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Abstract

A high-performance Fortran code is developed to calculaespin- and parity-dependent shell model nuclear level
densities. The algorithm is based on the extension of metbbstatistical spectroscopy and implies exact calcutatio
of the first and second Hamiltonian moments fdfetient configurations at fixed spin and parity. The protontioau
formalism is used. We have applied the method for calcugative level densities for a set of nuclei in tha-,

pf-, andpf + go/2 - model spaces. Examples of the calculations’f&i (in the sd-model space) antfGe (in the

pf + go;2-model space) are presented. To illustrate the power of #tbad we estimate the ground state energy of
84Ge in the larger model spagef + go2, Which is not accessible to direct shell model diagonabratiue to the
prohibitively large dimension, by comparing with the nuarléevel densities at low excitation energy calculated & th
smaller model spacpf.
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1. Introduction the same time, pure collective models used on top of

) ) the single-particle excitations mayfBer from double
The nuclear reaction theory requires exact knowledge counting and have to be cuffan some way.

of nuclear level densities. In the majority of cases, espe-
cially those important for reactions at stellar conditions
experimental information on the excited nuclear states
is not sdficient and the calculations are typically using
the estimates based on the Hauser-Feshbach approac
[1], where the level density for specific quantum num-
bersJ” of nuclear spin and parity is a necessary ingredi-
ent. The reaction rates can be very sensitive to the level
density, especially in the Gamow window of excitation
energies around the particle threshold [2, 3].

The theory of the nuclear level density has a long

The many-body correlations are fully accounted for
by the exact diagonalization of the shell-model Hamil-
tonian. Here the problems come from the prohibitively
Earge dimensions that makes necessary to truncate the

rbital space, a step not always well controlled. Alter-
natively, one can use Monte-Carlo techniques [10-15],
or other methods of statistical spectroscopy [16, 17].
Most of these methods [2,10-12,18,19] calculate the to-
tal density of stateand later use a spin-weight factor
that includes an energy-dependent cfitparameter to
. ; . : . ) extract the level density for specific quantum numbers
history starting with the combinatorial calculation by of spin, parity and isospin. Although there are recent ef-

Bethe [.4] that leads to the thg back-shifted Fermi gas forts to improve the accuracy of such parameterizations
approximationl[5, /6] that was improved over the years. [19], it was shown that the cutfoparameter has very

The modern approaches going essentially in the SameIargefluctuations at low excitation energyl[20]. The par-

dwegnon [7'9] Iuse, :jnslt_ead of thef_FeI.\Orlmll-gas, gn mde(; ity is usually taken as equally distributed, although there
pendent particle model in a mean field. Itis understood ;o attempts [13, 21] to model th&ect of the uneven

tEat mar;y-boldy clo(;relayon; mayIS|g|n|f|cant.Iy cr(;ange parity-dependence of the level densities at excitation en-
the resulting level aensity, in particular moving down ergies of interest for nuclear astrophysics.

certain families of vibrational and rotational states. At .
Recently, we developed a consistent approach [20,22-
25] to calculate the spin- and parity-dependent shell-
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for the appropriate model spaces are developed startingas a sum
with the G-matrix [26] and fixing the monopole terms _

or/and linear combinations of two-body matrix elements p(E, ) = ZK: Dax - Gan(E), (1)

to experimental data. Extending thi@eient methods of h incl I

statistical spectroscopy [27,/28] we exactly calculate the wherea = {n, J, Tz, 7} includes a qugntum numbers of
first and second moments of the Hamiltonian fdfet: interest, namely th_e nl_mee_r of pa_lrtlc_lerrotons and
ent configurations at fixed spin and parity. As a practical _neutrons), total spm], ISospin prOJectlonTz, anq par-
tool we use the exact decomposition of many-body con- 1Y 7 The subscripk represents a configuration af
figurational space into classes correspondingfterint pgrﬂcles d|str|but§d oveq sphgncal single-particle or-
parity and number of harmonic oscillator excitations. bitals. Each configurationis fixed by a set of occupa-

An accurate estimate of the shell-model ground state en- 10N NUMDErs = {ky, k2. ..., kq}, wherex; is the number
ergy is required being generally as time consuming as of particles occupying the spherical single-particle leve

the previous steps. This stage can be improved by usingl- T€ configuration has a certain number of particles,
the exponential convergence method suggested and aptOt@! iS0Spin projection, and parity. The sum in Eg. (1)
plied in Refs. [20, 30, 31], gand the recently developed ~"UNS OVer all possible conflguraltlons cprrespondmg to
projected configuration interaction method![32, 33]. In 9'VeN values of, T, andr. '_I'he d|me_nS|orD(,K equals_
reverse, some knowledge about the level density can bethe numk_)er O_f correctly antlsymmetrlzed ’T‘a”y'ferm"’”
helpful for extracting the ground state energy. stat_es with giverd th_at can pe bu_|lt_ for a given conﬂg-
The code described in this paper is based on nuclearurat|on;<. The functionG,, is a finite-range Gaussian

