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Issues and Challenges in Orbital-free Density Functional Calculations
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Solving the Euler equation which corresponds to the energy minimum of a density functional
expressed in orbital-free form involves related but distinct computational challenges. One is the
choice between all-electron and pseudo-potential calculations and, if the latter, construction of the
pseudo-potential. Another is the stability, speed, and accuracy of solution algorithms. Underlying
both is the fundamental issue of satisfactory quality of the approximate functionals (kinetic energy
and exchange-correlation). We address both computational issues and illustrate them by some
comparative performance testing of our recently developed modified-conjoint generalized gradient
approximation kinetic energy functionals. Comparisons are given for atoms, diatomic molecules,
and some simple solids.

PACS numbers:

I. INTRODUCTION

Investigation of orbital-free density functional theory
(OF-DFT)1–12, including development of approximate
orbital-free kinetic energy (OFKE) functionals, has at
least two motivations. One is simply the beguiling no-
tion of direct realization of the content of the Hohenberg-
Kohn theorem13–17. The other is practical, namely
the possibility of eliminating the computational bottle-
neck of solving the Kohn-Sham (KS) eigenvalue equa-
tions, thereby dramatically broadening the applicability
of Born-Oppenheimer molecular dynamics run with DFT
electronic energies. The practical aspect is the main fo-
cus of the present work.
In OF-DFT, the total electronic energy of an Ne elec-

tron system is a functional of the electron density n(r)

EOF-DFT[n] = Ts[n] + ENe[n] + EH[n]

+Exc[n] + ENN, (1)

where Ts[n] is the KS (non-interacting) kinetic energy
functional given explicitly as a density functional, ENe[n]
is the nuclear-electron interaction energy, EH[n] is the
Hartree energy (classical electron-electron repulsion),
Exc[n] is the exchange-correlation (XC) energy func-
tional, and ENN is the inter-nuclear repulsion energy.
Minimization of the functional Eq. (1) gives a single Eu-
ler equation to be solved,

δTs[n]

δn(r)
+ vKS([n]; r) = µ . (2)

Here vKS is the Kohn-Sham potential, δ(ENe + EH +
Exc)/δn and µ is the chemical potential. The ordinary
KS equation has the same potential but requires solu-
tion for Ne or Ne/2 orbitals (in the all-electron, spin-
polarized and non-spin-polarized cases respectively). So-
lution of the ordinary KS problem scales computationally
as ≈ N3

e in general, whereas solution of Eq. (2) should
scale approximately linearly.

Practical implementation of OF-DFT requires approx-
imation of both Ts[n] and Exc[n]. Simply because of their
relative magnitudes, the quality of an OF-DFT calcula-
tion is dominated by the quality of the approximate Ts.
There are two distinct classes of approximation in the
literature, one-point functionals,

Ts[n] =

∫

ts([n]; r)d
3
r (3)

and two-point functionals

Ts[n] =

∫

f1,s([n]; r)χ(r, r
′)f2,s([n]; r

′)d3rd3r′ . (4)

Here f1,s and f2,s are weighting functionals and χ(r, r′)
is a type of response function. For reasons of compu-
tational efficiency as well as conceptual simplicity (two-
point functionals take the development out of the frame-
work of an effective Kohn-Sham equation (see Eq. (8)
below) unless an optimized effective potential18 is used,
itself an extra complication), we (and our collaborators)
have focused exclusively on one-point functionals and do
so here as well.
An interesting feature of the literature on developing

approximate OFKE functionals, including our contribu-
tions with collaborators, is that there are more tests of
approximate functionals using inputs from other sources
(e.g. conventional KS calculations, Hartree-Fock calcu-
lations, etc.) than tests by solving the Euler equation,
Eq. (2). A side effect is that comparatively little is known
about the difficulty of solving that equation with approxi-
mations other than of the Thomas-Fermi kind (see below)
and about the relative effectiveness of various solution
techniques.
To frame that issue and the calculations reported here,

it is useful to decompose the non-interacting KE func-
tional into the von Weizsäcker contribution19 plus a non-
negative remainder, the Pauli term20–23,

Ts[n] = TW[n] + Tθ[n], Tθ[n] ≥ 0 . (5)

http://arxiv.org/abs/1109.6602v2
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The von Weizsäcker functional (in Hartree atomic units)
is

TW[n] =
1

8

∫ |∇n(r)|2
n(r)

d3r ≡
∫

tW([n]; r)d3r . (6)

It is exact for one electron and for a two-electron singlet.
From

δTW[n]

δn(r)
=

1
√

n(r)
(−1

2
∇2)

√

n(r) , (7)

the Euler equation Eq. (1) takes a Schrödinger-like
form23–25

{

−1

2
∇2 + vθ([n]; r) + vKS([n]; r)

}

√

n(r) = µ
√

n(r) .

(8)
Observe that, unlike familiar quantum mechanical eigen-
value problems, the “orbital” in Eq. (8) is normalized to
Ne, not unity. Here vθ is the Pauli potential,

vθ([n]; r) =
δTθ[n]

δn(r)

vθ([n]; r) ≥0 . (9)

Non-negativity of Tθ and vθ has proved to be an
important pair of constraints for OFKE functional
development9–11.
Eq. (8) resembles the ordinary KS equation, a fact

that has led to contradictory statements about solution
techniques. On the one hand, Ref. 24 declares that Eq.
(8) “. . . can be solved iteratively to self-consistency by
any Kohn-Sham computer program: just select the low-
est eigenvalue. The solution is very simple and quick,
for there is only one ‘orbital’ . . . ”. Ref. 26 makes
precisely the contrary claim, at least in the context
of the widely used Gaussian-type orbital (GTO) basis
sets. Those authors expanded

√
n in a GTO basis with

coefficients ci, with respect to which they minimized
L := EOF-DFT[n] − µNe. They state that “Due to the
highly nonquadratic nature of the kinetic energy, the op-
timization of L is a nontrivial problem. The iterative
self-consistent procedure used in Kohn-Sham calculations
does not work, and we require more robust minimization
techniques. Moreover, . . . first derivative methods such
as conjugate gradient minimization and quasi-Newton
search perform poorly, requiring many hundreds of it-
erations to achieve convergence.” A related discussion
and references to the few earlier papers on the issue is at
p. 135 of Ref. 14. This is one of the issues addressed in
the present study.

