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We have developed a software package CALYPSO (Crystal structure AnaLYsis by 

Particle Swarm Optimization) to predict the energetically stable/metastable crystal 

structures of materials at given chemical compositions and external conditions (e.g., 

pressure). The CALYPSO method is based on several major techniques (e.g. 

particle-swarm optimization algorithm, symmetry constraints on structural generation, 

bond characterization matrix on elimination of similar structures, partial random 

structures per generation on enhancing structural diversity, and penalty function, etc) 

for global structural minimization from scratch. All of these techniques have been 

demonstrated to be critical to the prediction of global stable structure. We have 

implemented these techniques into the CALYPSO code. Testing of the code on many 

known and unknown systems shows high efficiency and high successful rate of this 

CALYPSO method [Wang et al., Phys. Rev. B 82 (2010) 094116][1]. In this paper, we 

focus on descriptions of the implementation of CALYPSO code and why it works. 



 

2 
 

1. Introduction 

Understanding the behaviors of materials at the atomic scale is fundamental to 

modern science and technology. As many properties and phenomena are ultimately 

controlled by the crystal structures, the prediction of crystal structure is an important 

task in chemistry and condensed matter physics. However, the structural prediction 

with the only known information of chemical compositions is extremely difficult as it 

basically involves in classifying a huge number of energy minima on the lattice 

energy surface. Owing to the significant progress in both computational power and 

basic materials theory, it is now possible to predict the crystal structure at zero Kelvin 

using the quantum mechanical methods. One way to predict structure is by extracting 

known structures from databases of structures previously found in similar materials[2]. 

However, this method has a limited success rate and is incapable of generating new 

crystal structure types. Recently, the more advanced methods including simulated 

annealing[3, 4], minima hopping[5], basin hopping[6], metadynamics[7], genetic 

algorithm[8-15], and random sampling method[16]have been developed and applied, 

which allow a systematic search for the ground state structures based on the chemical 

composition and the external conditions. The simulated annealing, basin hopping, 

minima hopping and metadynamics focus on overcoming the energy barriers and are 

successful in many researches[3-7], particularly, when the starting structure is close to 

the global minimum. The genetic algorithm starts to use a self-improving method and 

is thus able to correctly predict many structures [17-20]. The random sampling 

method, as a simple and efficient method, is also successful in many applications 

[21-24].  

The particle swarm optimization(PSO), first proposed by Kennedy and Eberhart 

[25, 26], is a population-based optimization method. As a stochastic global 

optimization method, PSO is inspired by the choreography of a bird flock and can be 

seen as a distributed behavior algorithm that performs multidimensional search. 

According to PSO, the behavior of each individual is affected by either the best local 

or the best global individual to help it fly through a hyperspace. Moreover, an 

individual can learn from its past experiences to adjust its flying speed and direction. 
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Therefore, all the individuals in the swarm can quickly converge to the global position. 

PSO algorithm is a highly efficient global optimization method which has been 

applied successfully into many optimization problems such as network training [27, 

28] and transactions on power systems[29]. However, the application of PSO to the 

structural prediction of condensed matters remains a major challenge. Due to the 

existence of a large number of energy minima on the lattice energy surface, rapid 

swarm convergence, as one of the main advantages of PSO, can also be problematic. 

If an early solution is sub-optimal, the swarm can easily stagnate around it without 

any pressure to continue further exploration, i.e., the premature. We recently have 

developed a CALYPSO method/code[1] on crystal structure prediction by 

implementation of PSO algorithm and many other important techniques, including 

symmetry constraints on structural generation, bond characterization matrix on 

elimination of similar structures, partial random structures per generation on 

enhancing structural diversity, and penalty function, etc. We found that these later 

techniques are critical to avoid the premature of PSO algorithm and to significantly 

accelerate the structure convergence. 

