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Abstract

A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level
densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation
of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron
formalism is used. We have applied the method for calculating the level densities for a set of nuclei in thesd-,
p f -, andp f + g9/2 - model spaces. Examples of the calculations for28Si (in the sd-model space) and64Ge (in the
p f + g9/2-model space) are presented. To illustrate the power of the method we estimate the ground state energy of
64Ge in the larger model spacep f + g9/2, which is not accessible to direct shell model diagonalization due to the
prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the
smaller model spacep f .
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1. Introduction

The nuclear reaction theory requires exact knowledge
of nuclear level densities. In the majority of cases, espe-
cially those important for reactions at stellar conditions,
experimental information on the excited nuclear states
is not sufficient and the calculations are typically using
the estimates based on the Hauser-Feshbach approach
[1], where the level density for specific quantum num-
bersJπ of nuclear spin and parity is a necessary ingredi-
ent. The reaction rates can be very sensitive to the level
density, especially in the Gamow window of excitation
energies around the particle threshold [2, 3].

The theory of the nuclear level density has a long
history starting with the combinatorial calculation by
Bethe [4] that leads to the the back-shifted Fermi gas
approximation [5, 6] that was improved over the years.
The modern approaches going essentially in the same
direction [7-9] use, instead of the Fermi-gas, an inde-
pendent particle model in a mean field. It is understood
that many-body correlations may significantly change
the resulting level density, in particular moving down
certain families of vibrational and rotational states. At
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the same time, pure collective models used on top of
the single-particle excitations may suffer from double
counting and have to be cut off in some way.

The many-body correlations are fully accounted for
by the exact diagonalization of the shell-model Hamil-
tonian. Here the problems come from the prohibitively
large dimensions that makes necessary to truncate the
orbital space, a step not always well controlled. Alter-
natively, one can use Monte-Carlo techniques [10-15],
or other methods of statistical spectroscopy [16, 17].
Most of these methods [2,10-12,18,19] calculate the to-
tal density of statesand later use a spin-weight factor
that includes an energy-dependent cut-off parameter to
extract the level density for specific quantum numbers
of spin, parity and isospin. Although there are recent ef-
forts to improve the accuracy of such parameterizations
[19], it was shown that the cut-off parameter has very
large fluctuations at low excitation energy [20]. The par-
ity is usually taken as equally distributed, although there
are attempts [13, 21] to model the effect of the uneven
parity-dependence of the level densities at excitation en-
ergies of interest for nuclear astrophysics.

Recently, we developed a consistent approach [20,22-
25] to calculate the spin- and parity-dependent shell-
model level density. The new effective interactions
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for the appropriate model spaces are developed starting
with the G-matrix [26] and fixing the monopole terms
or/and linear combinations of two-body matrix elements
to experimental data. Extending the efficient methods of
statistical spectroscopy [27, 28] we exactly calculate the
first and second moments of the Hamiltonian for differ-
ent configurations at fixed spin and parity. As a practical
tool we use the exact decomposition of many-body con-
figurational space into classes corresponding to different
parity and number of harmonic oscillator excitations.
An accurate estimate of the shell-model ground state en-
ergy is required being generally as time consuming as
the previous steps. This stage can be improved by using
the exponential convergence method suggested and ap-
plied in Refs. [29, 30, 31], or/and the recently developed
projected configuration interaction method [32, 33]. In
reverse, some knowledge about the level density can be
helpful for extracting the ground state energy.

The code described in this paper is based on nuclear
statistical spectroscopy [28]. It allows one to calcu-
late the spin- and parity-projected moments of the nu-
clear shell-model Hamiltonian, which can be further
used for an accurate description of the level density up
to about 15 MeV excitation energy. It can be also ap-
plied to other mesoscopic systems, such as interacting
cold atoms in harmonic oscillator traps. The code is
parallelized using the Message Passing Interface (MPI)
[34] and a master-slaves dynamical load-balancing ap-
proach. The parallel code was thoroughly tested on
the massively parallel computers at NERSC [35], and it
shows very good scaling when using up to 4000 cores.

