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Abstract

Open Computing Language (OpenCL) is a parallel processing language that is ideally suited for running parallel algorithms on
Graphical Processing Units (GPUs). In the present work we report on the development of a generic parallel single-GPU code for
the numerical solution of a system of first-order ordinary differential equations (ODEs) based on the OpenCL model. We have
applied the code in the case of the time-dependent Schrödinger equation of atomic hydrogen in a strong laser field and studied its
performance on NVIDIA and AMD GPUs against the serial performance on a CPU. We found excellent scalability and a significant
speed-up of the GPU over the CPU device which tended towards avalue of about 40 with significant speedups expected against
multi-core CPUs.

Keywords: General Purpose Graphical Processing Unit (GPGPU) Programming, Taylor Series, Runge-Kutta methods,
Time-Dependent Schrödinger Equation, Quantum Dynamics,Ordinary differential equations

1. Introduction

Exploration of the fundamental processes that occur when
atomic and molecular systems are subject to extreme conditions
is currently a major research area. Theoretically, it is a huge
task to treat the exact time-dependent (TD) response of a multi-
electron system subject to a strong electromagnetic (EM) field
by ab initio methods. In response to extensive experimental
achievements using high-intensity Ti:Sapphire laser sources in
the long wavelength regime, a very successfull approach that
adopts the single-active-electron (SAE) approximation was ap-
plied to the atomic and molecular cases [1]. For systems of
only two electrons, such as the negative hydrogen ion, helium
and molecular hydrogen, direct ab-initio solutions of the time-
dependent Schrödinger equation (TDSE) have appeared in the
early nineties (for a review see ref. [2]). Since then, computa-
tional performance has increased steadily and as a result these
methods have reached a high level of accuracy, efficiency and
reliability, tackling successfully the very demanding theoreti-
cal problem, of single and double ionization of helium at 390
and/or 780 nm [3, 4].

Recently, the realization of short-wavelength sources, through
the free-electron laser of high-order harmonic generationtech-
niques, which deliver brilliant radiation in the soft- and (in the
immediate future) hard X-ray regime have initiated new chal-
lenges in the strong-fields atomic and molecular physics [5,6].
Theoretical and computational approaches to tackle these chal-
lenging problems have been developed in atomic and molec-
ular physics studies or are underway. Those include variants
of time-dependent Hartree-Fock (TDHF) [7, 8, 9, 10] as well as
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extensions of the traditional time-independent R-matrix method
to the time-domain such as, the R-matrix Floquet approach [11],
TDSE approaches fully based on R-matrix theory [12, 13, 14]
and the recently developed R-matrix incorporated time (RMT)
method [15, 16, 17]. Thus it appears that there is a consistent in-
terest in the development of computationally tractable methods
able to treat multi-electron systems with the least approxima-
tions possible.

In the past two decades there have been several advances in
various directions in the computational infrastructure. When a
computationally demanding problem is being tackled the entire
computing environment should cooperate in a coherent manner.
This includes reliable and robust numerical libraries, sophisti-
cated compilers, high speed networks, visualization software,
technical support and training together with high processing
rate and fast memory. The emergence of Central Processing
Unit (CPU)-based parallel architectures allowed the develop-
ment of High Performance Fortran, various parallel versions of
C++ and the successful usage ofMessage Passing Interface
(MPI) andOpen Multi-Processing (OpenMP). As it is not the
purpose of this work to elaborate on the available techniques
for CPU-based computational paradigms we will focus on an
alternative possibility of growing interest, namely the use of a
heterogenous computational enviroment which involves theuse
of General Purpose Graphics Processing Units (GPGPUs) for
an efficient and low-costdistributed hybrid computing system
[18].

The GPGPU programming model has appeared recently
due to the availability of high-level compilers, through C-like
languages such as CUDA and OpenCL C as well as PGI CUDA
Fortran, where commands are addressed directly to the Graph-
ics Processing Unit (GPU) [19, 20, 21], FortranCL is an OpenCL
fortran interface implementation which originated as an inter-
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face within the quantum chemistry project for Octopus, a TDDFT
package [22, 23]. This allows OpenCL functions to be called
from Fortran code. The major advantage of the architecture
is the large number of, what are effectively, cores present on
a GPU. Thus a powerful desktop computing environment ap-
pears feasible, provided some current drawbacks are resolved
such as the large disparity between double precision and single
precision performance, possibly due to the lack of dedicated
double precision arithmetic units, and the availability ofhigh-
performance library routines. As a result of the possibilities
with the GPGPU platform, it represents a hot topic within com-
putational physics. Two main computational platforms for GPU
computing are currently in the mainstream interest; namelythe
CUDA and OpenCL frameworks. At the moment CUDA is of
heavy use in a number of different scientific areas, but interest
in OpenCL is increasing, with tools also available to convert
CUDA code into OpenCL code such as the program Swan[24].
OpenCL is a language that was designed to suit the parallelism
of GPUs. It is, in essence, very similar to CUDA but in terms
of features within the framework there are some significant dif-
ferences arising from CUDA being limited to a particular setof
hardware from a particular manafacturer whilst OpenCL is not.