The description of CALYPSO method and its first applications to the prediction 

of crystal structures can be found in Ref.[1]. This paper is organized as follows. The 

detailed descriptions of implementation of CALYPSO code and the principles on 

illustrating why the method works are presented in Section 2. In Section 3, various 

parameters in CALYPSO code are optimized for TiO2 as a benchmark. The input and 

output files are provided in Sections 4. A short overview of the applications obtained 

from our method can be found in Section 5, followed by the conclusion in Section 6. 

2. Implementation and discussions 

As depicted in the pseudo-code of Algorithm1, the CALYPSO method comprises 

mainly four steps: (i) generation of random structures with the constraint of symmetry; 

(ii) local structural optimization; (iii) post-processing for the identification of unique 

local minima by bond characterization matrix; (iv) generation of new structures by 

PSO for iterations.  

2.1 Symmetry constraints on structural generation 
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There are two types of variables to define a crystal structure: lattice parameters 

(three angles and the lengths of the three lattice vectors) and atomic coordinates (three 

coordinates coded as a fraction of the lattice vector for each atom). The first step of 

CALYPSO method is to generate random structures constrained within 230 space 

groups. Once a particular space group is selected, the lattice parameters are generated 

within the chosen symmetry according to the confined volume and the corresponding 

atomic coordinates are obtained by a combination of a set of symmetrically related 

coordinates (Wyckoff Positions) in accordance to the number of atoms in the 

simulation cell. For example, if the confined volume is 64 Å
3 
and there are 12 atoms 

in the simulation cell for the group 223(Pm-3n), the lengths of three lattice vectors 

should be 4 Å and the lattice angles are fixed to 90, while the atomic positions can be 

combined by different Wyckoff Positions (e.g., 6b + 6c, 6b + 6d, and 12f, etc). 

Moreover, a list including the symmetric information (space group) of all generated 

structures is built and used to compare with the newly generated structures. The 

appearance of identical symmetric structures is forbidden with a certain probability 

(80%). This makes the initial sampling covered different regions of the search space, 

which is crucial for the diversity of population. The generation of random structures 

ensures unbiased sampling of the energy landscape. The explicit application of 

symmetric constraints leads to significantly reduced search space and optimization 

variables, and thus fastens global structural convergence.  

In order to examine the efficiency of symmetric constraints as implemented in 

CALYPSO code, the system of TiO2with 16 TiO2 units (48 atoms) per simulation cell 

was used as a test case. 3250 structures at ambient pressure were randomly generated 

and then structurally optimized using the GULP code[30] with a combination of 

Buckingham and Lennard-Jones potentials[11, 31]. Fig. 1 (a) and (b) show the energy 

distributions of these generated structures with and without symmetry constraints, 

respectively. It is found that the rutile structure, i.e., the global stable structure cannot 

be generated if without symmetry constraints. However, once the symmetry is 

implemented in the generation of random structures, 203 (~6.2% in total) rutile 

structures were successfully produced. In order to further compare the structural 
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search efficiency of generation of random structures with or without the symmetry 

constraints, the binary Lennard-Jones crystal A2B (18 atoms per simulation cell) was 

used as another test case. 5000 structures were randomly generated and then 

structurally optimized using the GULP code[30] with Lennard-Jones potentials 

(AA=AA=1.0, BB=0.88, BB=0.5, AB=0.932 and AB=1.5)[32]. The energy 

distributions of the structures generated with and without symmetry constraints are 

shown in Fig. 1 (c) and (d), respectively. It is obvious that the energies of these 

structures generated with symmetry constraints distribute lower energy regions. We 

also have examined the structural search efficiency of CALYPSO runs with or without 

the symmetry constraints on structural generation as shown in Table 1. Obviously, the 

application of symmetry constraints technique can greatly improve the search 

efficiency, especially for larger systems. It is found that an averaged 11 generations 

are necessary to find the global stable structure if with the symmetry constraints on 

structural generation, however if without, 25.4 generations are needed. These tests 

clearly illustrate the importance of the symmetry constraints in the generation of 

random structures for structure prediction. 