The paper is organized as follows. In Sec. II the
method of fixed spin- and parity-dependent configura-
tion moments is revisited. The method allows to trace
such quantum numbers as parity and angular momen-
tum explicitly. The extension of the algorithm to the
proton-neutron formalism is discussed in Sec. III. In
Sec. IV we introduce the structure of the program and
supply the examples of input files. Examples of calcu-
lations are presented and compared to exact shell model
results in Sec. V. Section VI is devoted to conclusions.

2. Theory outline

In this work we closely follow the approach proposed
in Ref [25] (see also Refs. [22, 23]). For clarity we
repeat here the main ideas and equations we are going
to use for calculating the level density.

According to the method of moments one can cal-
culate the densityρ(E, α) of levels with a given set of
quantum numbers as a function of excitation energyE

as a sum

ρ(E, α) =
∑

κ

Dακ ·Gακ(E), (1)

whereα = {n, J, Tz, π} includes all quantum numbers of
interest, namely the number of particlesn (protons and
neutrons), total spinJ, isospin projectionTz, and par-
ity π. The subscriptκ represents a configuration ofn
particles distributed overq spherical single-particle or-
bitals. Each configurationκ is fixed by a set of occupa-
tion numbers,κ = {κ1, κ2, ... , κq},whereκ j is the number
of particles occupying the spherical single-particle level
j. The configuration has a certain number of particles,
total isospin projection, and parity. The sum in Eq. (1)
runs over all possible configurations corresponding to
given values ofn, Tz, andπ. The dimensionDακ equals
the number of correctly antisymmetrized many-fermion
states with givenJ that can be built for a given config-
urationκ. The functionGακ is a finite-range Gaussian
defined as in [22]:

Gακ(E) = G(E + Eg.s. − Eακ, σακ), (2)

G(x, σ) = N ·

{

exp
(

−x2/2σ2
)

, |x| ≤ η · σ
0 , |x| > η · σ

, (3)

whereEακ andσακ are the fixed-J centroids and widths,
which will be defined later,Eg.s. is the ground state en-
ergy, η is the cut-off parameter, andN is the normal-
ization factor corresponding to the following condition:
∫ +∞

−∞
G(x, σ)dx = 1.

A very important ingredient of the method is the ac-
curate knowledge of the ground state energyEg.s.. It
is also necessary to find an optimal value of the cut-off

parameterη, see the discussion in [25].
Assuming a two-body shell-model Hamiltonian,

H =
∑

i

ǫia
†

i ai +
1
4

∑

i jkl

Vi jkla
†

i a†jalak, (4)

we have to calculate traces of the first and second power
of this Hamiltonian, Tr[H] and Tr[H2], for each config-
urationκ which will determine the fixed-J centroids and
widths in Eq. (2):

Eακ = 〈H〉ακ , (5)

σακ =

√

〈

H2
〉

ακ − 〈H〉
2
ακ, (6)

where

〈H〉ακ = Tr(ακ)[H]/Dακ, (7)
〈

H2
〉

ακ
= Tr(ακ)[H2]/Dακ. (8)

If the many-body states|ν, J〉 with a certain set of quan-
tum numbersα ≡ {ν, J}, including spinJ, form a com-
plete set for the configurationκ, the symbol of trace,
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Figure 1: Speedup is defined asT1/Tn, whereTn is the calculation
time, whenn processors were used. These calculations were per-
formed on the FRANKLIN supercomputer at the National EnergyRe-
search Scientific Computing Center (NERSC) [35].

Tr(ακ)[· · ·], means the sum of all diagonal matrix ele-
ments,

∑

〈ν, J| · · · |ν, J〉, within this subspace. Techni-
cally, it is more convenient to derive these traces in a ba-
sis with a fixed spin projection|ν,Mz〉, Tr(Mz)[· · ·], rather
than in the basis with fixed total spin|ν, J〉, Tr(J)[· · ·].
J-traces can be easily expressed through theMz-traces,
given the rotational symmetry of the Hamiltonian,

Tr(J)[· · ·] = Tr(Mz)[· · ·]
∣

∣

∣

∣

Mz=J

− Tr(Mz)[· · ·]
∣

∣

∣

∣

Mz=J+1

. (9)

For simplicity, in Eq. (9) we omitted all quantum num-
bers, except the projectionMz and the total spinJ.