The purpose of this work is two-fold. The first is to pursue
the development of a theoretical method to tackle demanding
computational problems in the area of complex quantum sys-
tems under intense and ultrashort radiation fields. The second
is to present a computational model which is only, we believe,
in its starting phase, namely the development of a parallel com-
putational model which does not discriminate between GPU
and CPU architectures. In this sense, the present computational
model is designed and is able to run on both CPU and GPU-
based systems. To this end, the computational framework that
we chose is based on the OpenCL language. Though the us-
age of GPUs is already common within fields such as quantum
chemistry [25] and usage is flourishing in fields as varied as
fluid dynamics and magnetohydrodynamics (see the introduc-
tion from [26] and citations within) and statistical physics [27]
with some usage appearing in fields such as in interacting many
particle systems [28].

Since CUDA is a more mature platform there exist routines
which can optimize existing codes such as the use of an existing
accelerated FFT routine such as the FFTW3 library used in Ref
[29]. It is worth noting that most implementations using GPUs
are on the CUDA platform. Thus for this additional reason the
present OpenCL implementation represents an important con-
tribution in this newly emerged field.

The paper is organized as follows. In Sec. 2 a basic de-
scription of the OpenCL and GPU concepts and terminology
is given. In Sec. 3 we formulate the physical problem un-
der question in mathematical terms. In Sec. 4 we present the
OpenCL implementation specific to the solution of a system of
ODEs, while in Sec. 5 we apply our approach to the case of an
hydrogen atom and present the benchmarking results. Finally
we have relegated some the details about the hardware tested
and the specific numerical algorithms employed in this studyto
the appendicies.
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Figure 1: An AMD GPU Model based on the data from
Appendix A. the ALU, each pair of which are grouped into
a single double precision processing element, are in red, the
transcendental unit, in orange and marked with the T, is not
used. Each grey box represents one compute unit, of which
there are 18. The pool of registers which form private memory
are shared amongst processing elements in a compute unit. The
global cache caches global memory for use within the compute
unit, it is not accessed explicitly. Also shown within the com-
pute unit is the local memory which is accessed explicitly and
is the medium for communication within a compute unit. The
global and constant memory shown are accessed by processing
elements within compute units.

2. GPU programming and the OpenCL framework

GPUs are a type of compute device in OpenCL terminol-
ogy. GPU architectures have blocks of processing elements.
Processing elements are similar to cores except for a few key
differences since they are, or effectively are, arthimetic logic
units (ALUs). A processing element will have access to a cer-
tain amount of memory which it exclusively accesses. This
is known as private memory. Groups of processing elements
execute in a SIMD fashion and may share a common mem-
ory which can be treated as local memory as described later.
These groups are known as compute units. GPU branch gran-
ularity is coarse grained because of the SIMD design. GPUs
typically have a slower clock speed (700-900MHz) in compari-
son to CPUs. Figure 1 demonstrates a typical configuration for
an AMD GPU. The specific architectures provided by different
vendors may vary, but the abstraction provided by OpenCL will
hold.

Global memory is available for access to all compute units.
Constant memory is a part of global memory which is not changed
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by processing elements. A cache for global memory may also
be available. Global Memory is typically not integrated onto
the same chip as the GPU. For a CPU, RAM typically uses
DDR2 and the newer DDR3 whilst a GPU typically accesses
GDDR5 global memory. For AMD hardware GDDR5 memory
has twice the bandwidth of DDR3 memory [30].

Communication between the GPU and CPU typically oc-
curs over a PCI Express x16 connection. For the V7800 this
gives a theoretical maximum bandwidth of 8 GB/s while the
peak realizable bandwidth is 6 GB/s.

2.1. OpenCL
OpenCL is a royalty free open standard. Initially developed

by AppleR© Inc, the standard is being actively developed and
worked upon by the Khronos group, a large multi-vendor con-
sortium which includes companies such as NVIDIAR©, AMD R©,
IBM R©, ARM R©, IntelR©, Texas InstrumentsR©, SonyR© and others.
The current implementations of OpenCL from Intel, AMD and
NVIDIA are based on the 1.0 and 1.1 standards. The 1.2 stan-
dard was released on the 15 of November 2011.

OpenCL distinguishes between two types of code in any
OpenCL program; the host code and the OpenCL C code.

All code that is written in standard programming languages
such as C or Fortran can be regarded as host code. A regular
program with no connection to OpenCL can be viewed as con-
taining entirely host code for example. The host code interacts
with OpenCL purely through function calls to the OpenCL li-
brary. This means that any compiler can be used to compile the
host code as long as it can link against the OpenCL library.

The OpenCL C code is written in an OpenCL variant of the
latest ANSI/ISO standard of C known as C99. The major dif-
ferences between OpenCL C and C99 are the restrictions placed
on the language. A key restriction is the lack of recursion due to
GPU hardware issues and also that two or more dimensional ar-
rays must be treated as one dimensional arrays when being used
as arguments for kernel functions. Although complex numbers
are supported by the C99 standard they are not implemented
in OpenCL C, instead, the user can create a complex structure
containing two double precision elements, it is then a relatively
simple matter to define the relevant series of complex multipli-
cation functions. This, however, is an undesirable additional
step. It is preferable if optimized implementations were used
implicitly such as in C99. Other restrictions are listed in the
OpenCL specification [31]. The OpenCL C code is the code
that will actually be performing a particular computation on a
particular target such as a GPU or a CPU.