2.2 Structural optimization 

CALYPSO code currently can use ab initio packages (e.g., VASP[33, 34], 

SIESTA[35] and CASTEP[36, 37]) and force-field program (e.g., GULP[30])to 

perform the structural optimization. Other external programs can also be interfaced on 

user’s request. The use of locally structural optimization techniques (e.g., line 

minimization, steepest descents, conjugate gradient algorithm or 

Broyden-Fletcher-Goldfarb-Shanno algorithm) leads the lattice energy to the local 

minimum. Here, we use free energy (at T = 0 K, free energy reduces to enthalpy) as 

fitness function throughout the simulation. Note that local optimization increases the 

cost of each individual, but reduces effectively the noise of the energy landscape, 

enhances comparability between different structures, and provides locally optimal 

structures for further use. Thus, local optimization is crucial for the structure 

prediction. 

2.3 Elimination of similar structures by using the bond characterization 
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matrix 

Our goal is to eliminate the similar structures in the structure generations to 

enhance the search efficiency of CALYSPO. In our earlier implementation [1], we 

used geometrical structure parameter, which is solely based on the bond length, to 

identify structural similarity. Here, we have developed a more efficient technique 

named as bond characterization matrix, which is on the basis of all the bond 

information. In this method, we employ a set of modified bond-orientational order 

metrics(Ql) introduced by Steinhardtet al[38] to quantify the bond angles and an 

exponential function to quantify the bond length. When the distance between two 

atoms is less than the cutoff (rcut), bond information, e.g. bond vector (
ijr ), bond 

angles ( ijij  , ) and bond-types (AB), are evaluated, where 
ijr  is a vector pointing 

from ithatom to jthatom, while 



 ij ,ij  are the related polar and azimuthal angles of 

ijr , respectively, and A(B)is the type of ith(jth) atom. In this work, bond 

characterization matrix is calculated according to the “bond-types”, where each vector 

ijr can be represented by spherical harmonics ),( ijijlmY  . Subsequently, for each 

bond typeAB, a weighted average is performed,  

 AB ij AB

AB

δ -α(r -b )

lm ij ijlm

i A,j Bδ

1
= Y θ ,

N
eQ 

 

                             (1) 

where
AB

N  is the number of bonds formed by type A and B atoms, bAB is the shortest 

length for each bond type and  is an adjusted parameter drivinge
ABcut br )( 
0.In 

order to avoid the dependence on the choice of reference frame, the average
AB

lmQ


is 

used to calculate the rotationally invariant combinations, 

24

2 1

AB
AB

l

l lm

m l

Q Q
l

 





                                      (2) 

Only even-l spherical harmonics, which are invariant with respect to the direction of 

the bonds, are used in Eq. (2), and each structure can be characterized by bond 

characterization matrix. The similarity between two structures is thus given by the 
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Euclidean distance of their bond characterization matrix.

1/ 2
2, ,

( )AB AB

AB

u v
D Q Q

uv l l
l

 



 
   
 
 

  (3)  

where u and v are individual structures.  

As an illustrative case, the histograms of Ql versus l for graphite and diamond are 

shown in Fig. 2 (a) and (b), respectively. Significant differences for Ql between these 

two structures are evidenced, which illustrate the efficiency of the bond 

characterization matrix method to distinguish different structures. To further 

demonstrate the robust of the method, the Euclidean distances between 

graphite/diamond and its random distortions are calculated as shown in Fig. 2 

(c)/(d).It is clearly seen that the calculated Euclidean distances monotonously increase 

with the magnitude of distortions. These tests highlight the capability of this bond 

characterization matrix method in the characterization of the structural similarities. 

We have implemented this bond characterization matrix technique into 

CALYPSO code to eliminate similar structures. Table 2 shows the influence of this 

technique on the search efficiency of CALYPSO calculations for the system of TiO2. 

