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Abstract

(O Open Computing Language (OpenCL) is a parallel processinguage that is ideally suited for running parallel aldgornis on
™) Graphical Processing Units (GPUSs). In the present work wenteon the development of a generic parallel single-GPUedod
«— the numerical solution of a system of first-order ordinarfjettential equations (ODEs) based on the OpenCL model. We have
(Y) ‘applied the code in the case of the time-dependent Sclyédayuation of atomic hydrogen in a strong laser field andiedlits
performance on NVIDIA and AMD GPUs against the serial parfance on a CPU. We found excellent scalability and a sigmifica
E‘speed—up of the GPU over the CPU device which tended towavdtue of about 40 with significant speedups expected against
O multi-core CPUs.

C'lKey\Nords General Purpose Graphical Processing Unit (GPGPU) Pragnagy Taylor Series, Runge-Kutta methods,

E Time-Dependent Schrodinger Equation, Quantum Dynar@iodinary diferential equations

O

Q 1. Introduction extensions of the traditional time-independent R-matrethinod

(7)) ) to the time-domain such as, the R-matrix Floquet approatih [1
&) Exploration of the fundamental processes that occur whegpgg approaches fully based on R-matrix the@ 118, 14]

" ‘atomic and molecular systems are subject to extreme condliti 5nq the recently developed R-matrix incorporated time (RMT

is currently a major re_search area. Theoretically, it is gd1u method 7]. Thus it appears that there is a consisten
C task to treat the exact time-dependent (TD) response of &mul teregt in the development of computationally tractablehoes

O _electron system subject to a strong electromagnetic (EMY fie gpje o treat multi-electron systems with the least appnexi
—'by ab initio methods. In response to extensive experimentafions possible.

achievements using high-intensity Ti:Sapphire laser csimn In the past two decades there have been several advances in

~ the long wavelength regime, a very successfull approadh thgarious directions in the computational infrastructurendh a

(\] ‘adopts the single-active-electron (SAE) approximatios @@ computationally demanding problem is being tackled theent

(O plied to the atomic and molecular ca_sEIs [1]. For systems ofomputing environment should cooperate in a coherent nranne

O only two electrons, such as the negative hydrogen ion, imeliu s includes reliable and robust numerical libraries réstp

(O_ and molecular hyd_rogen, dlreqt ab-initio solutions oftimaet—_ cated compilers, high speed networks, visualization sofw

«— dependent Schrodinger equation (TDSE) have appearee in thachnical support and training together with high progegsi
early nineties (for a review see ref. [2]). Since then, cot@pu rate and fast memory. The emergence of Central Processing

C\J tional performance has incr_eased steadily and as a ressk th | ynit (CPU)-based parallel architectures allowed the dgwvel

«— methods have reached a high level of accuragiiciency and  ment of High Performance Fortran, various parallel versioh

S reliability, tackling successfully the very demandingdh&ti- <, ., and the successful usage Miessage Passing Interface

.= cal problem, of single and double ionization of helium at 390(MPI) andOpen Multi-Processing (OpenMP). As it is not the

>§ andor 780 nm[[__ial:lﬁl]._ _ purpose of this work to elaborate on the available techrsique

@ . Recently, the realization of short-wavelength sourcesuih  for cpy-based computational paradigms we will focus on an
the free-electron laser of high-order harmonic generégoh-  gjternative possibility of growing interest, namely the s a
nigues, which deliver brilliant radiation in the soft- and the heterogenous computational enviroment which involvesitiee
immediate future) hard X-ray regime have initiated new €hal ot General Purpose Graphics Processing Units (GPGPUS) for
lenges in the strong-fields atomic and molecular phyEIdE][S, an dficient and low-costlistributed hybrid computing system
Theoretical and computational approaches to tackle these ¢

lenging p_roblems_ have been developed in atomic and mplec— 'i'he GPGPU programming model has appeared recently
ular physics studies or are underway. Those include vaianty,e to the availability of high-level compilers, throughlike

of time-dependent Hartree-Fock (TDHE) [71B.9, 10] as well a languages such as CUDA and OpenCL C as well as PGl CUDA
Fortran, where commands are addressed directly to the Graph
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face within the quantum chemistry project for Octopus, a HID

packagel[22, 23]. This allows OpenCL functions to be called Global Cache (8KB)

from Fortran code. The major advantage of the architectur Local (32KB) Private (256KB)

is the large number of, what ardfectively, cores present on 1.

a GPU. Thus a powerful desktop computing environment ap “ I . “ I

pears feasible, provided some current drawbacks are egbolv PLP2T || P3 PAT P31P32T

such as the large disparity between double precision agiesin

precision performance, possibly due to the lack of deditate Global Cache (8KB)

double precision arithmetic units, and the availabilityhafh- Local (32KB) Private (256KB) 3
performance library routines. As a result of the possibsit 2. g é
with the GPGPU platform, it represents a hot topic within eom “ “I “ “I o “ “I =
putational physics. Two main computational platforms féeG PL P2T || P3 PAT P31P32T § .§'
computing are currently in the mainstream interest; nartiely o |5
CUDA and OpenCL frameworks. At the moment CUDA is of : = =
heavy use in a number offtirent scientific areas, but interest - i

in OpenCL is increasing, with tools also available to cohver Global Cache (8KB)