Whilst CUDA is portable amongst most operating systems,
OpenCL is portable in the greater sense of not being limited
to specific hardware as well as operating systems. Support is
not dependent on a single vendor. Possible compute devices in
OpenCL are not just limited to GPUs and CPUs, they can also
include FPGAs, DSPs, the IBMR© Cell architecture and many
more.

OpenCL C code will execute on any architecture but, in
practice, it will require a slight code modification or possibly
a partial rewrite to achieve good performance from one archi-
tecture to the next.

OpenCL C code is compiled during the runtime of the host
code. The OpenCL C code can be specifically targeted to a
particular instance of a problem; some aspects are known only
at runtime of the host code. This information can be used at
compile time for the OpenCL C code and thus the code can be
optimized for that particular instance. In this way, the compiler
can take advantage of what is known at runtime of the host code.

Memory objects such as one dimensional arrays can be cre-
ated for use by the device code by function calls to the OpenCL
library. A handle is returned to the object by the library which
can then be used to refer to the object in future function calls.

OpenCL as a framework provides for the execution of func-
tions known as kernels, which are written in OpenCL C. A ker-
nel is not directly called by the host code, instead, a call toa
specific kernel with specific memory objects as arguments is
placed in a queue on the host device when the clEnqueueN-
DRangeKernel() function is called. The particular implementa-
tion of the OpenCL standard will take care of all further details.
For example, the implementation will decide when to pass a
particular batch of function calls queued from the CPU to the
hardware scheduler that is present on a GPU. The queue is said
to be asynchronous.

Since the objective is parallelism, the aim is for multiple in-
stances of the same kernel to be simultaneously executed with
independent data so as to spread the workload. The hardware is
set to assign instances of this execution, known as work items,
with particular identification numbers. Three sets of identi-
fication numbers are given; the local, group and global IDs.
OpenCL combines work items into work groups. The minimum
size of a work group for an AMD GPU is 64 work items. This
minium size is known as a wavefront in AMD terminology. For
NVIDIA the minimum size is called a warp. AMD GPUs cur-
rently execute a half wavefront at a time on a compute unit for
double precision instructions. The local ID of a work item rep-
resents its place within a work group. The purpose of the group
ID is to represent a particular work groups position in relation
to the other work groups. The global ID represents the position
of a work item in relation to all other work items.

For a specific work group sizeNGroup the global ID is equiv-
alent to:

IDGlobal = IDGroupNGroup + IDLocal

In this way a work item knows its place in the order of
things in a manner similar to the concept of topologies in MPI.
That is, there exists what can be thought of as a local topology
between work items in a work group and a global topology be-
tween work groups in the domain of the problem. The local and
global topologies can be one, two or three dimensional in their
layout.

A work item can only communicate with other work items
in the same work group. Unlike in MPI, the creation of virtual
topologies is not built in by the framework though the equiva-
lent can be implemented by an interested OpenCL C program-
mer. A work item communicates with other work items in it’s
work group through the use of local memory; low latency mem-
ory that may be dedicated to a particular compute unit or global
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memory which is remapped to the work group. This communi-
cation approach through memory is similar to that of OpenMP.

There is a limitation on communication between work items
in different work groups; they cannot communicate with each
other during the execution of a kernel. This limitation is due to
the execution of the kernel by the many work items, the coher-
ence of global memory cannot be known since the order of ex-
ecution of the work items is determined by the hardware sched-
uler and not the programmer.

When one queues kernel calls via an in-order execution queue
it can be guaranteed that at the start of a function call all work
items executing a particular kernel see a consistent view of
memory and so it can be said that the work items have been
synchronized.

3. TDSE projected on the stationary system’s eigenstate ba-
sis

Let us consider a multielectron (N−electrons) atomic or molec-
ular system described through the hamiltonian operatorĤN(r̃N)
with, the system’s electron’s positions ˜rN = (r1, r2, .., r N). We
assume that the eigenstates of the hamiltonian,Φγ(r̃N), have
been calculated as the solutions of the Schrödinger equation:

(

ĤN(r̃N) − Eγ

)

Φγ(r̃N) = 0, (1)

where with the indexγ we represent all the quantum mechan-
ical observables required to completely characterize the states.
Let us now consider the TDSE of the above system subject to
an external time-dependent field represent by the potentialop-
eratorV(r̃N , t). The TDSE of the system in the presence of this
external field is written as:

i
∂

∂t
ψ(r̃N , t) =

[

Ĥ(r̃N) + V̂(r̃N , t)
]

ψ(r̃N , t), (2)

supplemented with the initial conditionψ(r̃N , t0) = ψ0. Thus,
the main goal is to calculate the time-dependent wave function
of the system, given the hamiltonian̂HN of the unperturbed sys-
tem and the external potentialV̂(t). To this end, since any phys-
ical state of a quantum mechanical system can be expanded in
terms of it’s eigenstates, theN−electron wavefunction is writ-
ten as:

