering forms but unlike
PutSolderingForm, the expression on which it acts (a ten-
sor or a spinor) is automatically replaced by its tensor
or spinor counterpart. If the tensor or spinor counter-
part has not been previously defined, then it is created
automatically. Example:

In[35]:= DefTensor[M[-a, -b], M4]
** DefTensor: Defining tensor M[-a, -b].
In[36]:= SeparateSolderingForm[]@M[-a, -Db]

SpinorOfTensor: :name:
SP.
*x DefTensor:

Spinor of M not defined. Prepending

Defining tensor SP_M[-Q$3,-Qt$3,-Q$5,-Q1$5] .
** DefTensor: Defining tensor

SP_Mt[-Qt$3,-Q$3,-Q1$5,-Q35] .

Out[36]= SMaaspgr 2™ 0,38

All these commands admit a number of options to se-
lect the tensor (spinor) indices on which one wants to
act and what tensor (spinor) indices are going to be con-
tracted. We refer the reader to the on-line documenta-
tion of each command for the complete list of available
options. Another related possibility also covered is the
case in which one has a tensor (resp. spinor) already
defined in the session and one wishes to introduce its
spinor (resp. tensor) counterpart. The way in which this
is achieved is through the commangspinorofTensor
(resp. petTensorofspinor). These commands allow the

If the tensom had had any symmetry, then the symme-
tries of the spinorker would have been automatically
computed.

When translating spinor into tensor expressions it is
important to control how products of soldering forms
transform into tensors. A simple example of such
a transformation is shown in eq.[](7) and products
of soldering forms with more factors will arise when
transforming complicated spinor expressions into ten-
sor ones. The way of computing products of sol-
dering forms in Spinorsis through the command
ContractSolderingForm. FOI example, the simplest case is
the product of two soldering forms

In[39]:= ola,-A,-At] o[b,-B,At]//ContractSolderingForm
Out[39]= S0Py

The mixed quantito®sg is entered through the key-
board asignacla, b, -4, -8] and its square results in the
tensorGapeqg introduced in eq. [{8). The tens@apcq
will be referred to as théetra-metricand it is one of
the quantities automatically defined Btmetric when
the manifold dimension is four. In this way, if the met-
ric name symbol ig then Gypeq is represented by the
symbolretrag and eq.[(B) by the ruletraruie (g

In[40]:=
Out [40]=

Tetragl[-a, -b, -c, -d]
Gabed

In[41]:=
Out [41]=

h /.

1; 1 1 1
51€Qabcd + 5%addbc — 5YacUbd + 3 YabJed

TetraRule [g]

The square oEo®°5z is always automatically replaced
by the tetra-metric

In[42]:= Sigmac[-a, -b, -A, -B] Sigmac[-c, -d, A, B]
Out[42]= GGbac

user to choose the symbols representing the tensor or

spinor counterparts. For example take the tensar-v)

The main interest of the tetra-metric is that any con-

defined above and suppose that we have not used theracted product of soldering forms with no free spinor

automatic procedure to define its spinor counterpart de-
scribed above. Then one can do the following

In[37]:= DefSpinorOfTensor [SPM[-A,-At,-B,-Bt], M[-a,-b],
o, PrintAs — "M"]

Defining tensor SPM[-A,-At,-B,-Bf].
Defining tensor SPMt[-At,-A,-Bt,-BI].

** DefTensor:
** DefTensor:

The tensorn and the spinorsev are now paired
to each other. For example, if we act anwith
SeparateSolderingForm[] the sSystem will use the spinor
which we have defined above rather than an automatic
definition.

In[38]:
Out [38]

SeparateSolderingForm[]@M[-a,-b]

AA’ _ BB’
Mparge o™ o

indices can be always expressed as a product of tetra-
metrics. This is precisely the kind of product which
arises naturally when translating spinor expressions into
tensor ones and back. Consider the following example:
if Yagcp is the Weyl spinor, we wish to write the scalar
quantity ¥ agcp?”BCP as an expression in terms of the
Weyl tensor. The Weyl spinor and the Weyl ten®d,.q

are related through the relation

Wascp = ZWabcd o\ oPencc® 0%, (27)
and hence the scalfagcpP*BCP can be computed by
replacing the Weyl spinor according {0{27). Equation
(21) can be written asxActrule in the following way



In[43]:= WSToWT= IndexRule[PsiCDe[A_, B_, C., D.], The spinor=Eaapp is called theNester-Wittenspinor
e oy Sy o A Aty B AT and it has the algebraic propeByxes + Zgean = 0.
Ous[43]= HoldPattern[¥[V]ABSD] : Hence, its tensor counterpart, defined by

Modulelfa, At, b, ¢, Ct, d}, FW[V]ae™* 08n 0] AN BB — 29

This construct is called iRActanindex rule Its diffe- Tao =0 oy Sanen (29)
rence with aMathematicgdelayed) rule is that dummy is an antisymmetric tensor and it can be regarded as a
indices can be included in the right hand side of the 2-form.

index rule without caring about the collision of these
indices with other dummy indices already present in
the expression in which the replacement is being done.
Dummy indices will be automatically re-named to avoid 1
any index collision. The reader is referred to thct 3ViaFbqg = Uabcf(zd[df] - ZGdffd) . (30)
documentation for further details about this.