CUDA code into OpenCL code such as the program Swan[24] e Private (250KB)

OpenCL is a language that was designed to suit the paratlelis
of GPUs. ltis, in essence, very similar to CUDA but in terms '
of features within the framework there are some significént d 51 p27 Il P3 pa v (N 55 5o,
ferences arising from CUDA being limited to a particularait
hardware from a particular manafacturer whilst OpenCL is no

The purpose of this work is two-fold. The first is to pursue Figure 1: An AMD GPU Model based on the data from
the development of a theoretical method to tackle demandi_ the ALU, each pair of which are grouped into
computational problems in the area of complex quantum sysy single double precision processing element, are in rex, th
tems under intense and ultrashort radiation fields. Thergeco {yanscendental unit, in orange and marked with the T, is not
is to present a computational model which is only, we believe ;sed. Each grey box represents one compute unit, of which
in its starting phase, namely the development of a parallelC  there are 18. The pool of registers which form private memory
putational model which does not discriminate between GPUre shared amongst processing elements in a compute ugit. Th
and CPU architectures. In this sense, the present compaati g|opal cache caches global memory for use within the compute
model is designed and is able to run on both CPU and GPUypjt, it is not accessed explicitly. Also shown within thenzo
based systems. To this end, the computational framewotk th%ute unit is the local memory which is accessed explicitlgt an
we chose is based on the OpenCL language. Though the Ug the medium for communication within a compute unit. The

age of GPUs is already common within fields such as quantugopal and constant memory shown are accessed by processing
chemistry [[25] and usage is flourishing in fields as varied aglements within compute units.

fluid dynamics and magnetohydrodynamics (see the introduc-

tion from [26] and citations within) and statistical physi@7]

with some usage appearing in fields such as in interactinggmarg. GPU programming and the OpenCL framework
particle systems [28].

Since CUDA is a more mature platform there exist routines GPUs are a type of compute device in OpenCL terminol-
which can optimize existing codes such as the use of anegisti 09y. GPU architectures have blocks of processing elements.
accelerated FFT routine such as the FFTWS3 library used in Réfrocessing elements are similar to cores except for a few key
[29]. It is worth noting that most implementations using GPU differences since they are, dfectively are, arthimetic logic
are on the CUDA platform. Thus for this additional reason theunits (ALUs). A processing element will have access to a cer-
present OpenCL implementation represents an important cof@in amount of memory which it exclusively accesses. This
tribution in this newly emerged field. is known as private memory. Groups of processing elements

The paper is organized as follows. In SEE. 2 a basic de€xecute in a SIMD fashion and may share a common mem-
scription of the OpenCL and GPU concepts and terminology"y which can be treated as local memory as described later.
is given. In Sec. (03 we formulate the physical problem un-These groups are known as compute units. GPU branch gran-
der question in mathematical terms. In 9dc. 4 we present tHdarity is coarse grained because of the SIMD design. GPUs
OpenCL implementation specific to the solution of a system ofypically have a slower clock speed (700-900MHz) in compari
ODEs, while in Sed.]5 we apply our approach to the case of afon to CPUs. Figurle 1 demonstrates a typical configuration fo
hydrogen atom and present the benchmarking results. Finalen AMD GPU. The specific architectures provided bifetfient
we have relegated some the details about the hardware testé@ndors may vary, but the abstraction provided by OpenCL wil

and the specific numerical algorithms employed in this stody hold. _ _ .
the appendicies. Global memory is available for access to all compute units.

Constant memory is a part of global memory which is not chdnge




by processing elements. A cache for global memory may also OpenCL C code is compiled during the runtime of the host
be available. Global Memory is typically not integrated@mnt code. The OpenCL C code can be specifically targeted to a
the same chip as the GPU. For a CPU, RAM typically usegarticular instance of a problem; some aspects are known onl
DDR2 and the newer DDR3 whilst a GPU typically accessest runtime of the host code. This information can be used at
GDDRS5 global memory. For AMD hardware GDDR5 memory compile time for the OpenCL C code and thus the code can be
has twice the bandwidth of DDR3 memo@[30]. optimized for that particular instance. In this way, the gier
Communication between the GPU and CPU typically oc-can take advantage of what is known at runtime of the host.code
curs over a PCl Express x16 connection. For the V7800 this Memory objects such as one dimensional arrays can be cre-
gives a theoretical maximum bandwidth of 8 SBvhile the  ated for use by the device code by function calls to the OpenCL

peak realizable bandwidth is 6 GB library. A handle is returned to the object by the library @i
can then be used to refer to the object in future functiorscall
2.1. OpenCL OpenCL as a framework provides for the execution of func-