II. APPROXIMATE KINETIC ENERGY

FUNCTIONALS

To set the stage for another technical issue, we consider
types of approximate one-point OFKE functionals next.

For work on minimization involving two-point function-
als, see Refs. 31, 32 and references therein.

A. Thomas-Fermi Type

Diverse approximate OFKE functionals can be written
in the generic form

Ts[n] =TW[n] + λTTF[n] + T∆[n]

0 ≤ λ ≤ 1 . (10)

The simplest local approximation for the KE is the
Thomas-Fermi (TF)33,34 functional

TTF[n] ≡
∫

tTF([n]; r) d
3
r = c0

∫

n5/3(r) d3r

c0 = 3
10
(3π2)2/3 (11)

alone. The approximation T∆ = 0 and λ = 1 is widely
used in many OF-DFT applications (see Ref. 2 for discus-
sion and references) despite its known deficiencies35. A
related form, commonly called Thomas-Fermi-Dirac-von
Weizsäcker theory, is a linear combination of TTF with
some fraction of TW,

TTFvW,α = αTW + TTF ; 0 ≤ α ≤ 1 (12)

along with the local Dirac exchange functional. Early re-
ports of special self-consistent OF-DFT calculations men-
tioned above were for this model26,36,37.
As an aside, there is an extensive literature of ef-

forts to determine an optimal value of α in Eq. (12).
Since the Pauli term decomposition, Eq. (5), provides
both an exact lower bound on Ts and leads to the den-
sity Schrödinger equation, Eq. (8), that decomposition,
and its elaboration Eq. (10), seems preferable to using
TTFvW,α and attempting to optimize α. But because
TTFvW,α is prevalent in the literature, we consider the
numerical issues associated with it as well.

B. Generalized Gradient Approximation KE

Functionals

Generalized gradient approximations (GGA) are best
known in DFT as improvements on the local approxima-
tion for Exc. For either Exc or Ts, a GGA is a truncation
of the corresponding gradient expansion which is altered
to meet relevant constraints and suppress unphysical be-
haviors. For the KE functional, a GGA can be written
as

TGGA
s [n] =

∫

tTF([n]; r)Ft(s(r))d
3
r , (13)

where Ft is the kinetic energy enhancement factor. It is
a function of the dimensionless reduced density gradient,

s ≡ |∇n|
(2kF )n

=
1

2(3π2)1/3
|∇n|
n4/3

. (14)
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Because tW = 5
3
s2tTF, the GGA Pauli term in Eq. (5) is

TGGA
θ [n] =

∫

tTF([n]; r)Fθ(s(r))d
3
r

Fθ(s) =Ft(s)−
5

3
s2 . (15)

Ref. 10 showed that the KS KE of a molecular sys-
tem is dominated by the behavior of Fθ over a relatively
small range of s. For much of that range, Figure 1 dis-
plays the Pauli enhancement factors for the functionals
TTFvW,α, with α = 1, 1/9 Eq. (12), the Tran-Wesolowski
GGA38 (PBE-TW), and the mcGGA functional (PBE2)
of Ref. 9. The latter two use the same enhancement fac-
tor form as the Perdew, Burke, and Ernzerhof (PBE)39

GGA X functional, Fx(s) = 1 + cs2/(1 + as2). In PBE-
TW Ft ∝ Fx,PBE with parameters fitted to reproduce
the kinetic energy of a small training set, an assumption
called conjointness. PBE2 is a “modified conjoint” GGA
(mcGGA) functional because the parameters in it were
constrained to satisfy Pauli-term non-negativity; see Ref.
10 for details.
Observe in Fig. 1 that the PBE-TW and TTFvW,α=1/9

Pauli enhancement factors are almost identical, espe-
cially for small s. There, both have negative slope
(with respect to s2) which causes violation of vθ non-
negativity10, recall Eq. (9). The common property of
the TTFvW,α=1 and PBE2 approximations is satisfac-
tion of that non-negativity constraint. The low slope
of the PBE2 enhancement factor at small values of s2,
FPBE2
θ (s) ≈ 1+0.3642s2, makes the enhancement factors

for TTFvW,α=1 and TPBE2 close for s < 1. This compari-
son suggests that the results obtained with the PBE-TW
KE functional should be close to those from TTFvW,α=1/9

and, similarly, the results from PBE2 should be close to
those from TTFvW,α=1.
A technical problem common to these GGAs is that

both vθ,PBE−TW and vθ,PBE2 are singular at nuclear sites,
the former negative, the latter positive. Numerical so-
lution of the Euler equation Eq. (2) must address this
problem, an issue to which we return below.

III. ALL-ELECTRON SOLUTIONS OF THE

OF-DFT EULER EQUATION

As in ordinary KS calculations, solution of Eq. (8) can
be either all-electron or via pseudo-potentials. In this
section, we consider all-electron solutions, by both GTO-
basis and numerical grid techniques and address pseudo-
potentials in the subsequent section.

A. Atoms

To test the notion that any standard KS code can
be used straightforwardly24, we modified the GTO-basis
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FIG. 1: Pauli term enhancement factors Fθ of OFKE func-
tionals as a function of s2. GGA denotes the Tran-Wesolowski
functional, mcGGA denotes the PBE2 functional. See text for
details.

code SOAtom to handle Tθ and vθ as in Eqs. (5), (8),
and (9). SOAtom, a part of the GTOFF suite40,41, solves
the KS equation in a Hermite Gaussian basis with ana-
lytical evaluation of all the matrix elements except for
those involving XC. Those are done on a radial grid.
We also modified the Laaksonen all-numerical diatomic
molecular code42 correspondingly. It is based on a pro-
late spheroidal grid.