ψ(r̃N , t) =
∑

γ

∫

Cγ(t),Φγ(r̃N), (3)

whereγ, in principle, includes both the bound and continuum
states of the spectrum. At this stage, towards developing a
method of calculating the TD wavefunction, we consider the
standard approach which assumes that the system is enclosedin
a box. Having assumed this, the bound and the continuum solu-
tions of the system can now both treated with a common index-
ing representing a now discretized spectrum. Formally, projec-
tion of the known discretized channel statesΦγ onto the TDSE
and subsequent integration over all spatial variables ˜rN will lead

to the following set of coupled partial differential equation for
the radial motion in channelsγ:

i
d
dt

Cγ(t) = EγCγ(t) +
∑

γ′

Vγ,γ′(t)Cγ′ (t), (4)

Eγ = 〈Φγ|ĤN |Φγ′〉 (5)

Vγ,γ′(t) = 〈Φγ|V̂(t)|Φγ′〉 (6)

By properly ordering the coefficientsCγ(t) into a column vector
C(t) and the diagonal (Eγ) and non-diagonal (̂Vγ,γ′(t)) elements
into a square matrix̂H(t) we may rewrite the TDSE governing
the system-field dynamics, in matrix representation, as,

iĊ(t) = Ĥ(t)C(t), (7)

supplemented with the initial conditionC(0) = C0. The latter
set of equations for the coefficients, which represents a system
of coupled ordinary differential equations (ODE), are subject
to numerical solution. The ODE form of the TDSE, no matter
which system we have, allows us to utilize our solution algo-
rithm at a very general level. Within this eigenstate represen-
tation of the system’s TD wavefunction only two kinds of dy-
namical quantities are required for the solution; the eigenener-
gies and transition matrix elements between the system’s eigen-
states. The key point is that all the information about the exact
nature of the system, whether multi-electron or not, whether
atomic or molecular, is contained in the values of the eigenen-
ergies and the matrix elements together with the required selec-
tion rules for the transitions. It is for this reason, that any TDSE,
atomic or molecular, can be formally re-expressed as a system
of ODEs that the present computational algorithm is especially
important, since it is designed to accept as input elements,ex-
actly the matrix elements of̂H which uniquely define coupling
between the system and field.

3.1. Atomic/molecular system in linearly polarized radiation
within the dipole approximation

Since we are interested in atomic or molecular targets under
EM fields one very important simplification can be achieved if
we assume a linearly polarized radiation field along some axis,
which without any loss of generality we may assume to be the
z−axis in a Cartesian coordinate system. This assumption is
used to determine the structure of the matrix involved in the
TDSE system of equation (7). Now, let us make the channel in-
dexγ more specific; whereγ represents a solution of the hamil-
tonian operator. The total angular momentum quantum number,
given byL̂ with it’s component along the z-axiŝLz and the to-
tal spin given byŜ and it’s component along thez−axis Ŝ z.
Thus, we writeγ as: γ = (ELS MLMS ). This is the so-called
LS representation of the atomic states which is well suited to
light atoms. Let us assume that the system starts from the state
Φ0 = |E0, L0, S 0, ML0 , MS 0〉. It is well established, through the
Wignet-Eckhart theorem [32], that in the dipole approximation
for the coupling of the radiation field the non-vanishing ele-
ments are between these states with the same total spin and the
same magnetic angular and spin quantum numbers. Thus we
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Figure 2: The banded structure of the Hamiltonian is shown.
This structure holds if we assume we have a linearly polarized
field which interacts with an atomic or molecular target in the
dipole approximation. The sub and super diagonal blocks con-
tain NlxNl transition elements. The diagonal blocks are them-
selves diagonal with the field-free eigenvalues for eachL in the
diagonal.

have for the dipole transition matrix elements:

Dγ,γ′ = 〈Eγ, Lγ, S γMLγ MS γ
|D̂|Eγ′ , Lγ′ , S γ′MLγ′ MS γ′

〉

= Dγ,γ′δLγ ,Lγ′±1δS γ,S γ′
δML ,MLγ′

δMS ,MSγ′
(8)

Therefore we get a structure for the matrix representation of
H(t), which is based on very general terms, as shown in Fig-
ure 2. In this figure we represent the case where the maxi-
mum total angular quantum number that was considered was
four (Lγmax = 4). The sub and super diagonal blocks contain the
dipole transition elements between states havingLγ andLγ ± 1.
The diagonal blocks are themselves diagonal with the field-free
eigenvalues for eachLγ. This banded structure is very general
and it can be shown that this can also describe the interaction of
radiation fields with molecular targets as well. For examplein
the case of diatomic molecules and in the fixed nuclei approx-
imation the set of quantum operators required to describe the
interaction with linearly polarized fields along the interatomic
axis are the hamiltonian operator, the projections of the angu-
lar quantum number along the interatomic axis (Λ) and the spin
quantum number alongside its projection along the interatomic
axis. In other words theγ channel should be represented as
γ = |EΛ, S , S z〉.

4. The OpenCL GPU computational framework

Ordinary differential equations of any order can be repre-
sented as a system of coupled first-order differential equations.
The algorithms described in the present section solve this generic
problem for a system ofN equations:

Ċ(t) = M (t)C(t), (9)

whereC(t) is the vector containing theN unknown complex
coefficients andM (t) = −iH(t), whereH(t) is aN×N symmetric
matrix. At this point, it is worth noting that although the specific
discussion is for the case of TDSE calculations, the framework
can easily be applied to ordinary differential equations of the
kind shown in Equation (9).