Hereafter we use the labelα to denote a set of quan-
tum numbers that includes either the fixedMz or the
fixed J, keeping in mind that Eq. (9) can always con-
nect them. In every important case we will point out
which set of quantum numbers is used. Following the
approach of [36], we can obtain the following expres-
sions for the traces in Eqs. (7) and (8):

Tr(ακ)[H] =
∑

i

ǫiD
[i]
ακ +
∑

i< j

Vi ji jD
[i j]
ακ , (10)

Tr(ακ)[H2] =
∑

i

ǫ2i D[i]
ακ +

+
∑

i< j

















2ǫiǫ j + 2(ǫi + ǫ j)Vi ji j +
∑

q<l

V2
i jql

















D[i j]
ακ +

+
∑

(i<l),l

















∑

q

(

2VliiqVl j jq − V2
i jql

)

+ 2ǫlVi ji j

















D[i jl]
ακ +

+
∑

(i< j),(q<l)

[

V2
i jql + Vi ji jVqlql − 4VqiilVq j jl

]

D[i jql]
ακ , (11)

wherei, j, l, andq are single-particle states with certain
spin projections and possible occupation numbers equal
0 or 1.

Notice that the single-particle orbitals we have used
to define the configurations in Eq. (1) can host all par-
ticles with all possible spin projections corresponding
to spin of the orbital. The dimension factorD[i]

ακ =

Tr(ακ)[a†i ai] can be interpreted as a number of many-
body states, possible for the configurationκ, with the
fixed projectionMz (if we considerMz-traces) and un-
der the condition that the single-particle statei is occu-
pied:

D[i j]
ακ = Tr(ακ)[a†i a†ja jai],

D[i jq]
ακ = Tr(ακ)[a†i a†ja

†
qaqa jai], ... (12)

TheseD-structures were calledpropagation functionsin
[36]. For completeness, we repeat here the recipe used
for calculating them. One can show [36] that

D[r1r2···rs]
ακ =

∑

s≤t≤n

(−1)t−s
∑

t1+···+ts=t

Dα′κ′ , (13)

where allti are non-negative integers, the configuration
κ′ = {κ′1, κ

′
2, ... , κ

′
q} can be derived from the original con-

figuration κ = {κ1, κ2, ... , κq} by removingt particles
from the single-particle statesr1, r2, · · · rs. A formal ex-
pression for the new configurationκ′ can be written as
follows:

κ′j = κ j −
∑

i (ri∈ j)

ti, (14)

where the sum includes only those values ofi for which
the corresponding single-particle stateri belongs to the
single-particle levelj. We also assume that all the oc-
cupation numbersκ′j must be positive, which imposes
certain restrictions on the possible values of the ampli-
tudesti. For every new configurationκ′ one can easily
define new quantum numbers,α′ = {n′M′zT

′
zπ
′}, enter-

ing Eq. (13). Examples are the new number of particles
n′ = n − t and the new spin projection,

M′z = Mz − t1mr1 − t2mr2 − · · · − tsmrs , (15)

wheremri is theMz projection of the single-particle state
ri. The new isospinT ′z and parityπ′ are defined simi-
larly.

3. The algorithm for the method of moments in the
proton-neutron formalism

Here we describe some technical features of the algo-
rithm developed for the calculation of the nuclear level
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density. We treat protons and neutrons separately, so
that the basis of many-body wave functions is repre-
sented by a product of proton and neutron parts:

|ν,Mz〉 = |νp,M
(p)
z 〉 · |νn,M

(n)
z 〉, (16)

whereM(p)
z + M(n)

z = Mz. The wave functions (16) have
the fixed isospin projectionTz, but do not have a certain
isospinT . As we already mentioned, it is more con-
venient to use the basis of the wave functions with the
fixed spin projectionMz, rather than the one with the
fixed spinJ.