Insofar as numerical stability is concerned, the results
are quite clear. Even for TTFvW,α=1 with simple Slater
exchange (i.e. TFvWD), the typical iterative SCF pro-
cedure is only marginally stable. The problem is worse
in the GTO basis than in the grid-based calculation, at
least in the specific sense that a simple SCF stabiliza-
tion procedure (Pratt, i.e. linear mixing of a fraction
of current iteration density and the rest from the preced-
ing iteration) fails completely for many OF-DFT calcula-
tions. Ordinary KS calculations on the same atoms with
the same simple stabilization scheme converge in a few
iterations.

The lithium and carbon atoms are examples. For Li in
a 9s GTO basis in the SOAtom code, the pure TF form
(Ts = TTF, i.e., Eq. (12) with α = 0), the Tθ = TTF

form (Eq. (10) with λ = 1, T∆ = 0), and the Tθ = λTTF

form (Eq. (10) with T∆ = 0) can be brought to numerical
convergence but the mcGGA form Tθ = TmcGGA − TvW

cannot. For the successes, more iterations by one to
two orders of magnitude are required than for conven-
tional KS and the numerical convergence is poor. One
can get to fractional total energy errors of 10−4 → 10−2

for lighter to heavier atoms respectively, but not much
better. The contrast with conventional KS atomic calcu-
lations is stark: in them convergence to 10−6 is trivial to
achieve.

Table I illustrates this point with comparison of nu-
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merical grid and GTO-basis results for Ts = TvW and
TvW+TTF with simple Slater exchange (Dirac exchange)
on H, Li, and Ne. (The GTO calculations are with 9s
basis sets for H and Li, 13s for Ne.) The two total ener-
gies for Li differ at the 1 mHartree scale. Notice that the
numerical-grid results match rather well with the values
from Ref. 26, which were calculated with a direct min-
imization scheme, not a modified KS code. Ironically,
a misbehavior of simple Slater exchange, namely that it
satisfies the virial theorem in the form Etot = −Ts (which
the exact Exc does not), in this case highlights the con-
vergence problem, especially in the GTO calculation.

Results for the carbon atom in the GTO basis, not
shown in the Table, are worse. The TTFvW,α=1/5 calcu-
lation with a 13s basis cannot be brought to SCF conver-
gence, even with tricks such as starting with full TW and
no TTF contribution, then slowly scaling down the former
while scaling up the latter. The corresponding standard
KS calculation converges trivially.

For the numerical-grid calculations, SCF convergence
is very slow compared to standard KS calculations, but
reasonable results can be obtained. Table II shows total
energies for the first row atoms obtained from numerical-
grid self-consistent OF-DFT calculations with various
OFKE approximations, again with Slater exchange. For
TFvWD and TTFvW,α=1/5,1/9, comparison with the di-
rect minimization of Ref. 26 (the first six columns of data)
confirms that our calculations succeeded.

Note that the total energies from the TF+vW and
mcGGA(PBE2) kinetic energy functionals are overesti-
mated (as a consequence of overestimation of the KS
KE). In contrast, all of the functionals with scaled von
Weizsäcker contributions underestimate the KS KE, so
that the resulting total energies are below the reference
KS values. Such behavior is characteristic of a failure of
N -representability in the KE functional43. Observe also
that TF+1/9vW and GGA(PBE-TW) total energies are
close to each other, though the functional forms differ.

Table III shows the effects of using the full LDA Exc, in
this case the VWN parameterization44. Unsurprisingly
but reassuringly, inclusion of the C functional shifts the
total energies downward without altering the trends.

These atomic results lead us to nuanced agreement
with the claim of Ref. 26 and disagreement with the claim
of Ref. 24. The OF-DFT Euler equation is not, in gen-
eral, solvable by simple modification of a standard GTO
KS code (the norm for molecular calculations). Even a
good all-numerical KS code is challenged to achieve so-
lutions but can be made to succeed for isolated atoms.
Realizing the computational speed-up potential of OF-
DFT clearly depends on algorithms and implementations
well-suited for OF-DFT, even for one-point functionals.

B. Diatomic Molecules

Numerical-grid solution of Eq. (8) for diatomic
molecules, if possible, would yield two kinds of insight:
numerical method behavior and the comparative behav-
ior of n(r) and vθ(r) for different OFKE approximations.
Though the difficulties of using a modified KS code are
just as evident in this case, we have been able to achieve
solutions for several light molecules.

Numerical requirements include extremely tight con-
vergence tolerances on the eigenvalue µ and normaliza-
tion (10−3 more stringent than normal KS calculations),
much larger maximum distance cutoff (80 to 100 a.u.
vs. normal KS 30 to 40 a.u.), and about a factor of five
more points in both of the prolate spheroidal coordinates
(roughly 1100 × 1300 points vs. the typical 200 × 300).
Even so, the total energy convergence is mediocre for
GGA and mcGGA functionals, about 0.01 Hartree at
best. Convergence is better for the TTFvW,α function-
als, between 0.1 and 1 mHartree. This need for extreme
measures to achieve limited-quality outcomes is an ad-
ditional confirmation of the unsuitability of unmodified
conventional KS schemes for solutions of the OF-DFT
Euler equation.