It is clearly seen that much fewer optimization steps are needed to find the stable 

structure when this technique is included in the CALYPSO runs. This is 

understandable since the use of bond characterization matrix technique can effectively 

avoid the presence of very similar or identical structures and thus is able to accelerate 

the global structure convergence. 

2.4  Generation of new structures by PSO 

Within the PSO scheme, a structure (an individual) in the searching space is 

regarded as a particle. A set of individual structures is called a population. The lattice 

parameters (unit cell) of new structures are the same as the corresponding structures 

of the previous generation. While the atomic positions are updated using the 

evolutionary equation (4). Note that all the new structures produced by PSO (or 

randomly generated) are tested against constraint of minimal inter-atomic 

distances[10]. 
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1 1

, , ,

t t t

i j i j i jx x v  
                             (4) 

The initial vi,j was generated randomly. According to equation (5), the new velocity 

( 1
,
t
jiv ) of each individual i at the jth dimension (X Y Z), is calculated based on the 

velocity of previous generation ( t
jiv , ), its previous location (

,

t

i jx ) before structural 

optimization, current location (
,

t

i jpbest ) after structural optimization, and the 

population global location (
,

t

i jgbest ) with the best fitness value for the entire 

population. It is obvious that the velocity of PSO is different from the physical 

velocity. The velocity of PSO is generated by the atomic coordinates and other 

dimensionless parameters, so it has the same unit with the atomic position. It is noted 

that the velocity plays an important role on determination of the speed and direction 

of structural movement. 

1

, , 1 1 , , 2 2 , ,( ) ( )t t t t t t

i j i j i j i j i j i jv v cr pbest x c r gbest x      (5) 

where jX, Y, Z,  denotes the inertia weight, c1and c2 are self-confidence factor 

and swarm confidence factor. High settings of   as 0.9 facilitate global search, and 

lower settings facilitate rapid local search. In our methodology,   is dynamically 

varied and decreases linearly from 0.9 to 0.4 during the iteration according to 

equation (6).  

iter
iter





max

minmax
max




               (6) 

Where max
and min  equals to 0.9 and 0.4, respectively. Accordingly, in our 

implementation, c1 and c2 are kept as constant 2. r1 and r2 are two separately generated 

random numbers in the range 0 to 1. As shown in equation (5), it is quite obvious that 

the movement of particles in the search space is dynamically influenced by their 

individual past experience (
t

jipbest , ,
t
jiv , ) and successful experiences attained by the 

whole swarm (
tgbest
). Thus the velocity makes the particles to move towards to 

global minimum and accelerates the convergence speed. The settings of other 

parameters will be presented in Section 3. 
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2.5 Penalty function 

According to Bell-Evans-Polanyi principle[16, 39], the low energy basins in 

potential energy surfaces are expected to occur near other low energy basins. Thus, in 

order to improve the efficiency of the procedure, a certain number of high-energy 

structures are rejected, and the remaining low energy structures, which are on the 

most promising areas of the configuration space, are selected to produce the next 

generation by PSO. Fig. 3 (a) and (b) show the evolution of lattice energy 

distributions with and without the inclusion of penalty function during the simulation 

(shown here for TiO2 with 48 atoms in the simulation cell). Obviously, most of 

structures are in low-energy region (<620.0eV) when the penalty function technique is 

included and it significantly accelerates the structural converges to the global 

minimum as demonstrated in the CALYPSO runs (Fig. 3). 