OpenCL is a royalty free open standard. Initially developedions known as kernels, which are written in OpenCL C. A ker-
by Apple® Inc, the standard is being actively developed andhel is not directly called by the host code, instead, a cad to
worked upon by the Khronos group, a large multi-vendor conspecific kernel with specific memory objects as arguments is
sortium which includes companies such as NVIBIAAMD®, placed in a queue on the host device when the clEnqueueN-
IBM®, ARM®, Intel®, Texas Instrumen® Sony® and others. DRangeKernel() function is called. The particular impleize
The current implementations of OpenCL from Intel, AMD and tion of the OpenCL standard will take care of all further dsta
NVIDIA are based on the 1.0 and 1.1 standards. The 1.2 starkror example, the implementation will decide when to pass a
dard was released on the 15 of November 2011. particular batch of function calls queued from the CPU to the

OpenCL distinguishes between two types of code in anyhardware scheduler that is present on a GPU. The queue is said
OpenCL program; the host code and the OpenCL C code.  to be asynchronous.

All code that is written in standard programming languages Since the objective is parallelism, the aim is for multipie i
such as C or Fortran can be regarded as host code. A regulstances of the same kernel to be simultaneously executld wit
program with no connection to OpenCL can be viewed as conindependent data so as to spread the workload. The hardsvare i
taining entirely host code for example. The host code iotsra set to assign instances of this execution, known as worksitem
with OpenCL purely through function calls to the OpenCL li- with particular identification numbers. Three sets of ident
brary. This means that any compiler can be used to compile thiication numbers are given; the local, group and global IDs.
host code as long as it can link against the OpenCL library. OpenCL combines work items into work groups. The minimum

The OpenCL C code is written in an OpenCL variant of thesize of a work group for an AMD GPU is 64 work items. This
latest ANSJISO standard of C known as C99. The major dif- minium size is known as a wavefrontin AMD terminology. For
ferences between OpenCL C and C99 are the restrictionsplac®&VIDIA the minimum size is called a warp. AMD GPUs cur-
on the language. A key restriction is the lack of recursiomiu  rently execute a half wavefront at a time on a compute unit for
GPU hardware issues and also that two or more dimensional atouble precision instructions. The local ID of a work iterpre
rays must be treated as one dimensional arrays when beidg useesents its place within a work group. The purpose of thegrou
as arguments for kernel functions. Although complex numberID is to represent a particular work groups position in rielat
are supported by the C99 standard they are not implemented the other work groups. The global ID represents the positi
in OpenCL C, instead, the user can create a complex structud a work item in relation to all other work items.
containing two double precision elements, it is then a kedbt For a specific work group siz¥g;q.p the global ID is equiv-
simple matter to define the relevant series of complex niidltip alent to:
cation functions. This, however, is an undesirable additio
step. It is preferable if optimized implementations weredus I Daiobal = 1 DeroupNeroup + 1 Dioca
implicitly such as in C99. Other restrictions are listed fie t
OpenCL specificatiorml]. The OpenCL C code is the codgy,;,

that_will actually be performing a particular computation® 15 is, there exists what can be thought of as a local togolog
particular target such as a GPU ora CPU. _ between work items in a work group and a global topology be-
Whilst CUDA is portable amongst most operating systemsyeen work groups in the domain of the problem. The local and

OpenCL is portable in the greater sense of not being limiteq 4| topologies can be one, two or three dimensional it the
to specific hardware as well as operating systems. Support [Syout.

not dependent ona si_ng_le vendor. Possible compute devices i ~ A \work item can only communicate with other work items
OpenCL are not just limited to GPUs and CPUs, they can alsq, the same work group. Unlike in MPI, the creation of virtual
include FPGAs, DSPs, the IBMCell architecture and many 555/0gies is not built in by the framework though the equiva
more. . ) _lent can be implemented by an interested OpenCL C program-
OpenCL C code will execute on any architecture but, inper - A work item communicates with other work items in it's
practice, it will require a slight code modification or pd8gi ;K group through the use of local memory: low latency mem-

a partial rewrite to achieve good performance from one archiOry that may be dedicated to a particular compute unit orajlob
tecture to the next.

In this way a work item knows its place in the order of
gs in a manner similar to the concept of topologies in MPI



memory which is remapped to the work group. This communi+to the following set of coupled partial fierential equation for
cation approach through memory is similar to that of OpenMPthe radial motion in channejs
There is a limitation on communication between work items

in different work groups; they cannot communicate with each i—C,(t) = EC,(t)+ Z V, - (0)Cy (1), 4
other during the execution of a kernel. This limitation ida dt g
the execution of the kernel by the many work items, the coher- E, = (@,/H\D,) (5)

ence of global memory cannot be known since the order of ex- B ~
ecution of the work items is determined by the hardware sched Vip () = (&IV(D)IDy) (6)
uler and not the programmer. By properly ordering the cdgcientsC, (t) into a column vector
When one queues kernel calls via an in-order execution queg@) and the diagonak,) and non- dlagonar\(w (t)) elements
it can be guaranteed that at the start of a function call atkwo into a square matriid (t) we may rewrite the TDSE go\/ernmg

items executing a particular kernel see a consistent view ahe system-field dynamics, in matrix representation, as,
memory and so it can be said that the work items have been