The solutions nevertheless provide real compar-
ative insight regarding different OFKE approxima-
tions. Figure 2 compares the all-electron KS density
(Exc,LDA, VWN) around the Si site in SiO with the
densities from TGGA,PBE−TW (the Tran-Wesolowski38

GGA), TmcGGA,PBE2 (the PBE2 mcGGA9), and
TTFvW,α=1/9,1. These approximate functionals form
pairs. TGGA,PBE−TW pairs with TTFvW,α=1/9, while
TTFvW,α=1 pairs with TmcGGA,PBE2. This pairing con-
forms to the expectations formed in considering the
small-s behavior of the respective enhancement factors.
The pairing also is interpretable directly from the near-
nucleus repulsion or attraction behavior of the vari-
ous approximations. TGGA,PBE−TW generates a vθ with
a spurious negative singularity near the nuclei, while
TTFvW,α=1/9 drastically lowers the von Weizsäcker lower
bound to Ts. Both lead to excess near-nucleus density. In
contrast, vθ,mcGGA,PBE2 has spurious positive nuclear site
singularities10. Near the nuclei, however, vθ,mcGGA,PBE2

and vθ,TFvW,α=1 match quite well, as shown in Fig. 3.
The result, shown in Fig. 2, is that these two functionals
give rather close to the same density. Observe that the
behavior of vθ in the vicinity of the nucleus for each of
these approximate functionals differs dramatically from
that of vθ obtained by inversion of the standard KS
scheme. It is that improper behavior which we believe
causes the problems with convergence of standard KS
codes used with approximate OFKE functionals. The
positive near-nuclei singularities appear, in particular, to
pose numerical problems.

Details of the density near the Si site are provided
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TABLE I: All-numerical and GTO results for the atoms H, Li, and Ne for the TTFvW,α=0,1 models with simple Slater exchange.
Energies in Hartree a.u.

Ts = TW Numer. Ts = TW GTO Ts = TW + TTF Numer. Ts = TW + TTF GTO Ts = TW + TTF
a

H Atom
Etot -0.406534 -0.400737 -0.261827 -0.259969 -0.2618
Ts 0.406534 0.859699 0.261827 0.262042 —
Tθ 0.000 0.000 0.091034 0.090221 —
µ -0.1943 -0.1764 -0.0715 -0.0696 -0.071

Li Atom
Etot -8.525825 -8.523413 -4.105425 -4.096347 -4.1054
Ts 8.525825 8.523126 4.105425 4.103660 —
Tθ 0.000 0.000 2.019249 2.009622 —
µ -0.9575 -0.9526 -0.1306 -0.0.1365 -0.131

Ne Atom
Etot -274.68080 -274.652253 -85.734451 -85.730041 -85.7343
Ts 274.68080 274.664688 85.734438 85.728273 —
Tθ 0.000 0.000 54.352106 54.347495 —
µ -7.0607 -7.0594 -0.1807 -0.1806 -0.181

aFrom Ref. 26

TABLE II: Self-consistent atomic total energies obtained from various OFKE functionals (Hartree a.u.) and simple Slater
exchange.

1/9 vW+TFa 1/9 vW+TF 1/5 vW+TFa 1/5 vW+TF vW+TFa vW+TF GGA (PBE-TW) mcGGA (PBE2) KSb

H -0.6664 -0.6664 -0.5666 -0.5666 -0.2618 -0.2618 -0.71 -0.32 -0.4065
He -3.2228 -3.2228 -2.8184 -2.8184 -1.4775 -1.4775 -3.4 -1.5 -2.7236
Li -8.2515 -8.2515 -7.3227 -7.3227 -4.1054 -4.1054 -8.6 -4.1 -7.1749
Be -16.1631 -16.1631 -14.4841 -14.4841 -8.4922 -8.4922 -16.7 -8.4 -14.2233
B -27.2876 -27.2876 -24.6284 -24.6284 -14.9258 -14.9259 -28.0 -14.6 -24.5275
C -41.9052 -41.9053 -38.0332 -38.0332 -23.6568 -23.6569 -42.9 -23.0 -37.6863
N -60.2622 -60.2623 -54.9428 -54.9429 -34.9084 -34.9084 -61.6 -33.9 -54.3977
O -82.5798 -82.5799 -75.5765 -75.5765 -48.8831 -48.8832 -84.3 -47.3 -74.8076
F -109.0592 -109.0594 -100.1345 100.1346 -65.7674 -65.7676 -111.1 -63.5 -99.4072
Ne -139.8865 -139.8867 -128.8014 -128.8016 -85.7343 -85.7344 -142.3 -82.7 -127.4907

aFrom Ref. 26.
bSpin-restricted LDA (Slater exchange) calculation.

in Fig. 4. For purposes of display, the densities are
weighted by a quasi-radial factor with origin at the Si
site, 4π(|z| − R/2)2. The proper KS shell structure is
missing, as is usual with single-point OFKE functionals.
The more repulsive nature of the pair TmcGGA,PBE2 and
TTFvW,α=1 compared to TGGA,PBE−TW and TTFvW,α=1/9

also is evident. It is interesting that in the region
−2.5 < z < 2.0 TmcGGA,PBE2 does give a weak mimicry
of the outermost shell structure in Ts, unlike the other
models. We are uncertain as to how reliable or useful
this feature is.

Fig. 5 compares the behavior of EOF−DFT[n] as a func-
tion of SiO bond length with standard KS results. One
sees immediately that the GGA and mcGGA forms intro-
duce numerical difficulties because of their dependence
on the reduced density gradient s, Eq. (14). Clearly
there is a grid interval-size problem which could be obvi-

ated by going to even denser grids but at obvious com-
putational cost. The known failure of TGGA,PBE−TW to
give binding9 is evident. ETFvW,α=1/9 apparently does
not bind either, in keeping with the too-weakened lower
bound just discussed. Full TFvWD and EmcGGA,PBE2

are fairly close, with the mcGGA being the best of the
lot with respect to equilibrium bond length.

C. Simple Analysis of the Difficulty

The barrier to use of a standard KS code to solve Eq.
(8) can be traced to the near-nucleus repulsion of vθ. As
displayed in Fig. 3, the exact vθ is strongly repulsive in a
fairly small region around the nuclear site. Ref. 10, Fig.
2 shows that the exact vθ can have rather sharp struc-
ture within a radius of about 1 bohr of a nuclear site.
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TABLE III: OF-DFT self-consistent atomic total energies (Hartree a.u.) obtained from various kinetic energy functionals and
VWN Exc,LDA with the numerical grid KS code.