2.6 Structural diversity  

Structural diversity plays an important role in the prediction of crystal structures 

by using the population-based methods, such as the genetic algorithm and our 

developed CALYPSO method. During the structural evolution, if the systems lose the 

structural diversity, it is quite often that the systems stagnate, particularly for a large 

system. We here have designed a critical technique to enhance the structural diversity 

by including certain percentage of random structures in each generation, which has 

been implemented in CALYPSO code. Again, we use TiO2 with 16 formula units per 

simulation cell as a test example. The history of CALYPSO runs with and without 

including the randomly generated structures is shown in Fig. 4. It is seen that the 

inclusion of a certain number of structures whose symmetries must be distinguished 

from any of previously generated ones is indeed crucial to converge the system to the 

global minimum. This all comes to the true fact that the inclusion of random 

structures allows the generation of diverse structures [Table 3]. Note that it might 

come up with the question on if the global stable structure is in fact generated by 

those random structures. We have performed a certain number of tests and found out 

that only a few stable structures are generated randomly, especially for smaller 

systems. For most of cases, the structural evolution of CALYPSO runs derives the 
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global stable structures.  

2.7Convergence  

The CALYPSO simulation is stopped when the halting criterion is reached. In 

accordance with our experience, the stable crystal structure can usually be found at 

~10 generations for systems 10 atoms per simulation cell. In practice, the halting 

criterion in CALYPSO is by default set to10 further generations if the simulation can 

not find other better structures. 

3. Optimization of parameters 

In order to provide reasonable default setting for various parameters in our 

CALYPSO code, a test was performed on TiO2 system with 16 formula units per 

simulation cell by using the GULP code for the structural optimization and total 

energy calculations. Earlier study [26] has demonstrated that c1= c2= 2 and the linear 

decrease of  from 0.9 to 0.4 during the iteration usually give the best overall 

performance for PSO simulations. Thus, we adopt these parameters and other 

parameters such as the population size (NPOP), the proportion of the structures 

generated by PSO(PPSO) and the max magnitudes of the velocity (Vmax) are 

determined by using the benchmark of TiO2. We repeat 5 successful CALYPSO 

calculations, i.e., the correct finding of rutile structure, to derive the proper parameters. 

The results and suggested parameter values can be found in Table 4.  

4. Input and output files 

4.1 input file 

The main input file named as input.dat, contains all the necessary parameters for 

the simulation. There are several examples for the input.dat file in the Examples 

directory of CALYPSO package.  

We here take SiC as an example: 

SystemName = SiC  

NumberOfSpecies = 2 

NameOfAtoms = C Si 

NumberOfAtoms = 1 1  

NumberOfFormula = 2 2 
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AtomicNumber = 6 14 

MaxStep = 50 

Volume= 20.0 

@DistanceOfIon  

1.2  1.5  

1.5  1.9  

@End 

PsoRatio = 0.6 

Icode= 1 

Kgrid = 0.12  0.08 

Command = vasp 

PopSize = 20  

PickUp = F 

PickStep = 0 

Here follows a description of the variables defined in the input file (input.dat), 

including the data types and default values. 

SystemName (string): A string of one or several words contains a descriptive 

name of the system (max. 40 characters). 

Defualt value: CALYPSO 

NumberOfSpecies (integer): Number of different atomic species. 

Default value: No default.  

NameOfAtoms (string): Element symbols of the different chemical species. 

Default value: No default. 

AtomicNumber (integer): Atomic Number of each chemical species. 

Default value: No default.  

NumberOfAtoms (integer): Number of atoms for each chemical species in one 

formula unit. 

Default value: No default.  

NumberOfFormula (integer): The desired range of formula units per simulation 

cell. The first and second numbers are the lower and upper limits per simulation cell 
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in the formula units.  

Default value: 1  4 

Volume (real): The volume per formula unit. Unit is in Å
3
. The volume can be 

estimated by the atomic volume of given elements. If it is set to zero, the program will 

automatically generate the estimated volume by the radius of ions. 

Default value: 0 

@DistanceOfIon and @End (real): Minimal distances between different 

chemical species. Unit is in angstrom. The determination of this parameter is in 

accordance with “ NumberOfSpecies”. For example, if the NumberOfSpecies=2, a 

22 matrix is used to indicate the minimal distances between different chemical 

species. 