synchronized. iC(t) = H(BC(L). (7)

supplemented with the initial conditid®(0) = Cy. The latter
3. TDSE projected on the stationary system'’s eigenstate ba- set of equations for the cigients, which represents a system
sis of coupled ordinary dferential equations (ODE), are subject
to numerical solution. The ODE form of the TDSE, no matter
Letus consider a multielectroN{-electrons) atomic or molecyynich system we have, allows us to utilize our solution algo-
ular system described through the hamiltonian opetaidfn)  rithm at a very general level. Within this eigenstate repres
with, the system’s electron’s positiong = (r1,2,...rn). We  tation of the system’s TD wavefunction only two kinds of dy-
assume that the eigenstates of the hamiltonday{fn), have  namical quantities are required for the solution; the edgen-
been calculated as the solutions of the Schrodinger emuati  gjes and transition matrix elements between the systegesei
A " states. The key point is that all the information about thecex
(HN(rN) - Ey) ©y(fn) =0, @ nature of the system, whether multi-electron or not, whethe
where with the index we represent all the quantum mechan-atomic or molecular, is contained in the values of the eigene
ical observables required to completely characterizetdtes ~ ergies and the matrix elements together with the required se
Let us now consider the TDSE of the above system subject tBon rules for the transitions. Itis for this reason, that ADSE,
an external time-dependent field represent by the potestial ~atomic or molecular, can be formally re-expressed as arsyste
eratorV(f, t). The TDSE of the system in the presence of thisof ODEs that the present computational algorithm is esfigcia

external field is written as: important, since it is designed to accept as input elements,
5 actly the matrix elements ¢4 which uniquely define coupling
ialﬁ(FN, t) = [Q(FN) +V(Pn, t)] w(Pns b), ) between the system and field.

supplemented with the initial conditiar(Fy, to) = vo. Thus, 31 Atomigimolecular system in linearly polarized radiation
the main goal is to calculate the time-dependent wave fancti within the dipole approximation
of the system, given the hamiltoni&h, of the unperturbed sys- Since we are interested in atomic or molecular targets under
tem and the external potenti(t). To this end, since any phys- EM fields one very important simplification can be achieved if
ical state of a quantum mechanical system can be expandedive assume a linearly polarized radiation field along soms, axi
terms of it's eigenstates, tié—electron wavefunction is writ- which without any loss of generality we may assume to be the

ten as: z-axis in a Cartesian coordinate system. This assumption is

used to determine the structure of the matrix involved in the

U(fn,t) = icy(t), D,(n), (3) TDSE system of equatiofl(7). Now, let us make the channel in-
dexy more specific; wherg represents a solution of the hamil-

tonian operator. The total angular momentum quantum number

wherey, in principle, includes both the bound and continuum
7, NP P gwen byL with it's component along the z-axls and the to-

states of the spectrum. At this stage, towards developing
method of calculating the TD wavefunction, we consider the fal spin given byS and it's component along the-axis S,.
standard approach which assumes that the system is enelosed fhus, we writey as: y = (ELSM_Ms). This is the so-called

a box. Having assumed this, the bound and the continuum solj's representation of the atomic states which is well suited to
tions of the system can now both treated with a common inde Ight atoms. Let us assume that the system starts from the sta
ing representing a now discretized spectrum. Formallyjesro ) = |Eo, Lo. So. M. Mﬁﬁf—[j;t is well established, through the
tion of the known discretized channel sta@gsonto the TDSE W|gnet-Eckhart theore 2], that in the dipole approximat

and subsequent integration over all spatial variah|esill lead for the coupling of the radiation fl.eld the non-vanlshlrjg-ele
ments are between these states with the same total spinend th

same magnetic angular and spin quantum numbers. Thus we



0 1 2 3 4 whereC(t) is the vector containing thdl unknown complex
codficients andM (t) = —iH(t), whereH (t) is aNxN symmetric
matrix. At this point, it is worth noting that although thesgjific
discussion is for the case of TDSE calculations, the frankwo
can easily be applied to ordinaryfidirential equations of the
1 Dlo ]_\ D1, kind shown in Equatiori{9).

Essentially the derivative is calculated throughicgently
5 D 2\ D23 implementing the following matrix-vector multiplication
21

—i[EY + D(1)]C

3 D32 3 D34 Due to the neighbouring, states being coupled (Figure
[2), we have a nearest-neighbour computational problenhéor t
calculation of the matrix-vector operation. We can expthss
4 right hand side of Equatioh](7) in terms of eigenstatefitoe
AN cients for blocks of angular momenta (t):

D

43

4

Figure 2: The banded structure of the Hamiltonian is showns d
Tr?is structure holds if we assume we have a linearly polelrizeH MO = Z [ELYCLV DL, (OC, - + DLV+1’L7(t)CLV+1]’
field which interacts with an atomic or molecular target ie th
dipole approximation. The sub and super diagonal blocks con  whereE? is a diagonal matrix containing the field-free eigen-
tain NixN; transition elements. The diagonal blocks are themygjues of the eigenstates of the angular momenta hlgaind
sglves diagonal with the field-free eigenvalues for daghthe Di,-1., andDy .11, are matrices that contain the dipole matrix
diagonal. elements that couple the states fromlthe 1 andL, +1 eigen-
states to thé&, eigenstates respectively. The coupling terms are
time dependent.