We can use now the rule defined above to find the ten- wheres?
sor expression of any scalar invariant written in terms of
the Weyl spinor. In our example the actual computation
runs as follows

Theorem 3. The 2-form#Fyy, fulfills the relation (Spar-
ling identity)

is the tensor representing the spin”, Gap
is the Einstein tensomapeqthe volume 4-form (both with
respect to the space-time metric) a@fc is a tensor
fulfilling the “dominant property”, namely for any three

In[44] := causal future-directed null vector$ KS, k3 one has the

PsiCDe[-A, -B, -C, -D] PsiCDe[A, B, C, D] /. WSToWT property

Out [44]= by c

LWV ]acWI 7 g 0PN A8 oL, BB, of (C CD i oD Zabckéllkzks > 0. (31)

In[45]:= ContractSolderingForm[%, IndicesOf[Spin]] Proof: We carry out the proof of this result using the

Out[45]= 0¥ 0""GH A" Gdl "W V]csin WL ¥ ]dhin tools introduced in sectiofl 4 (we work in the same

) ) Spinorssession as the one used in that section). First

The Optlonlndicesof [Spin] used INcontractSolderingForm of a”, we need to define the Spinors and tensors inter-

indicates tha.t only spinor (dummy) |nd|qes in the pro<_:i— vening in our problem
uct of soldering form have to be taken into account in
the contraction. In this way the final result does not con- In[481:= DefSpinor[i[-A], M4]

H H H s H ** DefTensor: Defining tensor A[-A].
tain any spinor index and itis thus atensor expressionas, o e o ine tencor ATL-AT].
desired. One can now use theraruie[g] discussed be-
fore to transform the tetra-metrics into ordinary metrics In[49]:= PrintAseit "= "1";
and epsilon symbols (volume elements). In[50]:= DefSpinor[E[-A, -At, -B, ~B1l, M4,
GenSet [-Cycles[{-A, -B}, {-Aft, -Bt}]11]

** DefTensor: Defining tensor E[-A,-Af,-B,-Bf].
** DefTensor: Defining tensor Ef[-At,-A,-Bt,-B].

In[46]:= % /. TetraRulelgl;

In[47]:= ToCanonical@ContractMetric@},

Out [47]=  §W[V]anedW[ V] + iiegeamW[V]ap™ W[ V]2
In[51]:= PrintAs@=t "= "E=";

5. Example: The Sparling identity In[52] :=

DefTensor0fSpinor [¥ [-a, -b]l, E[-A, -At, -B, -Bt], o]

As a final exercise wittSpinorswe show how to use 77 petrensor: g:ﬁ‘i‘é pensor ;E_[?;:E%j.
the software to derive th8parling identity This iden-
tity has the same information as the Einstein field equa- 1n(531:= PrintAseF "= "F"; PrintAseF t "= "F";
tions and can be formulated either in tensor or spinor
form. The spinor form of the equation has its origins
in Witten’s proof of the positive mass theorelﬂ[lQ] (see
also while the tensor form was found by Sparling  We change the default formatting of the volume form
(see[21| 22] for a geometric derivation of this form of epsilong
the equation).

The set-up is as follows: let* be any rank-1 spinor
and define the following quantity

In[54]:= DefTensor[£[-al, M4]

** DefTensor: Defining tensor ¢[-a].

In[55]:= PrintAs[epsilong] "= "n";

We introduce a short form for theTensorcommand
P — _ Indexsolve (S€€ the documentation gTensorfor further
EanBR = E(/lA’VBB’/lA - AgVaads).  (28) details aboutndexsolve)

10



In[56]:= IndSV[expr.Equall:= IndexSolve[expr, First@expr]; The aim is now to find the explicit tensor form of each
part. The first par8=1 is an expression which is linear
We also define the shortcut canonicalization function in the curvature spinors. We write the curvature spinors
tc (combination of thexAct commandScontractietric Dapas and¥apcep in terms of the trace-free Ricci ten-
andTocanonical) sor and the Weyl tensor respectively (the nstewr was
defined from eq. [(27), see explanations coming after

In[57]:= TClexpr.] := ToCanonical[ContractMetric[exprl]; that equation )

Also we define a function nameghaitines to Multi- In(66]:= dE1 /. WSToWT /.
. . . . IndexRule[PhiCDe[-A_, -B_, -At., -Bt.], -1/2 TFRicciCD[-a,
ply by a quantity both sides of an equation and canoni- Zyy ;. -4 Ia1] otb, -8, -B1]

calize the result in just one step.