Essentially the derivative is calculated through efficiently
implementing the following matrix-vector multiplication:

−i[Ed + D(t)]C

Due to the neighbouringLγ states being coupled (Figure
2), we have a nearest-neighbour computational problem for the
calculation of the matrix-vector operation. We can expressthe
right hand side of Equation (7) in terms of eigenstate coeffi-
cients for blocks of angular momentaCLγ (t):

Ĥ(t)C(t) =
∑

Lγ

[

Ed
Lγ

CLγ + DLγ−1,Lγ (t)CLγ−1 + DLγ+1,Lγ (t)CLγ+1

]

,

whereEd
Lγ

is a diagonal matrix containing the field-free eigen-
values of the eigenstates of the angular momenta blockLγ and
DLγ−1,Lγ andDLγ+1,Lγ are matrices that contain the dipole matrix
elements that couple the states from theLγ−1 andLγ+1 eigen-
states to theLγ eigenstates respectively. The coupling terms are
time dependent.

Since we calculate the derivative by a matrix vector calcu-
lation, the Taylor series and Runge-Kutta based methods are
limited by the performance of this computation.

For the Taylor series propagator the number of synchroniza-
tion points is equal to the order of the problem. For a Runge-
Kutta propagator, without specific optimizations such as those
required for the Dormand-Prince algorithm, the number of syn-
chronization points is equal to the number of stages plus one.
The number of stages in a Runge-Kutta algorithm is greater
than the order for methods with more than 4 stages.

Having many synchronization points per order has two ma-
jor negative effects. It increases the coding complexity since
the calling of the different kernel functions has to be accounted
for and it also decreases the ability for optimizations to beim-
plemented since breaks in the execution stiffle latency hiding
attempts.

With the explicit Runge-Kutta methods three distinct ker-
nels are required;

1. A kernel to perform the vector sum before the derivative
calculation as shown in Equation B.4

2. A kernel to perform the derivative calculation in Equation
B.4

3. A final kernel to sum all the derivatives in Equation B.3

The Taylor series, on the other hand, requires only one ker-
nel which performs both the derivative calculation and the ad-
dition to the solution. Since no optimizations have been imple-
mented at present it is expected that both methods should have
the same execution time if the same number of derivatives are
being calculated by performing matrix vector calculations.
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4.1. Algorithm for Splitting up Generic Work

An algorithm is necessary that splits up a workload ofNWork

units into a specific number of units given byNWorker. A worker
can be a work item or a work group. We get the start position
for a specific worker:

Remainder← NWork (mod NWorker)
Div←NWork /NWorker

S tart ← Div ∗ IDWorker

if IDWorker ≤ Remainder then
S tart ← S tart + IDWorker

else
S tart ← S tart + Remainder

end if
Now a check is performed to make sure a worker has not

been assigned a value that is out of range of the available work.
If this over-assignment has occured the amount of work is ad-
justed for the worker.

if IDWorker < Remainder then
i← 1

else
i← 0

end if
Div← MIN(NWork − S tart,Div + i)
End = S tart +WorkPerWorker

This stops workers accessing unallocated memory and also stops
workers from performing duplicate calculations. If an exact
number of workers is chosen so that the division is assured to
be correct then this is unnecessary.

Splitting up Work Groups Amongst Blocks of Work. A block of
work is treated as a series of tasks that involve identical instruc-
tions being executed but with different data. Due to occupancy
issues it may not be ideal to assign a full block of work to one
work group. The following algorithm was created to perform
this split up calculation:

if NGroups < NWorkB then
IDGroupB ← 0
NGroupB ← 1
Call main algorithm in section 4.1

else
NGroupB ← NGroups/NWorkB

IDGroupB ← IDGroup (mod NGroupB )
S tart ← IDGroup/NGroupB

End ← MIN(S tart + 1,NWorkB)
end if

WhereNGroups is the number of work groups available,IDGroup

is the ID of a particular work group andNWorkB is the amount
of blocks of work to split up. After the algorithm has finished
each work group will be associated with a particular block of
work which is denoted by an IDIDGroupB . The number of work
groups in the block is given byNGroupB .

The call to the main algorithm is done whereNGroups be-
comesNWorker, IDGroup becomesIDWorker and NWork is still
used as the amount of work.

Splitting up a Block to Work Items. For dividing up a block of
work which we gave a Block Id ofIDGroupB to, amongst work
items in a few work groupsNGroupB , firstly we must split the
work available between the work groups, so the following is
done:

TotalWork← NGroup ∗ NGroupB

IDGroupB ← IDLocal + NGroup ∗ IDBlock

Call main algorithm in section 4.1

Here we assign a particular IDIDGroupB to each work group
within the Block of work with IDIDBlock. Now we can call the
main algorithm to divide the section of the block assigned to
each work group to the individual work items.

5. Application to the case of atomic hydrogen in a laser field

In this case theγ channel index is replaced from the en-
ergy, the angular momentum and its component along the field
polarization axis. We ignore the spin operators and thus we
have for the eigenstates of atomic hydrogenγ = (ǫlml), where
ǫ the energy eigenvalue andl the angular momentum quan-
tum number. The continuum is discretized and together with
the discrete bound states [33]. Then, the eigenstate basis of
the field free hydrogen hamiltonian is the partial wave basis
Φγ(r ) = 〈r | γ〉 = 1

r Pǫγlγ (r)YlγmLγ
(r̂) whereYlml (r̂) are the spher-

ical harmonics.