1/9 vW+TF 1/5 vW+TF vW+TF GGA (PBE-TW) mcGGA (PBE2) KSa

H -0.7101 -0.6084 -0.2924 -0.76 -0.36 -0.4457
He -3.3244 -2.9175 -1.5590 -3.5 -1.6 -2.8348
Li -8.4175 -7.4860 -4.2469 -8.7 -4.2 -7.3352
Be -16.3982 -14.7162 -8.6995 -16.9 -8.5 -14.4472
B -27.5953 -24.9329 -15.2033 -28.4 -14.8 -24.3436
C -42.2886 -38.4132 -24.0078 -43.3 -23.4 -37.4202
N -60.7237 -55.4007 -35.3357 -62.1 -34.3 -54.0250
O -83.1215 -76.1146 -49.3893 -84.8 -47.8 -74.4613
F -109.6832 -100.7547 -66.3545 -111.7 -64.1 -99.0960
Ne -140.5945 -129.5054 -86.4042 -143.1 -83.4 -128.2335

aSpin-restricted LDA calculation.
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FIG. 2: All-electron self-consistent Kohn-Sham and OF-DFT
electron densities plotted along the SiO molecule internuclear
axis in the vicinity of the Si site. Si at (0,0,-1.05) Å, O out of
the picture at (0,0,+1.05) Å. See text.
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FIG. 3: Pauli potentials vθ around the Si site in SiO from self-
consistent all-electron Kohn-Sham and OF-DFT calculations
with the PBE2 mcGGA, TWGGA, and TTFvW,α=1/9,1 OFKE
functionals.
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FIG. 4: All-electron self-consistent Kohn-Sham and OF-DFT
electron densities near the Si site along the SiO molecular
axis. These are scaled scaled by the factor 4π(|z| − R/2)2,
with R = 2.10 Å, the internuclear distance. This puts the
origin of the scaling at the Si site (0,0,-1.05) Å. The O is out
of the picture at (0,0,+1.05) Å.

In contrast, some simple approximations which are prop-
erly positive definite, including our mcGGA, actually are
singular at the nuclei; again see Fig. 3. Such strong re-
pulsion overwhelms the attractive vxc. That figure also
shows that some approximations deliver Pauli potentials
with negative nuclear-site singularities. We consider that
case below. First, however, the simplest example will suf-
fice to illustrate the problem with properly positive vθ.
Pick Tθ = TTF, Eq. (11), and Exc to be simplest Slater
exchange:

Exc =cx

∫

n4/3(r)d3r

cx =− 3

4

(

3

π

)1/3

(16)
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FIG. 5: Total energy of the SiO molecule as a function of
bond length obtained from self-consistent all-electron Kohn-
Sham and OF-DFT calculations with Thomas-Fermi, Tran-
Wesolowski (GGA) and PBE2 (mcGGA) kinetic energy func-
tionals. Kohn-Sham values are shown for comparison. Val-
ues are shifted to a common zero by 363.076 (KS), 386.339
(TF+vW/9), 250.529 (TF+vW), 83.902 (GGA) and 241.564
(mcGGA) Hartree a.u.

Then in Eq. (8), the potentials become

vθ = 1
2
(3π2)2/3n2/3(r)

vKS =vH + vNe + vxc

vxc =−
(

3

π

)1/3

n1/3(r)

(17)

A hydrogen-like density,

nH(r) :=
N4

e

π
exp(−2Ner) , (18)

obeys the Kato cusp condition near the nucleus16,27–30,
hence is useful for testing. At the nucleus, this density
yields the ratio of potentials

vxc(0) + vθ(0)

|vxc(0)|
= −1 + 3.318004N4/3

e . (19)

For Ne = 6, this ratio is already 35.2. By Ne = 10 it is
70.5. Additional simple calculations with the potential
which appears in Eq. (8) without the positive Hartree
contribution, that is vNe(r)+vθ(r)+vxc(r), illustrate the
point. At small r with Ne = 6, that potential becomes
positive for r > 0.028 Bohr. For Ne = 10 it is positive
for r > 0.011 Bohr. These little exercises illustrate why
the use of an ordinary K-S code becomes so difficult.
Such peculiar behavior is quite different from what is
encountered in the ordinary KS problem.
From the perspective of numerical stability, the case

of a vθ which has a spurious negative singularity near

each nuclear site, e.g. PBE-TW, is at least as bad if
not worse. As a site is approached, such potentials first
are increasingly repulsive, then plunge abruptly into the
negative singularity; see Fig. 3.

IV. PSEUDO-POTENTIAL SOLUTIONS OF

THE OF-DFT EULER EQUATION

Having demonstrated the difficulties with solving the
OF-DFT Euler-Lagrange problem with a modified KS
eigenvalue code, we turn to the use of direct Euler-
Lagrange minimization. The specific objective is to
exploit the numerical methodology in the Profess

code31,32. Written originally for use with two-point func-
tionals, Profess performs OF-DFT calculations by min-
imization of the Euler-Lagrange equation as a functional
of n(r) under periodic boundary conditions. It uses a
numerical 3D mesh and FFTs. As published, the code
includes the TF, vW, and TFvW, α functionals as well
as the Wang-Teter (WT)45, and Wang-Govind-Carter
(WGC)46 OFKE functionals. The PZ and PBE Exc func-
tionals are implemented in Profess. For this study,
we added the Tran-Wesolowski GGA38 and our PBE2
mcGGA9 OFKE functionals.
As is the case with standard KS calculations done in a

plane-wave basis, Profess relies upon pseudo-potential
(PP) techniques to screen the nuclear-electron potential
cusp and exclude chemically inactive core states. Though
OF-DFT has no problem with core states and the density
(and its square root) is a comparatively unstructured,
smooth function, regularization of the nuclear-electron
interaction singularity still is a requisite for an efficient
implementation.
High-quality pseudo-potentials developed for conven-