One could gain essential advantages from such a sep-
aration of the basis. One of them is related to the num-
ber of configurations that appear in the sum of Eq. (1).
Naturally, the number of configurations with fixedTz

is much greater than the number of configurations with
fixed isospin. This allows the use of many-cores com-
puters with greater efficiency. In other words, the cal-
culation of the sum in Eq. (1) with a larger number of
configurations can be more efficiently distributed over
a larger number of processors. Fig. 1 presents the
speedup (calculation speed gain) as a function of the
number of used processors. One can see that the case
with the larger number of configurations,68Se, scales
better than the case with the lower number of configu-
rations,64Ge. Up to 2000 cores, the speedup is almost
perfect (the dotted line presents an ideal speedup). At
this point the calculation time is about 1-2 minutes and
further improvement is hardly achievable.

Another significant advantage of the proton-neutron
formalism is the new algorithm of calculating the di-
mensionsDακ, D[i]

ακ, D[i j]
ακ , etc. Because of the proton-

neutron separation one can calculate all proton and neu-
tron dimensions separately. Later, the dimensions we
are interested in can be easily constructed from the pro-
ton and neutron parts using the convolution,

DMzκ =
∑

M(p)
z +M(n)

z =Mz

DM(p)
z κp
· DM(n)

z κn
, (17)

where, instead of the whole set of quantum numbers
α, only the spin projectionMz was explicitly indicated.
Hereκp andκn are the proton and neutron parts of the
configurationκ. Eq. (17) can be easily applied to all
types of dimensions,D[···]

α... , needed in the formalism of
section II. The advantage comes from the fact that one
can calculate and keep in memory all proton and neutron
dimensions,DM(p)

z κp
andDM(n)

z κn
, for all possible projec-

tions M(p)
z andM(n)

z , and for all possible configurations
κp andκn. Afterwards, using Eqs. (17) and (13), one can
calculate very fast all the dimensions:Dακ, D[i]

ακ, D[i j]
ακ ,

etc... , for allMz andJ.

One more technical detail, which allows a signifi-
cant speed up of the algorithm, is that by using the
proton-neutron separation one can avoid multiple com-
putations of the most time consuming structures, such
asD[i jql]

ακ . Let us consider a case when all four single-
particle states{i jql} are protons. One can then use an
equation similar to Eq. (17),

D[i jql]
Mzκ
=

∑

M(p)
z +M(n)

z =Mz

D[i jql]

M(p)
z κp
· DM(n)

z κn
. (18)

For all configurationsκ that have the same proton parts
κp one would have to recalculateD[i jql]

M(p)
z κp

for each neu-

tron configuration. Alternatively, one can calculate
D[i jql]

M(p)
z κp

only once, and store the results in memory. That

strategy, however, would require a large amount of stor-
age. More efficiently, one can only store the contribu-
tions of theD[i jql]

ακ structures to the width, Eq. (11), that
is, one can only store the followingT -structures,

TM(p)
z κp
=
∑

(i< j),(q<l)

[

V2
i jql + Vi ji jVqlql

−4VqiilVq j jl

]

D[i jql]

M(p)
z κp
, (19)

where all single-particle states are protons. Thus, in-
stead of using Eq. (18) one can calculate the contribu-
tion to the width directly via the convolution,

Tr(ακ)[H2] = . . . +
∑

M(p)
z +M(n)

z =Mz

TM(p)
z κp
· DM(n)

z κn
, (20)

which is very similar to Eqs. (17) and (18). The new ap-
proach avoids multiple calculations ofD[i jql]

M(p)
z κp

. Storing

the structures Eq. (19), one may significantly speed up
the algorithm for large cases, such as68Se in p f + g9/2

model space. The downside is that the calculation of the
T -structures,TM(p)

z κp
, TM(n)

z κn
, does not always scale well

on a large number of cores, since the number of these
T -structures is much smaller than the total number of
configurations.

4. Description of the program

The program consists of two separate codes. The first
code is called MM, which is the main code in the pro-
gram. MM code performs calculation of the first and
second moments for all the configurations within the
given range of spins and for certain parity. It is the
most complicated and resource demanding part of the
program. MM requires parallel computing. The second
code is very simple and fast. It takes the output of the
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Figure 2: The flowchart of the program. See text for details.