Since we calculate the derivative by a matrix vector calcu-
= (E, Ly»SyMLyMSy“:A)'Ey’» Ly, S, M., Ms,,) Igtipn, the Taylor series and Runge-Kutta _based methods are

limited by the performance of this computation.
For the Taylor series propagator the number of synchroniza-

Therefore we get a structure for the matrix representatfon ofion points is equal to the order of the problem. For a Runge-
H(t), which is based on very general terms, as shown in FigKuttg propagator, without sp_ecmc optl_mlzatlons such ast¢h
ure[2. In this figure we represent the case where the maxfeauired for the Dormand-Prince algorithm, the number of sy
mum total angular quantum number that was considered wagronization points is equal to the number of stages plus one
four (L,,,, = 4). The sub and super diagonal blocks contain thelhe number of stages in a Runge—Kutta algorithm is greater
dipole transition elements between states hatingndL, +1.  than the order for methods with more than 4 stages.

The diagonal blocks are themselves diagonal with the figd-f ~ Having many synchronization points per order has two ma-
eigenvalues for each,. This banded structure is very general JOf Negative €ects. It increases the coding complexity since
and it can be shown that this can also describe the intereatio  the calling of the dierent kernel functions has to be accounted
radiation fields with molecular targets as well. For exaniple for and it also decreases the ability for optimizations tarbe

the case of diatomic molecules and in the fixed nuclei approxPlémented since breaks in the executiofiistilatency hiding

imation the set of quantum operators required to descriee thAtteémpts.

L

have for the dipole transition matrix elements:

D

4

= Dy,y/5L7,L7,115s,,sy,5ML,MLy,5MS,M5y, (8)

interaction with linearly polarized fields along the intienaic With the explicit Runge-Kutta methods three distinct ker-
axis are the hamiltonian operator, the projections of thguan Nels are required;

lar quantum number along the interatomic axi &nd the spin 1. A kernel to perform the vector sum before the derivative
quantum number alongside its projection along the intenato calculation as shown in EquatibnB.4

axis. In other words the channel should be represented as

2. Akernelto perform the derivative calculation in Equatio
Y =1EA, S, Sp). B4
3. Afinal kernel to sum all the derivatives in Equation]B.3

4. The OpenCL GPU computational framework The Taylor series, on the other hand, requires only one ker-

nel which performs both the derivative calculation and tte a
dition to the solution. Since no optimizations have beenénp
mented at present it is expected that both methods shoudd hav
the same execution time if the same number of derivatives are
being calculated by performing matrix vector calculations

Ordinary diferential equations of any order can be repre-
sented as a system of coupled first-ordéfiedéential equations.
The algorithms described in the present section solve #risigc
problem for a system dfl equations:

C(t) = M(B)C(L). (9)



4.1. Algorithmfor Splitting up Generic Work Splitting up a Block to Work Items. For dividing up a block of
An algorithm is necessary that splits up a workloatlgt ~ WOrk which we gave a Block Id ofDgroup, to, amongst work

units into a specific number of units given Byyoe. Aworker  1t€ms in a few work group8laroup,, firstly we must split the -

can be a work item or a work group. We get the start positior\"’ork available between the work groups, so the following is

for a specific worker: done:

Remainder < Nwork  (M0od Nworker) TotalWork < Neroup * Neroups

Div «Nwork  Nuworker |DGroupB — IDroca + NGroup * | Dpjock

Start < DiV * | Dworker Call main algorithm in section 4.1

if 1Dworker < Remainder then Here we assign a particular IDg;oup, to €ach work group
Start « Start + | Dworker within the Block of work with IDIDgock. Now we can call the

else main algorithm to divide the section of the block assigned to
Start « Start + Remainder each work group to the individual work items.

end if

Now a check is performed to make sure a worker has no§. Application to the case of atomic hydrogen in a laser field
been assigned a value that is out of range of the availabli.wor

If this over-assignment has occured the amount of work is ad- In this case they channel index is replaced from the en-
justed for the worker. ergy, the angular momentum and its component along the field

polarization axis. We ignore the spin operators and thus we

if | Dworker < Remainder then . .
have for the eigenstates of atomic hydrogea (elm), where

i1
else € the energy eigenvalue aridthe angular momentum quan-

i —0 tum number. The continuum is discretized and together with
end if the discrete bound states [33]. Then, the eigenstate bésis o
Div — MIN(Nwork — Start, Div + i) the field free hydrogen hamiltonian is the partial wave basis
End = Start + WorkPerWor ker D,(r) = (1 | y) = $Pey, (1Yi,m, (F) whereYim (7) are the spher-

. . ical harmonics.
This stops workers accessing unallocated memory and aige st

workers from performing duplicate calculations. If an eaxac P(r,t) = ch(t)cby(r).
number of workers is chosen so that the division is assured to y

be correct then this is unnecessary. The eigenstates of atomic hydrogen are coupled to each other

by a strong pulsed laser. This laser field couples states that
differ in angular momentum by 1 unit while the magnetic quan-

work is treated as a series of tasks that involve identicafure- . .