@DistanceOfIon 

 d11 d12  

d21 d22  

@End 

Default value: 0.7 Å 

Icode(integer): It determines which local optimization package should be 

interfaced with in the simulation. 

1: VASP  

2: SIESTA 

3: GULP 

4: CASTEP 

Default value: 1 

PsoRatio (real): The proportion of the structures generated by PSO, and the other 

structures will be generated randomly. 

Default value: 0.6 

PopSize (integer): The population size. Normally, it will have a larger value for 

larger systems. 

Default value: 30 

Kgrid (real): The precision of the K-point sampling for local optimization (VASP 
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or SIESTA). The Brillouin zone sampling uses a grid of spacing 2π×Kgrid Å-1. The 

first value controls the precision of the first two local optimizations, and the second 

value with denser K-points controls the last optimization. The smaller value normally 

gives finer optimization results. 

Default value: 0.12  0.06 

Command (string): The command to perform local optimization on your 

computer. 

Default value: submit.sh. 

MaxStep (integer): The maximum number of PSO iterations. It should have a 

larger value for a larger system. 

Default value: 50 

PickUp(logical): If True, a previous calculation will be continued. 

Default value: false  

PickStep(integer): At which step will the previous calculation be picked up. 

Default value: There is no default. If PickUp=True, you must supply this 

variable. 

4.2 output files 

The main outputs of CALYPSO are in the “results” folder: 

CALYPSO.log: It includes the information of the structures (the space group, the 

volume, the number of atoms, et al.).  

similar.dat: It includes the bond characterization matrixes of predicted structures.  

pso_ini_*: It includes the information of the initial structures of the *-th iteration 

step. 

pso_opt_*: It includes the enthalpy and structural information after local 

optimization of the *-th iteration. 

pso_sor_*: The enthalpy sorted in ascending order of the *-th iteration step. 

5. Applications. 

We have earlier illustrated that the CALYPSO method can be used to predict 

various structures on elemental, binary and ternary compounds with various chemical 

bonding environments (e.g., metallic, ionic, and covalent bonding)[1, 40, 41]. Here, 
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we discuss some other applications on the discovery of hitherto unknown structures. 

All the ab initio structure relaxations were performed using density functional theory 

within the projector augmented wave method, as implemented in the VASP code [33, 

34]. An overview of systems with unknown structures for which we have performed 

calculations and discovered new structures can be found in Table 5.  

Lithium (Li) is a “simple” metal at ambient pressure, but exhibits complex phase 

transitions under compression. Experimentally, it has been demonstrated that Li takes 

the phase transition sequence of bcc→ fcc→ hR1 → cI16, above which new phases 

are observed but remain unsolved[42]. We thus have extensively explored the 

high-pressure phases of Li through CALYPSO code. We successfully predicted all the 

experimental structures at certain pressure ranges by the CALYPSO method[1]. In 

particular, two new orthorhombic Aba2-40 (40 atoms/cell) and Cmca-56(56 

atoms/cell) structures of Li [43] were predicted at 80 and 200 GPa. These two 

complex structures (Aba2-40 and Cmca-56) are successfully predicted only at the 

third and fourth generation with a population size N pop of 30, respectively. Note that 

Aba2-40 (oC40) structure has been later verified by an independent experiment[44].  

Being a known best thermoelectric material and a topological insulator at 

ambient condition, bismuth telluride experiences phase transitions into several 

superconducting states under pressure. However, the high-pressure structures remain 

unsolved since 1972. We have recently predicted two low-pressure phases of bismuth 

telluride through CALYPSO calculations as seven-fold (-Bi2Te3) and eight-fold 

(-Bi2Te3) monoclinic structures at 12 and 14 GPa, respectively[45]. These two 

structures were identified at the first and fifth generation with a population size of 30 

and 40. These structures also have been subsequently verified by our experiment 

through Reitveld refinement [45]. Other compounds (Mg[46], BC3[47]and BC7[48]) 

with unknown structures also are discovered at high pressure by CALYPSO 

simulations [Table 5]. All the structures rapidly converge to the global minimum with 

less than 150 local optimizations. These results demonstrated that our method is a 

powerful and efficient tool on crystal structure determination. 