tional KS calculations generally are non-local, in the spe-
cific sense that they contain projection operators which
provide different potentials for different orbital angular
momenta. That explicit orbital dependence makes non-
local pseudo-potentials (NLPP) inapplicable in OF-DFT
calculations. Instead, local pseudo-potentials (LPP), i.e.,
of the form of a simple multiplicative operator which is
the same for all orbitals, must be developed. Profess

requires a LPP in real or reciprocal space as input. Ob-
serve that this limitation to local form is an additional
approximation, over and beyond the PP itself, which has
accuracy limitation implications for both conventional,
orbital-based KS or OF-DFT implementations.
In addition to their simplicity, there is a formal ad-

vantage of LPPs which is at least of peripheral interest
here. Calculations with local PPs are within the frame-
work of the standard KS scheme, which assumes a local
effective potential. The NLPP case obviously does not
meet that assumption. Although the Hohenberg-Kohn
theorem has been extended to the case of a non-local
external potential47, the exchange-correlation energy in
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that case becomes be a functional of the one-particle re-
duced density matrix instead of a functional n(r) alone.
Many methods have been proposed to develop LPPs.

Among them we mention (i) empirical (or model) LPPs
as, for example in Refs. 48–52; (ii) local potentials ob-
tained from non-local ones, for example, by use of just
one l-channel from an NLPP as a LPP (for example,
Ref. 53; (iii) LPPs constrained to reproduce atomic prop-
erties, eigenvalues, or pseudo-density, etc., which follow
from a (presumably superior) NLPP (for example, Ref.
54), and finally (iv) local PPs derived to reproduce some
bulk property values, either experimental or those pre-
dicted by NLPP calculations54–56

A. Local Pseudo-potentials for OF-DFT

Calculations

1. Development

Some time ago, an iterative procedure was
developed57,58 to solve the inverse problem of de-
termining the KS effective potential vKS(r) from a given
density n(r). Subsequently, we59 introduced and tested
an improvement. In the case of Li, however, both ver-
sions share a problem. For a single valence orbital (singly
or doubly occupied) the solution of the inverse problem
is trivial and known. The local pseudo-potential is
equal to the s-channel of the NLPP, vlocal(r) = vl=0(r).
Hence the LPP contains no information about the l > 0
channels of the NLPP. Those channels are critical in
crystalline binding.
Therefore, to include information about all l channels

of the reference NLPP, we consider a sort of normalized
linear combination of l components of that NLPP,

vlmax
(r) =

lmax
∑

l=0

clvl(r)
/

lmax
∑

l=0

cl (20)

where the parameters {cl} are to be adjusted to fit se-
lected equilibrium bulk material properties calculated
with the reference KS method. This particular method
of LPP generation amounts to a mixture of methods (ii)
and (iv) described at the outset of this Section.
In the present case, we simply took the bcc Li lattice

constant as predicted by a standard KS calculation with
PBE39 Exc, and the plane wave (PW) basis set (see Table
IV), namely a = 3.44 Å. Components of the Troullier-
Martins norm-conserving NLPP were used in Eq. (20).
For generation of the NLPP with PBE XC, we took the
core radius to be 2.45 a.u. The parameters {cl} in Eq.
(20), for the s, p, and d channels respectively, were deter-
mined by constraining a KS calculation with the LPP Eq.
(20) to reproduce the reference optimized bcc Li lattice
constant value. Those KS calculations done with PBE
XC in the Siesta code62 and a DZP numerical atomic

orbital (NAO) basis set. The optimized parameter val-
ues are c0 = 0.69, c1 = 0.34, c2 = 0.10. We designate
this LPP as vGGA,spd1. To generate the LDA local LPP,
vLDA,spd1 for the Perdew-Zunger63 LDA XC functional,
components of the LDA NLPP and the same set of the
channel-mixing parameters were used in Eq. (20).
An alternative LPP form which we also studied is

a modification of the potential proposed by Heine and
Abarenkov49,51. In real space, the Heine-Abarenkov
model potential is

vmod(r) =

{

−A, r < rc
−Z/r, r ≥ rc

(21)

where A is a constant, rc is the core radius, and Z is the
core charge. The model potential in reciprocal space is
given by

vmod(q) =
−4π

Ωq2
[(Z−Arc)cos(qrc)+(A/q)sin(qrc)], (22)

where Ω is the unit cell volume. In Ref. 51, this
potential was multiplied by a smoothed step function
f(q) = exp[−q/qc)

6] to reduce spurious oscillations in
vmod(q) and to ensure rapid decay of vmod(q) at large
wave-vectors. Those oscillations are caused by the dis-
continuity of the real-space potential at the core radius.
Here, the parameter qc was chosen as suggested in Ref.
51, namely, to equal the second zero position of vmod(q).
To obtain counterparts of the local potentials

vGGA,spd1 and vLDA,spd1, Eq. (21) in the simple mod-
ified Heine-Abarenkov model form, the two parame-
ters, A and rc, were determined by minimization of
∫

dr|vspd1(r) − vmod1(r)|2. This yields A = 0.45499
Hartrees, rc = 2.2261 Bohr, gc = 2.86 Bohr−1 for
vGGA,mod1 and A = 0.45376 Hartrees, rc = 1.8818 Bohr,
gc = 2.94 Bohr−1 for vLDA,mod1. The local potentials
vGGA,spd1 and vLDA,spd1 in reciprocal space are multi-
plied by the same smoothed step function f(q) with qc
values equal to 2.95 and 3.25 Bohr−1 respectively.
Figure 6 shows the vGGA,spd1 LPP in real space in

comparison with the NLPP l channels, along with the
two pseudo-densities which result. Figure 7 shows the
vGGA,spd1 and vGGA,mod1 LPPs in reciprocal space.