H

Also we need to replace the produgtsta by &.
In[58]:= EqualTimes[Equal[lhs_, rhs_.], x.] :=

Equal[TC[x 1hs], TC[x rhs]]; In[67]:=
% /. 1IndexRulel[A[B.] At[Btl], ¢[-alola, B, Btll // TC

With all these preparations we introduce the Nester-  Finally we eliminate the spinor indices in the previ-
Witten spinor definition, as given by (8), in c8pinors ous expression.
session.
In[68]:=
d=1 =ContractSolderingForm[%, Indices0f@Spin] // TC;
In[59]:= NesterWittenSpinor =
Z[-A, -At, -B, -Bt] == 1/2(-I At[-Bt] CDe[-A, -At]@A[-B] +

T At[-At] CDel-B, -B1]eA[-AD) We study next the part containing the covariant

Out[591= Eanee = 3(-ily Vanrds + Tar Vg dn) d_erivgtives_of/lA (the e_xpr(_assiordEZ?. This expres-
sion is a linear combination of spinors of the form
Our aim is to compute the quantity VecAaVer da Whose tensor counterpart has rank 3.

This is the tensor we define next.
In[60]:= dF = CDe[-cl@F [-a, -b] // Antisymmetrize // TC

Out [60] = %Vaﬁc_%vbﬂc‘*%vc?‘ab In[69]:= DefTensor[Z[-a, -b, -c], M4]

** DefTensor: Defining temsor Z[-a, -b, -c].

We transform #,, into the Nester-Witten spinor
Eaase and then insert its explicit definition by means

of thexActcommandndexsolve. In[70):= PutSolderingFormeZ[-a, -b, -]
0ut [701= Zapeo?ans0sp 0°cor

By definition

In[61]:= (dF // SeparateSolderingForm[o]) /.

IndSV[NesterWittenSpinor]; In[71):= Zrule =

IndexRule[CDe[-B_, -Ct_J@A[-A_] CDe[-C_, -Bt.]@ At[-At], %]

i . Out [71]= HoldPattern[Vg/lAVCB/;&] F.
The resulting expression (not shown due to lack of y,auier(a, b, cf, Zaoan o s cc]

space) consists of second covariant spin derivatives of

Aa and terms formed out of the prodi¢ia g, Van s We use now this rule in the expression fef getting
The second covariant derivatives can be eliminated by ; .., ._ 4=, -

means of the Spinor Ricci |dent|tﬂ24) al’mZG) In ContractSolderingForm[d=E2 /. Zrule, Indices0f@Spin] // TC

Spinorsthe procedure for doing this is as follows Out [72]= ‘ ‘ ‘
3iGthacrZa™ - §iGmicaZa™ — 3iG0acrZo™ + §iGGrca Zo™ +

1; df _ 1: df
In[62]:= SortSpinCovDs[%, CDel; §1GGanr Zc™ ~ 5iGGamaLe

In[63]:= BoxToCurvature[’, BoxCDel; We combine now the values just found fat anda=2
and expand the tetra-metrics (see subse€fidn 4.1). The
The arising curvature spinors have to be decomposedfinal result is

into irreducible parts In[73]:= dF == dZ1 + d=2 /. TetraRuleQg // TC;

In[64]:= dZ = Decomposition[f, Chi, CDe] // TC; The right hand side of this expression is a compli-

cated tensor expression of 26 terms. It can be simplified
though if we compute its double dual (we carry out the
computation in two steps)

We split the previous equation into two parts: terms
containing covariant derivatives af and terms which

do not contain any covariant derivative.
In[74]:= EqualTimes[%, epsilongl[-p, a, b, cl]
In[65]:= {dE1 = d= /. CDe[—_J@A[_1-> 0, d=2 = dE - dE1}; Out [74]1= np®°V Fap = Z3p — Z%a— 5S[V]pat® + 3A[V]E
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In[75]:= EqualTimes[%, epsilonglp, -f]/2] [4]
Out [75]=
VdFin — ViFan+ VnFar =

$00mpZ2P — 31apZ®a + SnamaA[V1E2 - 21mpS[V]aPe?

-d, -h,

(5]

In[76]:= % // TFRicciToRicci // RicciToEinstein //
Decomposition // TC

Out [76]=

VdFin — ViFan+ VnFar = 37ampZ%P — 30ampZ%a — 2G[V]aPnampe?

(6]

. : . . (71
This last equation coincides with_(30) and thus we

conclude its validity. In addition from the spinor ex-
pression forZ ., We easily deduce the algebraic prop-
erty (31) if we express the null vectok$, k3 andks as
tensor products of spinors of rank-1 (see e.g. theorem
2.3.6 of [23)).

The spinor form of[(30) has been used as the start- (10]
ing point of a proof of thepositive mass theorenThe 111
rough idea is to prove that the integrals of the Einstein
and Sparling 3-form over suitable hypersurfaces extend-
ing to infinity yield a positive quantity. This is straight-
forward for the Einstein 3-form if thdominant energy
conditionon the matter is assumed, but it requires more
efforts for the sparling 3-form. In fact one needs to make
a special choice of the spindj in order to ensure the
positivity and there is more than one way of achieving
this (a good accounnt of theftirent choices tried can

be found in[24]).

(8]
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