MM code (the first and second moments) and builds the
nuclear level densities according to Eqs. (1-3). It does
not require parallel computing.

Below we will concentrate only on description of the
MM code. The detailed instructions on how to use the
second code can be found in thereadme.txt file, which
is in the main project directory.

4.1. The structure of the MM code

In the MM code, the calculation of the first and sec-
ond moments for a given nucleus is carried out. To
compile this code simply follow the instructions in the
readme.txt file (or type make) and then run the exe-
cutable filemm.out.

The code contains four files:mm 1.15.f90 (1.15 is
the current version) contains the main subroutines and
calls subroutines from other files to perform the calcu-
lation; interaction.f90 reads the interaction file;angu-
larme.for contains subroutines to work with the angu-

lar matrix elements, for example, to calculate Clebsch-
Gordan coefficients;qsort.f contains quick-sort subrou-
tines.

The flowchart of themm 1.15.f90 is shown in Fig.2,
and some important subroutines in themm 1.15.f90 are
listed below.

The subroutineprepare interaction calculates the
T -structures according to Eq. (19). This is an important
part of the code which allows to speed up the program
significantly.

The subroutinecc density calc contains the main
loop over the configurations (the loop back in Fig. 2),
calculates the first and second moments based on Eqs.
(7,8,10,20), and saves the results. This subroutine uses
the T -structures precalculated in the subroutinepre-
pare interaction.

Both subroutines require parallel computing.
The simplest “Master-Slave” parallel programming
paradigm with Dynamic Load Balancing was used.

4.2. MM input

The input files includeinput.dat and the files that de-
fine the single-particle model space as well as the inter-
action in this model space. A typicalinput.dat file that
specifies the parameters in the code is listed below. The
parameters are followed by their meaning:

6 6 ! Z N
1 0 22 2 !P 2Jmin 2Jmax 2Jstep

int/sd.spl ! single-particle model space
int/usd.int ! interaction

HereZ andN are the number of protons and neutrons,
respectively, in the valence space;P is parity (P = 1
corresponds to positive parity andP = −1 to negative
parity); 2Jmin, 2Jmax, and 2Jstep define the range of to-
tal spin for which the moments are to be calculated: the
spin changes from the minimum valueJmin to the maxi-
mum valueJmax with the stepJstep. In the example listed
above the total spin changes from 0 to 11 with the step 1.
The single-particle model space and the interaction are
defined by two separate files andinput.dat must have
the names of these two files similar to the shown exam-
ple. Detailed description of*.spl and*.int files is given
in thereadme.txt file.

The above example describes the28Si nucleus in the
sd−model space with the USD interaction. The mo-
ments will be calculated for positive parity and for all
possible spins from 0 to 11.
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4.3. MM output

The main output of the MM code is presented in files
mm res #.dat. These files are enumerated by spin num-
ber #, for examplemm res 0.dat corresponds to spin
J = 0, mm res 1.dat corresponds to spinJ = 1/2, and
so on (for more details see thereadme.txt file). Each
output file contains the data needed for the density cal-
culation: dimensions, first and second moments.

Another output filemm conf.dat contains informa-
tion about the configurations. This information is not
used for the density calculation, but could be useful for
checking and testing purposes.

4.4. Density calculation

After all the moments are prepared, the density can be
calculated with the codeden.out. The full description
of density calculation can be found in thereadme.txt
file. We just repeat once more that there are several ex-
ternal parameters that need to be prepared before the
calculation. These parameters cannot be defined within
the method of moments, namely:η - the cut-off param-
eter,Eg.s. - the ground state energy, and the energy in-
terval (Emin, Emax) for calculating the level density. For
more details see thereadme.txt file.

5. Examples

Element Space Total dim Elapsed time (sec)
70Br p f + g9/2 1015 1.07 · 104

68Se p f + g9/2 1015 1.03 · 104

64Ge p f + g9/2 1014 0.76 · 104

60Zn p f 1011 37.4
52Fe p f 1010 13.6
28Si sd 106 0.7

Table 1: Elapsed times of nuclear level density calculations (for all
J, positive parity) with the moments method code. The calculations
were done on a 16 cores machine with 2.8 GHz CPU frequency.