The reason why our method is so successful can be traced to several powerful 
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techniques. Firstly, PSO is a highly efficient global optimization algorithm, which has 

been applied successfully into many multi-objective optimization problems. Secondly, 

symmetry constraints on structural generation make the initial sampling covered 

different regions of the search space, which is crucial for the efficiency of global 

minimization. Thirdly, the elimination of similar/identical structures using bond 

characterization matrix technique and rejection of high-energy structures for each 

generation are able to accelerate the global structural convergence. Fourth, the 

inclusion of a certain number of structures whose symmetries are distinguished from 

previous ones can keep the population diversity and is critical to the prediction of 

global stable structures. Finally, the local optimization is effective reduce the noise of 

the landscape and may also be one of the key issues for our method success.  

6. Conclusions  

In this paper, we outline descriptions of implementation of CALYPSO code, 

which can be used to predict crystal structures of materials at given chemical 

compositions and external conditions. Our CALYPSO method has incorporated 

several major techniques (e.g. PSO algorithm, symmetry constraints on structural 

generation, bond characterization matrix on elimination of similar structures, partial 

random structures per generation on enhancing structural diversity, and penalty 

function, etc), which have been demonstrated to be crucial to the prediction of global 

stable structure. Suggested values for various parameters in CALYPSO have been 

presented by performing benchmark on TiO2 system. The high success rate and high 

efficiency on the structural searches of CALYPSO methodology have demonstrated 

its reliability and promise as a major tool on crystal structure determination. 

Program availability 

CALYPSO is available via http://nlshm-lab.jlu.edu.cn/~calypso.html. The 

software is free of charge for non-profit organizations, and delivered with the Fortran 

source code. The details of installation instructions, the user’s manual in PDF format 

and examples are included in the package. 
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Table and Figure captions 

 

TABLE 1 The structural search efficiency of CALYPSO calculations with or without 

the symmetric constraints on structural generation for the system of TiO2.We have 

performed ten different CALYPSO runs and the total generations for these ten runs 

needed to find the global stable rutile structure are listed. As an illustration, we choose 

here the population size as 20. Notably, we generally use larger population sizes for 

larger systems; there much less generations are needed to find the stable structure. 

Other typical CALYPSO run parameters of Vmax and the percentage of PSO generated 

structures are chosen as 0.1 and 0.6, respectively. 

 

 

TABLE 2 The structural search efficiency of CALYPSO calculations with or without 

the elimination of similar structures for the system of TiO2.We have performed ten 

different CALYPSO runs and the total generations for these ten runs needed to find 

the global stable rutile structure are listed. As an illustration, we choose here the 

population size as 20. Notably, we generally use larger population sizes for larger 

systems; there much less generations are needed to find the stable structure. Other 

typical CALYPSO run parameters of Vmax and the percentage of PSO generated 

structures are chosen as 0.1 and 0.6, respectively. 

 

TABLE 3 The structural search efficiency of CALYPSO calculations with or without 

partial random structures per generation for the system of TiO2.We have performed 

ten different CALYPSO runs and the total generations for these ten runs needed to 

find the global stable rutile structure are listed. As an illustration, we choose here the 

population size as 20. Notably, we generally use larger population sizes for larger 

systems; there much less generations are needed to find the stable structure. Other 

typical CALYPSO run parameter of Vmax is chosen as 0.1. 

 

TABLE 4 The test of variable parameters in CALYPSO. 

 

TABLE 5 Systems with unknown structures, for which we have done calculations 
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and revealed new structures. 

 

Algorithm 1. The pseudo-code of the implementation of CALYPSO. 