Ψ(r , t) =
∑

γ

Cγ(t)Φγ(r ).

The eigenstates of atomic hydrogen are coupled to each other
by a strong pulsed laser. This laser field couples states that
differ in angular momentum by 1 unit while the magnetic quan-
tum number was set to zero (see Figure 2). We set the magnetic
quantum number to zero because we assume that the initial state
was the ground state of hydrogen wherel = 0 and therefore
ml = 0 and sinceml is constant we do not need to take it into
account. There are 649 eigenstates associated with each angu-
lar momentumL in the basis that is used for the computations in
this paper. Nine of these eigenstates are boundary states ofthe
B-Spline basis used which are fixed at 0; a total of 640 states
then are explicitly represented in the calculations for each an-
gular momentum. The population of the continua represent the
level of ionization after the laser field has passed.

The EM field was modelled by a sine squared pulse, linearly
polarized along thez−axis:

E(t) = ẑE0sin2(
ω

2n
t)sin(ωt) (10)

whereω is the photon frequency andn is the number of cy-
cles per pulse. The propagation was performed in the veloc-
ity gauge where the dipole operator is expressed asDv = −p ·
A(t)/c. For the velocity gauge a five point gaussian quadra-
ture integrates the E field to give the vector potentialA(t) =
−
∫ t

t0
dt′E(t′) at each time step. The integration was found to

perform as expected by comparing it to an analytical expression
for a sine squared pulse with a particular photon frequency.The
method works equally well for length gauge calculations where
the electric fieldE(t) gives the time dependence.
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The present GPU implementation of the Taylor and Runge-
Kutta propagators (see appendix) was used for calculationsin
the case of atomic hydrogen. The accuracy and precision of the
propagators was verified by comparing the photoelectron spec-
trum (PES) of the system to a known working propagator. The
propagator is based on a NAG Runge-Kutta based solver. Since
above threshold ionization (ATI) has occurred the photoelectron
spectrum is distinct.

In terms of the particular OpenCL implementation the split-
ting of a block to work groups was made where the number of
blocks of workNWorkB mentioned in section 4.1 corresponds to
the number of angular momentaLtot when we are using the ba-
sis representation.IDGroupB is the ID for a particular angular
momentaL.

For division of the work initially the algorithm in section 4.1
is called. This will assignNGroupB work groups to each angu-
lar momentum block of coefficientsCL. Following this, a call is
necessary to divide the individual coefficents inCL amongst dif-
ferent work items. This is done through a call to the algorithm
defined in section 4.1. A choice of number of work groups and
work group sizes was made such that for every coefficient there
would be one corresponding work item.

In the benchmarks shown the matrix was treated as a very
large one-dimensional array. Each diagonal matrix blockED

L
was passed followed by the related superdiagonal dipole ele-
ment blockDL in row major form. In this form the superdiag-
onal blocks were transferred to the GPU but the subdiagonal
blocks were not represented. Since the matrix is Hamiltonian
the subdiagonal block is not necessary. An implementation was
also made where both subdiagonal and superdiagonal blocks
were present although the runtime was longer.

5.1. Benchmarking Results

Since OpenCL allows for both GPU and CPU execution we
have benchmarked GPU execution on an AMD FirePro v7800,
a single GPU on a NVIDIA Tesla S1070 Computing System
node and a dual core Intel Xeon.

In comparing the Taylor propagator a specific step size and
order was chosen so that for every computation it can be guar-
anteed that the propagator will maintain unitarity. The step size
chosen does not represent the optimal choice and so should not
be used in comparison to other methods. What is of interest is
how the method scales as the work size is linearly increased.
Since the method is nearest neighbour the computational over-
heard for the simulation also rises linearly. Any deviations from
this linearity would be due to the limitations in the hardware or
algorithms used.

By chosing to benchmark along the number of angular mo-
menta in the basis set, the computational cost of the problem
can be increased linearly by increasing the number of angular
momenta. The computational cost is linear as the matrix vector
calculation is, in this particular application, a nearest neighbour
problem. The size of the Hamiltonian in terms of number of
double precision elements is (Nl + N2

l )l whereNl is the num-
ber of pairs of double precision elements required to represent
the coefficients for each angular momenta. For example, for

Figure 3: Shown is a sample PES of simulations with 20 eV
photons with a pulse of intensity 1× 1014Wcm−2 of the three
propagators that were compared. A high agreement is seen be-
tween the classic RK4 and the Taylor propagators. The Runge-
Kutta-Fehlberg is markedly different from the other two meth-
ods which mostly overlap.

the case ofNl = 640 andl = 0, ..., 20 then the hamiltonian
has 8615040 double precision values which require an array of
about 65 MB.