2. KS Tests of Local Pseudo-potentials

Kohn-Sham calculations with the LPPs were per-
formed using the Abinit PW code64 with PZ and PBE
exchange-correlation functionals. We also used Siesta

with the same exchange-correlation functionals and a
2s22p2 numerical atomic orbital basis set (8 NAO per
atom). Table IV shows the equilibrium lattice constants
and bulk moduli for the various LPPs. Those results are
compared to the Kohn-Sham calculations performed with
the non-local projector augmented wave (PAW) scheme
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FIG. 7: Reciprocal space local pseudo-potentials for Li:
vGGA,spd1 and vGGA,mod1.

(as implemented in Vasp and Abinit) and TM norm-
conserving pseudo-potentials with core correction65. The
lattice constant and bulk modulus reported in Table IV
were obtained by fitting the calculated total energies
per cell to the stabilized jellium model equation of state
(SJEOS,66). All the local PPs reproduce the PAW results
rather closely for both lattice constant and bulk modu-
lus. The bulk moduli calculated using NAO orbitals and
norm conserving TM pseudo-potentials are slightly larger
than the PAW plane wave results.

As a check against an all-electron localized-orbital cal-
culation, we did high-quality GTO-basis KS calculations
(10s6p3d basis) with the GTOFF code41. For Exc,PZ and
Exc,PBE, we obtained optimized bcc Li lattice parameters
of 3.360 and 3.435 Å, respectively, essentially the same as
from the Siesta NAO and plane wave PAW calculations.

TABLE IV: Kohn-Sham lattice constant (Å) and bulk mod-
ulus (GPa) for bcc Li calculated using Vasp PW PAW
schemes, Abinit PW PAW and local pseudo-potentials,
Siesta non-local Troullier-Martins65 and local pseudo-
potentials. Orbital-free calculations used TmcGGA,PBE2,
TTFvW,α=1, TGGA,PBE−TW, and TTFvW,α=1/9 kinetic energy
functionals in combination with Exc,LDA,PZ and Exc,GGA,PBE

with local pseudo-potentials vLDA,spd1, vGGA,spd1, vLDA,mod1

and vGGA,mod1. Conventional KS calculations were done with
a 2-atom unit cell and 7 × 7 × 7 (Vasp and Siesta) or 9 ×
9 × 9 (Abinit) k-mesh. The Siesta basis set was 2s22p2 (8
NAO per atom). Orbital-free calculations used a 128-atom
supercell.

LDA GGA
Method PP a B a B

Kohn-Sham
PW (Vasp) PAW 3.37 15.0 3.45 13.7
PW (Abinit) PAW 3.37 15.1 3.44 13.9
NAO (Siesta) TM 3.37 15.6 3.44 14.3

Kohn-Sham
PW (Abinit) spd1a 3.37 14.8 3.44 13.8
NAO (Siesta) spd1a 3.38 14.9 3.45 13.9

Kohn-Sham
PW (Abinit) mod1b 3.37 14.8 3.44 13.9

NAO (Siesta) mod1b 3.38 14.9 3.44 13.9

OFDFT
mcGGA spd1c 3.37 16.2 3.43 15.4
TF+vW spd1c 3.37 16.0 3.43 15.2
GGA spd1c 3.37 11.8 3.46 11.8
TF+1/9vW spd1c 3.37 11.4 3.46 11.4

OFDFT

mcGGA mod1d 3.36 16.2 3.43 15.2

TF+vW mod1d 3.37 15.9 3.43 14.9
GGA mod1d 3.42 10.8 3.49 10.1

TF+1/9vW mod1d 3.42 10.3 3.49 9.5

aReal space potential defined by Eq. (20) (see text for details).
bReal space potential defined by Eq. (21) (see text for details).
cReciprocal space potential defined by Fourier-Bessel transform

of local potential Eq. (20) and multiplied by f(q) function (see
text for details).
dReciprocal space potential defined by Eq. (22) multiplied by f(q)

function (see text for details).

B. Pseudo-potential OF-DFT Tests

1. OF-DFT Comparison for bcc Li

For the OF-DFT bcc Li studies, we used a 128-atom
supercell in Profess with the vspd1, vmod1 LPPs just
described and both Exc,LDA and Exc,GGA. We did
the Profess calculations for the TTF, TTFvW,α=1,1/9,
TGGA,PBE−TW, and TmcGGA,PBE2 functionals. The com-
puted Etot/atom values are plotted as a function of bcc
lattice constant in Fig. 8.

One sees that, as might be expected, the pure TF+XC
model fails to bind. The pairing of other functionals,
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FIG. 8: Energy per atom vs. lattice constant for bulk
bcc Li. OF-DFT results for TTF, TTFvW,α, TGGA,PBE−TW,
and TmcGGA,PBE2 compared to the KS values. OF-DFT
calculations with 128-atom supercell, vGGA,mod1 LPP, and
Exc,GGA,PBE. KS calculations 2-atom unit cell with non-
local PAW PBE pseudo-potentials (Vasp) and with Troullier-
Martin PPs with PBE exchange-correlation, 2s22p2 basis set
(8 NAO per atom) (Siesta).

which we have discussed already, reappears. TTFvW,α=1

pairs with TmcGGA,PBE2, and TTFvW,α=1/9 pairs with
TGGA,PBE−TW. The former pair gives a better descrip-
tion of both the lattice constant and bulk modulus than
the latter pair. The computed equilibrium lattice con-
stants and bulk moduli are shown in Table IV.

The equilibrium lattice constants predicted by the OF-
DFT calculations with vspd1 LPPs agree well with the KS
PAW results. When the vmod1 model pseudo-potential
is used, the lattice constant from the OF-DFT calcula-
tions with TGGA,PBE−TW and TTFvW,α=1,1/9 is an over-
estimate of about 1 % for both LDA and GGA XC func-
tionals. This pair of OFKE functionals also predicts low
bulk modulus values, again for both LDA and GGA XC
cases. The mcGGA and TF+vW KE functionals do very
well for the lattice parameter and slightly overestimate
the bulk modulus value.