Table 1 presents calculation times for different nuclei
calculated in different shell-model spaces. The calcula-
tions were done on a 16 cores machine with 2.8 GHz
CPU frequency. One core (’master’) distributed all the
work between other 15 cores (’slaves’). One can em-
phasize here that the listed times correspond to calcula-
tions of the nuclear level densities for allJ and for pos-
itive parity. For the case of68Se the largestm-scheme
dimension is about 1015. For eachJ the m-scheme di-
mensions vary from 1012 to 1014, which makes direct

diagonalization impossible. Using the moments method
and our algorithm we are able to calculate the shapes of
nuclear densities for68Se in less then three hours on a
16 cores machine. For a number of processors reaching
one thousand, it will take only few minutes to complete
the calculation.

5.1. 28Si, sd−model space

As a first example we consider the level density for
the28Si nucleus in thesd-shell model space, where we
use the USD interaction [37]. Fig. 3 presents the com-
parison of the exact shell-model level densities for dif-
ferent spins (solid lines) with those obtained with the
moments methods (dashed lines).

Eqs. (1) and (2) require the knowledge of the ground
state energyEg.s. and the cut-off parameterη. While
the ground state energy of28Si can be calculated in this
case using the standard shell model,Eg.s. = −135.94
MeV, for the value of the cut-off parameterη we have
only a general idea that it should be around 3 [22, 23].
For a better description of level densities in the moments
method we can adjust theη parameter to optimally re-
produce the exact shell-model densities. From Fig. 3
one can see that choosingη = 2.8, the level densities
of the moments method reproduce quite well the ex-
act shell-model level densities. The cut-off parameter
plays a role similar to that of the width in a Gaussian
distribution. Indeed, if we increase the cut-off param-
eter, the density becomes wider and lower, while de-
creasing it leads to a narrowing of the density. One
should also mention that the exact spin- and parity-
dependent shell-model densities were calculated with
the NuShellX code [38].

5.2. 64Ge, p f− and p f + g9/2−model spaces

As mentioned in the Introduction, one could envi-
sion using information from the level densities to extract
with a good approximation the ground state energies.
Using our algorithm and the moments method one can
easily calculate the nuclear level density for any nucleus
that can be described in thep f + g9/2 model space. The
Hamiltonian used for this model space was built starting
with the GXPF1A interaction for thep f model space, to
which theG-matrix elements that describe the interac-
tion between thep f orbits andg9/2 orbit were added.
The single-particle energy for theg9/2 orbit was fixed
at −0.637 MeV. Even for the worst case, the calcula-
tion takes about three hours for sixteen processors and
only few minutes for one thousand processors. Fig. 4
presents the results obtained for64Ge, nucleus that is be-
lieved to be a “waiting-point” along therp-process path
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Figure 3:28Si, parity=+1. Comparison of nuclear level densities between the exact shell model (solid line) and the moments method (dashed line).
Cut-off parameterη = 2.8, interaction: USD,sd-shell.
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7



[39-41]. We only present the densities forJ = 0, 2 and
positive parity.

The correspondinginput.dat file for 64Ge in
p f−model space looks like

12 12 ! Z N
1 0 22 2 !P 2Jmin 2Jmax 2Jstep

int/pf.spl ! single-particle model space
int/gx1a.int ! interaction

Here we have twelve protons and twelve neutrons in
the p f -model space. The calculation is done for all
spins betweenJ = 0 andJ = 11 and positive parity. The
single-particle space is defined in thepf.spl file and the
interaction is ingx1a.int. For thep f+g9/2 model space
we need to change the single-particle file topfg9.spl and
the interaction file topfg9.int.

It is important to notice that in thep f model space
the shell-model calculations of the ground state energies
can be done. For64Ge in thep f -shell we obtain the
following ground state energy:

Eg.s.(p f ) = −304.25 MeV. (21)

Using this ground state energy and the cut-off parame-
ter η = 2.6, we are able to calculate the level densities
according to Eqs. (1) and (2). The solid lines in Fig. 4
represent the density in thep f -shell.