: : - tum number was set to zero (see Fiddre 2). We set the magnetic

tions being executed but withfeirent data. Due to occupancy L
gquantum number to zero because we assume that the inital sta

issues it may not be ideal to assign a full block of work to one

work group. The following algorithm was created to perform was_ tgeagéo:izg Stalifccgng:rz?sveen dvgh:c:tenge?jngg ttr;?(reefi?irr?to
this split up calculation: m = m

i h account. There are 649 eigenstates associated with eaah ang
It Noroups < Nwork, then lar momentunt in the basis that is used for the computations in

Splitting up Work Groups Amongst Blocks of Work. A block of

| Daroups < 0 this paper. Nine of these eigenstates are boundary statke of

Neroups - 1 _ . ) B-Spline basis used which are fixed at O; a total of 640 states

Call main algorithm in section 4.1 then are explicitly represented in the calculations fotear-
else gular momentum. The population of the continua represent th

Naroups ¢~ Naroups/Nworks level of ionization after the laser field has passed.

I Deroups ¢ IDeroup  (MOd Neroups) The EM field was modelled by a sine squared pulse, linearly

Start « IDGrOUp/NGroupB
End « MIN(Start + 1, Nworks)
end if E(t) = 2Eos nz(zﬁt)si n(wt) (10)

WhereNg;qups is the number of work groups availabl®croup ] n )
is the ID of a particular work group ankhwor, is the amount Wherew is the photon frequency andis the number of cy-
of blocks of work to split up. After the algorithm has finished Cles per pulse. The propagation was performed in the veloc-
each work group will be associated with a particular block ofity gauge where the dipole operator is expresseDas —p -
work which is denoted by an IDDg;oup,. The number of work A(t)/c. For the velocity gauge a five point gaussian quadra-

polarized along the-axis:

groups in the block is given bigroup, tur? integrates the E field to give the vector poterti) =
The call to the main algorithm is done wheigoups be- ﬁo dt’E(t") at each time step. The integration was found to

comesNworker, |Dgroup becomesl Dworker @nd Nyork is still perform as expected by comparing it to an analytical exprass

used as the amount of work. for a sine squared pulse with a particular photon frequenicg.

method works equally well for length gauge calculationsrghe
the electric fielde(t) gives the time dependence.



The present GPU implementation of the Taylor and Runge-
Kutta propagators (see appendix) was used for calculaiions
the case of atomic hydrogen. The accuracy and precisioreof th
propagators was verified by comparing the photoelectroc-spe
trum (PES) of the system to a known working propagator. The
propagator is based on a NAG Runge-Kutta based solver. Sinc
above threshold ionization (ATI) has occurred the photiede
spectrum is distinct.

In terms of the particular OpenCL implementation the split-
ting of a block to work groups was made where the number ofg ¢4
blocks of workNwork, mentioned in sectidn 4.1 corresponds to

1E-02

1E-04

1E-06

1E-08

rential Propability

the number of angular momernita; when we are using the ba- 112

sis representationl Dgroup, IS the ID for a particular angular

momentd_' ) . ) ) ) 1E7140 10 20 30 40 50 60 70 80
For division of the work initially the algorithm in section® Electon Kinetic Energy (eV)

is called. This will assigiNgroup, WOrk groups to each angu-

lar momentum block of caicientsC. Following this, a call is

necessary to divide the individual deents inC,. amongst dif-

ferent work items. This is done through a call to the algonith Figure 3: Shown is a sample PES of simulations with 20 eV

defined in sectiofdl1. A choice of number of work groups and?hotons with a pulse of intensity 2 10Wem™ of the three

work group sizes was made such that for everyfiecient there ~ propagators that were compared. A high agreement is seen be-

would be one corresponding work item. tween the classic RK4 and the Taylor propagators. The Runge-
In the benchmarks shown the matrix was treated as a vergutta-Fehlberg is markedly fierent from the other two meth-

large one-dimensional array. Each diagonal matrix blgk ~ 0ds which mostly overlap.

was passed followed by the related superdiagonal dipole ele

ment blockD, in row major form. In this form the superdiag-

onal blocks were transferred to the GPU but the subdiagon

blocks were not represented. Since the matrix is Hamiltonia

the subdiagonal block is not necessary. An implementates w about 65 MB.

also made where both subdiagonal and superdiagonal blocks An aprf)rommate comparlsohn between the Taylor propaga-
were present although the runtime was longer. tor and the Runge-Kutta method was made by comparing a