2. OF-DFT Comparison for fcc Al

The utility of existing LPPs for OFDFT calculations
obviously is a pertinent issue. To explore that, we con-
sidered bulk Al. The model LPP in the form of Eq.
(22) with parameters from Goodwin, Needs, and Heine51

was used in OF-DFT calculations. As before, this was
done with the five OF-KE functionals, but here only in
combination with the PBE GGA XC functional. Fig. 9
shows Profess results for a 4-atom fcc cell compared
with conventional KS results obtained with Vasp in the
same cell with a 5 × 5 × 5 k-mesh calculation. The
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FIG. 9: As in Fig. 8 for bulk Al but with a 4-atom super-
cell. Siesta calculations performed with standard DZP basis
set. The Goodwin, Needs, and Heine51 local model pseudo-
potential used in the orbital-free calculations. See text.

GGA and mcGGA KE functionals introduce numerical
instability at expanded geometry. Aside from that, one
again observes the same pairing of KE functionals as be-
fore. The TGGA,PBE−TW and TTFvW,α=1/9 functionals
do not produce detectable minima. The TmcGGA,PBE2

and TTFvW,α=1 pair predict equilibrium lattice constants
(a = 4.05 and 4.06 Å correspondingly), very close to the
KS results (a = 4.05 and 4.09 Å for PAW Vasp and
NAO DZP Siesta calculations respectively). However,
the shape of the two OF-DFT energy curves differs per-
ceptibly from the KS results. In particular, the OF-DFT
functionals predict a softer solid.

V. SUMMARY DISCUSSION

Several clear results emerge from this study. First, use
of standard KS codes to solve the OF-DFT Euler equa-
tion as a modified KS eigenvalue problem is problematic
at best. At least for the all-electron case, it seems im-
plausible as a productive route to routine OF-DFT calcu-
lations. One could speculate that a better-behaved one-
point approximate OFKE functional than mcGGA might
not be such a challenge to standard KS algorithms. The
repulsive nature of even the exact vθ (recall Fig. 3) makes
that outcome seem rather doubtful.

Second, even if a particular approximate one-point
OFKE functional has singular behavior, it is possible
that such a functional can deliver physically realistic re-
sults. Those results can be obtained with a sufficiently
refined direct Euler-Lagrange solution of the effective KS
equation, Eq. (2). Thus, we are able to extract use-
ful, self-consistent solutions for the recently developed
simple mcGGA OFKE functional as well as the Tran-
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Wesolowski GGA. These solutions enable understanding
of the consequence of the singular behavior of their re-
spective Pauli potentials. The Tran-Wesolowsk GGA has
attractive singularities which cause strong over-estimates
of the self-consistent density near the nuclear sites. In
contrast, the properly positive mcGGA OFKE Pauli po-
tential has positive singularities near the nuclei and the
density is underestimated there.
Third, we have presented a procedure for developing

a local pseudo-potential for OFDFT calculations by do-
ing a multi-channel weighting of a corresponding non-
local pseudo-potential. The weighting is determined by
KS calculations with the LPP such that the equilibrium
non-LPP lattice parameter is reproduced. We showed
that this yields a very good LPP. A remaining challenge
for the OFDFT agenda is to construct a good LPP from
an existing non-LPP without appeal to any bulk or ag-

gregate system KS calculations.

Fourth, once a suitable local pseudo-potential proce-
dure is defined, the progress made on computational so-
lution of the minimization problem for two-point OFKE
approximations can be appropriated directly for use with
one-point OFKE approximations. Even so, we do ob-
serve numerical instabilities in the case of the mcGGA
and GGA OFKE functionals.
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4 D. Garćıa-Aldea and J.E. Alvarellos, Phys. Rev. A 77,
022502 (2008); J. Chem. Phys. 127, 144109 (2007) and
references in both.

5 J. P. Perdew and L.A. Constantin, Phys. Rev. B 75, 155109
(2007).

6 C.J. Garcia-Cervera, Commun. Computat. Phys. 3, 968
(2008).

7 L.M. Ghiringhelli and L. Delle Site, Phys. Rev. B 77,
073104 (2008)

8 W. Eek and S. Nordholm, Theoret. Chem. Accounts 115,
266 (2006).

9 V.V. Karasiev, S.B. Trickey, and F.E. Harris, J. Comp.-
Aided Mater. Des. 13, 111 (2006).

10 V.V. Karasiev, R.S. Jones, S.B. Trickey, and Frank E. Har-
ris, Phys. Rev. B 80, 245120 (2009).

11 S.B. Trickey, V.V. Karasiev, and R.S. Jones, Int. J. Quan-
tum Chem. 109, 2943 (2009).

12 C. Huang and E.A. Carter, Phys. Rev. B 81, 045206 [15
pp] (2010).

13 P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
14 R.G. Parr and W. Yang, Density Functional Theory of

Atoms and Molecules (Oxford, New York, 1989).
15 R.M. Dreizler and E.K.U. Gross, Density Functional The-

ory (Springer-Verlag, Berlin, 1990).
16 E.S. Kryachko and E.V. Ludeña, Energy Density Func-

tional Theory of Many-Electron Systems (Kluwer, Dor-
drecht, 1990).

17 H. Eschrig, The Fundamentals of Density Functional The-

ory (Teubner, Stuttgart, 1996)
18 J.D. Talman and W.F. Shadwick, Phys. Rev. A 14, 36

(1976); O. Gritsenko, R. van Leeuwen, E. van Lenthe, and
E.J. Baerends, Phys. Rev. A 51, 1944 (1995); S. Ivanov,
S. Hirata, and R.J. Bartlett, Phys. Rev. Lett. 83, 5455
(1999); A. Görling, ibid. 83, 5459 (1999).
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