To calculate the same level density in thep f + g9/2

model space we have to adjust the ground state energy
and the cut-off parameter for this space. For the cut-off
parameter we use the same value,η = 2.6, but it is prac-
tically impossible to calculate by shell-model diagonal-
ization the ground state energy since the dimension is
too large. The ground state energy for the larger model
space, that isp f + g9/2, must be lower compared to the
ground state energy for the smaller model space, that is
p f . Let us introduce this energy difference,∆E, as

Eg.s.(p f + q9/2) = Eg.s.(p f ) − ∆E. (22)

The dotted lines in Fig. 4 show the level densities if we
keep the ground state energy forp f + g9/2 model space
as it was in thep f case keeping∆E = 0. It is natural
to expect only small differences between the level den-
sities calculated in those two model spaces at low exci-
tation energy since in thep f + g9/2 model space we use
the same GXPF1A interaction for thep f subspace. By
decreasing the ground state energies for thep f + g9/2

model space (introducing non-zero∆E), one gets the
dashed lines on Fig. 4. The dash-dotted lines there cor-
respond to ground state energyEg.s.(p f +q9/2) = −305.8
MeV of 64Ge, which was obtained by a truncated shell

model calculation with up to 6 particles excited from
the f7/2 orbits and/or into theg9/2 orbit. Them-scheme
dimension in this calculation, 13.5 × 109, is at the up-
per limit of the state of the art shell-model calculation.
As one can see, this value does not describe satisfactory
the level densities at low excitation energy. In order to
make the low-lying part of the two densities very close
(dashed and solid lines on Fig. 4), one has to adjust the
ground state energy for thep f + g9/2 model space to the
following value:

Eg.s.(p f + g9/2) = −306.7 MeV for 64 Ge, (23)

The “low-lying part of the density” should be chosen
such that the excitations to theg9/2 orbit do not give
a significant contribution. For these cases we use the
interval 3-6 MeV in excitation energy. We conclude that
the adjustment of Eq. (23) can be treated as a method
for estimating the ground state energies in larger spaces;
for more details see [25].

6. Summary

In summary, we have developed an efficient Fortran
code for calculating the centroids and widths of the
shell-model spin- and parity-dependent configurations,
which can be used for calculating the nuclear level den-
sities. The code is parallelized using the Message Pass-
ing Interface (MPI) [34] and a master-slaves dynamical
load-balancing approach. The parallel code was thor-
oughly tested on the massively parallel computers at
NERSC [35], and it shows very good scaling when us-
ing up to 4000 cores. The algorithm used takes advan-
tage of the separation of the model space in neutron and
proton subspaces. This separation provides two impor-
tant advantages: (i) the exponentially exploding dimen-
sions and propagators can be calculated more efficiently
in proton and neutron subspaces, and the full results can
be recovered via simple convolutions; (ii) the number of
configurations is significantly increased in the proton-
neutron formalism, considerably improving the scala-
bility of the algorithm on massively parallel computers.
Our tests indicate almost perfect scaling for up to 4000
cores. The new algorithm is so fast that the bottleneck
of the calculation is now that of the ground state en-
ergy. That is why we could not test our algorithm for
cases that take more than one minute on 4000 cores.
Therefore, we investigated the possibility of using the
calculated shapes of the nuclear level densities to ex-
tract the ground state energy. We showed that by incre-
menting the model space and the effective interaction,
and imposing the condition that the level density does
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not change at low expectation energy, one can reliably
predict the ground state energy, and further the full level
density. This new method of extracting the shell model
ground state energy for model spaces whose dimensions
are unmanageable for direct diagonalization opens new
opportunities for calculating shell model level densities
of heavier nuclei of interest for nuclear astrophysics, nu-
clear energy and medical physics applications.

A further development of the application of statisti-
cal spectroscopy to nuclear level density is the removal
of center-of-mass spurious states from the level density
for shell model spaces that allow complete factorization
of the center-of-mass and intrinsic wave functions. A
new algorithm implementing this idea was recently pre-
sented [42], and a high performance code was devel-
oped. This new code could be made available upon re-
quest.
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