10th order Taylor propagator to a classic 4th order Rungttaku
5.1. Benchmarking Results propagator and the 4th (5th) order Embedded p_air RungeaKutt
. ) Felhberg (RKF) method. The 5th order solution was chosen
Since OpenCL allows for bOth GPUand CPU gxecutmn W&rom the RKF method. It has been noted in the literature that
hav_e benchmarked GPU execution on an AMD ngPro V7800nigh order Taylor propagators with large step sizes perfuzt
a single GPU on a NVIDIA Tesla S1070 Computing SysteMye, than jower order Taylor propagators with smaller tinggpst

node and a dgal core Intel Xeon. . . ]. As a result of this a 10th order Taylor propagator was
In comparing the Taylor propagator a specific step size an hosen. So we can compare like with like the step size of the

order was chosen so that for,e"erY co.mpu'Fati(.)n it can t,)e gua‘i’aylor propagator was altered so that an equal number of ma-
anteed that the propagator will maintain unitarity. Th@stize i, ector calculations would be performed. Similarlyethth

chosen does not represent the optimal choice and so shauld ng e soytion from the RKF method was also performed with
be used in comparison to other methods. What is of interest i§n adjusted time step
how the method scales as the work size is linearly increased.  A¢ ~an pe seen fr(.)m Figuii@ 4 there was no major discrep-
Since the method IS nearest rllelgh.bour the compu.tatllonal OV€ancy in the runtime of the Taylor and Classic RK4 propagators
hgarq fort.he simulation also nses-lm-ea.rly. Any deviasifom ) i there was a major discrepancy with the RKF 4(5) propa-
this Imeanty would be due to the limitations in the hardwar gator which we attribute to it being an embedded pair method.
aIgoBrlthr:s l.Jsed' bench Kal h ber of | The RKF 4(5) propagator, of which we use the 5th order solu-
y chosing to benchmark along the number of angular Mogjqy 5150 consistently deviates in the photoelectron tspetg
menta in the ba5|s_ set, the cpmputa_tmnal cost of the problem,, example of which is seen in Figlide 3. All three methods did
can be increased Ilnearly by |ncrea_1$|r_19 the number Of, angul%ontain the expected structure within the PES, but the RKF 4
momenFa. Th? cor.nputat.lonal cost 1S Ilnear as the matmovect (5) method deviates in the expected intensities. By compari
calculation is, |n_th|s particular a_pph(_:athn, anearasghbour o unitarity of the solution of the methods a lower bound on
problem. The_ size of the Hamlltor21|an in term; of number Ofthe error can be obtained. The Taylor propagator kept utyitar
double precision elements il(+ N)l whereN, is the num- 5 1oy e) of 19 x 10714, while the classic RK4 method kept

ber of pairs of double precision elements required to repres unitarity to 23x 101! and the RKF 4(5) method deviated from

the codficients for each angular momenta. For example, forunitarity by 25x 102 Step sizes for each method were cho-

&r‘he case ofN; = 640 andl = 0,...,20 then the hamiltonian
has 8615040 double precision values which require an afray o
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Figure 4: A graph of the performance of a 10th order Tayldr, 4t

order Classic RK4 and 5th Order Runge-Kutta-Fehlberg proparigure 5: A graph of the performance of an AMD v7800 in
gators with time steps of B5x 1073, 25x 103 and 375x10°  comparison to one GPU compute device in the Tesla S1070 for
respectively. The time steps were chosen so that the same nu@ tenth order Taylor propagator. Shown is tiEeets of sev-
ber of matrix vector calculations would be performed in all eral diferent configurations of work items in each work group;
cases. Since the Fehlberg method is a multi-order method fhe work group size is shown in brackets. The optimal num-
requires slightly more computations and so does not scale aser of work items per work group is architecture dependett. 6
well as step-size control is not implemented. was optimal for the AMD GPU but for the NVIDIA GPU 192
work items per work group was optimal. A step size of 0.005
was chosen. The number of equations indicates the number of

sen so that an identical number of matrix vector calculation real equations, that is every complex equation consistseal
would be performed. The performance figures should not b%quations. ’

used to decide on the choice of method, rather it is used here
to demonstrate that the number of matrix vector calculation .,
which corresponds to the number of kernels queued, appea
to be the primary factor for deciding the runtime speed of the
algorithms. 3500

It can be seen from Figuké 5 that for the NVIDIA GPU, 192 54001
work items gives the greatest reduction in runtime whilstfie
AMD GPU, 64 work items gives the best performance in thesea
circumstances. The AMD GPU has a highly linear increase iré 20004
run time as expected from a consistent use of the compuédtion 1500
resources.