An approximate comparison between the Taylor propaga-
tor and the Runge-Kutta method was made by comparing a
10th order Taylor propagator to a classic 4th order Runge-Kutta
propagator and the 4th (5th) order Embedded pair Runge-Kutta-
Felhberg (RKF) method. The 5th order solution was chosen
from the RKF method. It has been noted in the literature that
high order Taylor propagators with large step sizes performbet-
ter than lower order Taylor propagators with smaller time steps
[34]. As a result of this a 10th order Taylor propagator was
chosen. So we can compare like with like the step size of the
Taylor propagator was altered so that an equal number of ma-
trix vector calculations would be performed. Similarly, the 5th
order solution from the RKF method was also performed with
an adjusted time step.

As can be seen from Figure 4 there was no major discrep-
ancy in the runtime of the Taylor and Classic RK4 propagators
but there was a major discrepancy with the RKF 4(5) propa-
gator which we attribute to it being an embedded pair method.
The RKF 4(5) propagator, of which we use the 5th order solu-
tion, also consistently deviates in the photoelectron spectrum,
an example of which is seen in Figure 3. All three methods did
contain the expected structure within the PES, but the RKF 4
(5) method deviates in the expected intensities. By comparing
the unitarity of the solution of the methods a lower bound on
the error can be obtained. The Taylor propagator kept unitarity
to a level of 1.9 × 10−14, while the classic RK4 method kept
unitarity to 2.3×10−11 and the RKF 4(5) method deviated from
unitarity by 2.5× 10−11. Step sizes for each method were cho-
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Figure 4: A graph of the performance of a 10th order Taylor, 4th
order Classic RK4 and 5th Order Runge-Kutta-Fehlberg propa-
gators with time steps of 6.25×10−3, 2.5×10−3 and 3.75×10−3

respectively. The time steps were chosen so that the same num-
ber of matrix vector calculations would be performed in all
cases. Since the Fehlberg method is a multi-order method it
requires slightly more computations and so does not scale as
well as step-size control is not implemented.

sen so that an identical number of matrix vector calculations
would be performed. The performance figures should not be
used to decide on the choice of method, rather it is used here
to demonstrate that the number of matrix vector calculations,
which corresponds to the number of kernels queued, appears
to be the primary factor for deciding the runtime speed of the
algorithms.

It can be seen from Figure 5 that for the NVIDIA GPU, 192
work items gives the greatest reduction in runtime whilst for the
AMD GPU, 64 work items gives the best performance in these
circumstances. The AMD GPU has a highly linear increase in
run time as expected from a consistent use of the computational
resources.

When the GPU results are compared to the serial CPU re-
sults a clear trend is seen (Figure 6). The GPU based simula-
tions using OpenCL scale better than the CPUs; The runtime
within the region shown in the figure for the particular pulse
described, wherex is the number of double precision elements
in the vector of coefficients, is:

tINT EL (x) = 0.14x − 170

tAMD(x) = 0.0032x + 14

tNVIDIA(x) = 0.010x + 9.3

The CPU timing must break down for smaller situations but
this is unimportant since the number of explicit states is 640
this means the smallest possible vector of coefficients is 2560
elements.

Figure 7 indicates the general trend which can be extrap-
olated from the above equations: the speedup for the AMD
device tends towards a 40 times speedup whilst the NVIDIA
device tends towards a 14 times speedup as the problem size

Figure 5: A graph of the performance of an AMD v7800 in
comparison to one GPU compute device in the Tesla S1070 for
a tenth order Taylor propagator. Shown is the effects of sev-
eral different configurations of work items in each work group;
the work group size is shown in brackets. The optimal num-
ber of work items per work group is architecture dependent. 64
was optimal for the AMD GPU but for the NVIDIA GPU 192
work items per work group was optimal. A step size of 0.005
was chosen. The number of equations indicates the number of
real equations, that is every complex equation consists of 2real
equations.

Figure 6: The runtime in seconds of the best performing
NVIDIA and AMD configurations from Figure 5 with an In-
tel Xeon.

increases. If, in what is most likely an overly optimistic sce-
nario, one took the CPU scaling to be linear with the number
of cores this would still provide a speedup of the GPU of an or-
der of magnitude in comparison to a multi-core system which,
incidentally, would be more expensive to purchase. With the
V7800 card the relationship would terminate at a matrix which
can fit into an array of size 256 MB because the largest single
block of memory allocatable on the device is 256 MB.
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Figure 7: AMD V7800 and NVIDIA T10 GPU speedups in
comparison to the runtime on a single core of an Intel Xeon
CPU. The speedup factor here is the ratio of runtimestCPU

tGPU
.

5.2. Optimization approaches

Although no optimization has been performed, this repre-
sents a future line of work when the need for further runtime
reductions becomes an issue. Aligning memory accesses is the
first step in any optimization. It makes certain that memory
accesses occur on word aligned boundaries. This is achieved
by ensuring that each row of the Hamiltonian and each angular
momenta block of the vectorC(t) are aligned.

If a large cache is available on the GPU then prefetching can
be enhanced by explicit cache functions available in OpenCL.
Alternatively compute unit memory can be utilized. Compute
unit memory accesses have a much lower latency than global
memory access by approximately an order of magnitude. Using
compute unit memory also means that there will be less demand
on the memory controllers.

On AMD for example, multiple accesses to a specific mem-
ory controller are serialized when there is a conflict. Atomic
operations should be avoided if possible on the AMD architec-
ture as a single atomic operation can dramatically reduce all
other memory operations. Unrolling loops can also help the
compiler take advantage of the memory access structure but it
also increases register use [35].