 

FIG. 1. (color online) The energy distributions of randomly generated structures 

containing 16 TiO2 units in the simulation cell and 6 units of binary Lennard-Jones 

crystal A2B in the simulation cell after local optimization. (a) and (b) indicate the 

energy distribution of TiO2 structures generated with and without the symmetric 

constraints, respectively. (c) and (d) indicate the energy distribution of A2B structures 

generated with and without the symmetric constraints, respectively. 

 

FIG. 2. (color online)(a) and (b) Ql histograms for graphite and diamond structures, 

respectively. (c) and (d) distance against distortion for graphite and diamond 

structures, respectively. The unit of distortion magnitude is in bond length. 

 

FIG. 3. (color online)(a) and (b) represent the evolution of lattice energy distributions 

during structural iterations with and without the inclusion of penalty function, 

respectively. 

 

FIG. 4. (color online) The history of CALYPSO search performed on TiO2 with 48 

atoms per cell. The red line represents the CALYPSO runs on that a certain number of 

the low energy structures (0.6 of total) are selected to produce the next generation by 

PSO, while the rest of structures are generated randomly. The green line represents 

that all the structures are used to generate the next generation by PSO. Note that the 

stable structure is produced by PSO in these calculations. 
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Table 1 

 Number of atoms in the system 

 12 24 36 48 

 Generations Generations Generations Generations 

Symmetry constraints 12 15 85 110 

No symmetry constraints 12 25 138 254 

 

Table 2 

 Number of atoms in the system 

 12 24 36 48 

 Generations Generations Generations Generations 

To eliminate similar 

structures 

11 14 21 78 

To preserve similar 

structures 

10 17 47 118 

 

 

Table 3 

 Number of atoms for TiO2 

 12 24 36 48 

PPSO Generations Generations Generations Generations 

0.6 12 15 85 110 

1.0 11 23 124 229/9
a
 

a
It fails to find the global stable structure in 100 generations one time out of ten. 
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Table 4 

 Test results Suggested values 

PPSO 0.5 0.6 0.7 0.8 0.9 
0.7-0.8 

Generations 61/5 81/5 37/5 39/5 86/5 

Vmax 0.05 0.1 0.2 0.3 0.4 
0.1-0.2 

Generations 32/5 31/5 27/5 37/5 31/5 

NPOP 10 

1480/5 

20 

2000/5 

30 

840/5 

40 

1600/5 
30 

Structures 

 

 

Table 5 

Systems Pressure (GPa) Structures Generations Npop 

Li 
80 Aba2-40

a
 3 30 

200 Cmca-56
a
 4 30 

Mg 500 fcc
b
 4 20 

 800 sh
b
 5 30 

Bi2Te3 12 -Bi2Te3
c
 1 40 

 14 -Bi2Te3
c
 5 30 

 20 C2/m(bcc-like)
c
 2 40 

BC3 0 Pmma
d
 4 30 

BC7 0 P-4m2
e
 6 20 

a
Ref. [43]bRef. [46]cRef.[45]dRef. [47]eRef.[48] 
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Number of particles, N; swarm, S; volume, V; Percentage of PSO generated 

structures, PPSO.  

Initialization of S (Generation of random structures with constraint of symmetry) 

Evaluation of S (Local optimization) and definition of the pbest and gbest 

List of the bond characterization matrixes (BCM)  

While not done do  

    SPSO=S*PPSO and Srandom=S*(1-PPSO)    

While i<=SPSO do 

S(i)(Generation of new structures by PSO)  

If S(i) BCM then 

  i=i+1 

To update the list of BCM 

End if 

End while 

While i <=SPSO+Srandom 

S(i) Generation of random structures with constraints of symmetry 

If S(i) BCM then 

  i=i+1 

To update the list of BCM 

End if 

End while 

To Evaluate S (local optimization) and update the gbest 

To update the list of BCM 

End while 

Algorithm 1 



 

24 
 

 

Fig. 1 
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Fig. 2  
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Fig. 3 
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Fig. 4 

 