When the GPU results are compared to the serial CPU re
sults a clear trend is seen (Figlile 6). The GPU based simuli

4000

2500 -

+ 51070 (192)
-+-Xeon (Serial)
1000+ +\/7800 (64)

500 -

tions using OpenCL scale better than the CPUs; The runtim 0 e = = > > ‘
e . . . . 6400 11400 16400 21400 26400
within the region shown in the figure for the particular pulse Total Number of Equations

described, wherg is the number of double precision elements
in the vector of cofficients, is:
Figure 6: The runtime in seconds of the best performing
tintec (X) = 0.14x - 170 NVIDIA and AMD configurations from Figur&l5 with an In-
tamp(X) = 0.0032 + 14 tel Xeon.

th|D|A(X) =0.010x + 9.3

The CPU timing must break down for smaller situations butincreases. If, in what is most likely an overly optimistiesc
this is unimportant since the number of explicit states i§ 64 nario, one took the CPU scaling to be linear with the number
this means the smallest possible vector offticients is 2560  Of cores this would still provide a speedup of the GPU of an or-
elements. der of magnitude in comparison to a multi-core system which,

Figure[T indicates the general trend which can be extrapncidentally, would be more expensive to purchase. With the
olated from the above equations: the speedup for the AMD/7800 card the relationship would terminate at a matrix Wwhic
device tends towards a 40 times speedup whilst the NVIDIACan fit into an array of size 256 MB because the largest single
device tends towards a 14 times speedup as the problem siBéck of memory allocatable on the device is 256 MB.
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the matrix vector operations represent the most significami-
putational bottleneck in the method.

40
35 —— .-.i 6. Conclusions
J— - A vast number of problems can be formulated in terms of
5 7 a system of first-order ODEs. For propagators in which matrix
5 vector calculations represent a significant bottleneainii
s B " T cant runtime reductions can be achieved by the use of GPUs
s W through the OpenCL language. A number of strategies for op-
@ 20 timization exist in OpenCL which we discussed briefly for our
particular case. Optimizing the existing code will require
15 ther work for an expected further order of magnitude improve
——— 7 ment in runtime scalability. It also goes without sayingttha

10

w w w w with improvements in compilers and hardware, future trends
8960 13960 18960 23960 28960

should be for fine-tuning optimizations to be performed by so

Total Number of Equations phisticated compilers and hidden behind generic functions
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first step in any optimization. It makes certain that memory
accesses occur on word aligned boundaries. This is achievéppendix A. OpenCL compute devices tested

by ensuring that each row of the Hamiltonian and each angulalg\lvID FirePro \/7800. The AMD FirePro V7800 is a PCl-e
e e preftcing a6 CTNECtedgraphics i (3] wih 268 processing cores.
9 P 9C8R 1ch core consists of four arithmetic logic units (ALU) and a

be enhanced by explicit cache functions available in OpenCl'transcendental unit which are fed instructions through iy Ve

AItgrnauver compute unit memory can be utilized. ComputeL ng Instruction Word (VLIW). The ALUs can be thought in
unit memory accesses have a much lower latency than glob . -
penCL terms as a processing element. For double precision

memory access by approximately an order of magnitude. Usm%e transcendental unit is not used and the remaining faur ar

compute unit memory also means that there will be less deman . e . .
on the memory controllers. grouped into two double precision execution units, thusethe

. . are two double precision processing elements per pro@essin
On AMD for example, multiple accesses to a specific mem- P P g ber proge

- . . . core. This means that for practical purposes 576 doubla-prec
ory controller are serialized when there is a conflict. Atomi P purp P

. . . . : ion instruction n X imultan ly. Forirfl
operations should be avoided if possible on the AMD architec>'® St Uth s ca be. N ecut.ed simultaneously. Fonfigat
) . . i oint calculations 1152 instructions can be executed. The p
ture as a single atomic operation can dramatically reduce a . . : :
. : cessing cores are grouped into compute units. Obviously the
other memory operations. Unrolling loops can also help the : : ) .
. actual number of instructions executed in a cycle is depande
compiler take advantage of the memory access structure but i .
: : on the form of the workload. A compute unit (a SIMD proces-
also increases register usel[35].

e . . . sor) consists of 16 of the processing cores; as a result énere
Another direction to improve the present implementation : . , .
. . X ; 18 compute units. 1 Gigabyte of global memory is available as
is the use of more sophisticated propagation algorithms tha : :
. . well as 32KB of memory per compute unit. Each processing
the Taylor and the Runge-Kutta. An important candidate;wor .
: . . . element has access to a pool of registers (256KB per compute
thy of consideration, should be the Arngldanczos algorithm. : ) -
. . : unit). Global memory is accessed with GDDR5. The core clock
Whilst other theoretical studies have remarked that théofay is 700 MHz
propagator is both simple and reIiab|E_|[34] they argue that i '
is slower than the Lanczos propagator, mainlé due to smallexVIDIA Tesla S1070 Computing Systems. The NVIDIA Tesla
timesteps which the Taylor propagator requites [36, 16]. Ang1070 computing system consists of multiple Tesla T10 GPUs
optimized Taylor propagator should lend itself towardsdbe-  which are based on the GeForceGTX 200 GPU [38]. Each GPU
struction of the Krylov subspace for a Lanczos propagatmesi  contains 240 scalar processing cores and 4GB of me@ry [39].
Currently a single GPU is targeted.



Intel Xeon. The InteP Xeor® W3503 [40] used is a 64 bit method 4th and 5th order steps are calculated using the same

dual core CPU with a clock speed of 2.4 GHz, a 4 MB cachealerivative calculation information; the féiérence between the

and with support for DDR3 memory with a 25.6 ZBnemory
bandwidth.

two methods gives an indication of the local error size.
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