Another direction to improve the present implementation
is the use of more sophisticated propagation algorithms than
the Taylor and the Runge-Kutta. An important candidate, wor-
thy of consideration, should be the Arnoldi/Lanczos algorithm.
Whilst other theoretical studies have remarked that the Taylor
propagator is both simple and reliable [34] they argue that it
is slower than the Lanczos propagator, mainly due to smaller
timesteps which the Taylor propagator requires [36, 16]. An
optimized Taylor propagator should lend itself towards thecon-
struction of the Krylov subspace for a Lanczos propagator since

the matrix vector operations represent the most significantcom-
putational bottleneck in the method.

6. Conclusions

A vast number of problems can be formulated in terms of
a system of first-order ODEs. For propagators in which matrix
vector calculations represent a significant bottleneck, signifi-
cant runtime reductions can be achieved by the use of GPUs
through the OpenCL language. A number of strategies for op-
timization exist in OpenCL which we discussed briefly for our
particular case. Optimizing the existing code will requirefur-
ther work for an expected further order of magnitude improve-
ment in runtime scalability. It also goes without saying that,
with improvements in compilers and hardware, future trends
should be for fine-tuning optimizations to be performed by so-
phisticated compilers and hidden behind generic functions.
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Appendix A. OpenCL compute devices tested

AMD FirePro V7800. The AMD FirePro V7800 is a PCI-e
x16 connected graphics card [37] with 288 processing cores.
Each core consists of four arithmetic logic units (ALU) and a
transcendental unit which are fed instructions through a Very
Long Instruction Word (VLIW). The ALUs can be thought in
OpenCL terms as a processing element. For double precision
the transcendental unit is not used and the remaining four are
grouped into two double precision execution units, thus there
are two double precision processing elements per processing
core. This means that for practical purposes 576 double preci-
sion instructions can be executed simultaneously. For floating
point calculations 1152 instructions can be executed. The pro-
cessing cores are grouped into compute units. Obviously the
actual number of instructions executed in a cycle is dependent
on the form of the workload. A compute unit (a SIMD proces-
sor) consists of 16 of the processing cores; as a result thereare
18 compute units. 1 Gigabyte of global memory is available as
well as 32KB of memory per compute unit. Each processing
element has access to a pool of registers (256KB per compute
unit). Global memory is accessed with GDDR5. The core clock
is 700 MHz.

NVIDIA Tesla S1070 Computing Systems. The NVIDIA Tesla
S1070 computing system consists of multiple Tesla T10 GPUs
which are based on the GeForceGTX 200 GPU [38]. Each GPU
contains 240 scalar processing cores and 4GB of memory [39].
Currently a single GPU is targeted.
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Intel Xeon. The IntelR© XeonR© W3503 [40] used is a 64 bit
dual core CPU with a clock speed of 2.4 GHz, a 4 MB cache
and with support for DDR3 memory with a 25.6 GB/s memory
bandwidth.

Appendix B. The Taylor and Runge-Kutta time propaga-
tors

The Truncated Taylor Series Propagator. Within this single-
step algorithm the forwarded solution is obtained as:

C(t + dt) =
∑

n=0

dtn

n!
C(n)(t), (B.1)

whereC(n)(t) is then−th derivative ofC(t) at timet. A recursive
expression for the requiredn-th derivatives of the coefficient
vector can be retrieved by successive integrations of Equation
(4) as:

C(n)(t) =
−i
n

H(t)C(n)(t) (B.2)

where the zero derivative is equal toC(t). To arrive at this
expression one shall assume the time derivative of the Hamil-
tonian itself, within the forwarded time intervaldt, is much
smaller than the rate of change of the coefficients. Particularly
for the present problem, this latter assumption is an excellent
approximation, provided that the chosen time stepdt is much
smaller the field’s period 2π/ω, in other words,dt << 2π/ω. It
can be shown that this expression does indeed give an approxi-
mate form of the unitary operator. In practical calculations, the
above expression consists of a Taylor series truncated to some
order N, which in combination with the time stepdt sets the
order of accuracy of the solution. Finally, from this expression,
after calculation of the derivatives of the coefficient at a known
time t, they are combined together in a summation in order to
then calculate the wavefunction at a later timet + dt according
to Equation B.1. The calculation for each step consists ofN
matrix-vector multiplications andN vector additions onto the
solution of the system a step later.

Explicit Runge-Kutta Methods. Runge-Kutta methods have been
some of the most widely used methods for solving ordinary dif-
ferential Equations [41]. Runge-Kutta methods use information
from several steps to approximate a Taylor expansion [42, pg
906]. The class of explicit Runge-Kutta methods is expressed
in the form [43]:

C(t + dt) = C(t) + dt
S
∑

i=1

biC(i) (B.3)

C(i) = f

















t + cidt,C(t) + dt
i−1
∑

j=1

ai jC( j)

















(B.4)

wheref () represents the derivative ofC.
A number of Runge-Kutta methods exist such as the classic

fourth order Runge-Kutta method and the 4th(5th) order em-
bedded pair Fehlberg method[44]. In the Runge-Kutta-Fehlberg

method 4th and 5th order steps are calculated using the same
derivative calculation information; the difference between the
two methods gives an indication of the local error size.
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