statistical spectroscopy [28]. It allows one to calcu- defined as in[d2]:

late the spin- and parity-projected moments of the nu- Gux(E) = G(E + Egs — Eox, 0ak),  (2)

clear shell-model Hamiltonian, which can be further ex (—x2/20-2) X<n o

used for an accurate description of the level density up G(x,0)=N- { 0 b ’ X ; n 3)
, n-o

to about 15 MeV excitation energy. It can be also ap-
plied to other mesoscopic systems, such as interactingwhereE,, ando,, are the fixedd centroids and widths,
cold atoms in harmonic oscillator traps. The code is which will be defined latery is the ground state en-
parallelized using the Message Passing Interface (MPI) ergy, n is the cut-d¢f parameter, andN is the normal-
[34] and a master-slaves dynamical load-balancing ap- ization factor corresponding to the following condition:
proach. The parallel code was thoroughly tested on f:: G(x, o)dx = 1.
the massively parallel computers at NERSC [35], and it A very important ingredient of the method is the ac-
shows very good scaling when using up to 4000 cores. curate knowledge of the ground state enelgy. It

The paper is organized as follows. In Sec. Il the is also necessary to find an optimal value of the diit-o
method of fixed spin- and parity-dependent configura- parameter, see the discussion in [25].
tion moments is revisited. The method allows to trace  Assuming a two-body shell-model Hamiltonian,
such quantum numbers as parity and angular momen- . 1 L.
tum explicitly. The extension of the algorithm to the H= Z qa/a; + 2 ZVijkIaii alaay, (4)
proton-neutron formalism is discussed in Sec. Ill. In i ikl
Sec. IV we introduce the structure of the program and we have to calculate traces of the first and second power
supply the examples of input files. Examples of calcu- of this Hamiltonian, TrH] and Tr[H?], for each config-
lations are presented and compared to exact shell modelurationk which will determine the fixed}centroids and
results in Sec. V. Section VI is devoted to conclusions. widths in Eq. [2):

Eak = <H>m< > (5)

2. Theory outline T = ,<H2><m B <H>§K’ ©6)

In this work we closely follow the approach proposed Where
in Ref [25] (see also Refs.| [22,123]). For clarity we (H), = Tr®)[H]/D @)
repeat here the main ideas and equations we are going o et e

: - (H?) = Tr™[H?]/D,,. 8)

to use for calculating the level density. ax

According to the method of moments one can cal- If the many-body states, J) with a certain set of quan-
culate the density(E, @) of levels with a given set of  tum numbers = {v, J}, including spinJ, form a com-
guantum numbers as a function of excitation endfgy plete set for the configuratioxy the symbol of trace,
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Figure 1: Speedup is defined &g/Tn, whereT, is the calculation

time, whenn processors were used. These calculations were per-

formed on the FRANKLIN supercomputer at the National Endrgy
search Scientific Computing Center (NERSC) [35].

Tr@I[...], means the sum of all diagonal matrix ele-
ments, > (v, J|- - - v, J), within this subspace. Techni-

cally, it is more convenient to derive these traces in a ba-

sis with a fixed spin projectiom, M), TrMJ[...], rather
than in the basis with fixed total spin J), Tr9[-- .
J-traces can be easily expressed throughMhédraces,
given the rotational symmetry of the Hamiltonian,

] =TrMI[. ] TrMI[..

Mz=J+1

)
Mz=J
For simplicity, in Eq. [®) we omitted all quantum num-
bers, except the projectidvi, and the total spiid.

Hereafter we use the labelto denote a set of quan-
tum numbers that includes either the fixdt or the
fixed J, keeping in mind that Eq.[]9) can always con-
nect them. In every important case we will point out
which set of quantum numbers is used. Following the
approach ofl[36], we can obtain the following expres-
sions for the traces in Eq$.](7) afdl (8):

Tr(QK)[H] = Z + Z V|]|JDR/J<]’

i<j

TWWH%:Z:

2ei€j + 2(6 + €j) Vijij + Z fal
o<l

6 pti

K

(10)

€Dl 4+

aK

plil 4

(ll(

"

i<j
Z {Z 2Vllqulqu
(i<h# L g

Z [ ijg * ViiiiVaa — 4Vq“|Vq”|] Dg};q”»
(i<j)#(a<!)

.,q|) + 26 Vijij DL +

(11)

3

wherei, j, 1, andq are single-particle states with certain
spin projections and possible occupation numbers equal
Oorl.

Notice that the single-particle orbitals we have used
to define the configurations in Ed.] (1) can host all par-
ticles with all possible spin projections corresponding
to spin of the orbital. The dimension fact@!] =
Tr("K)[a{"ai] can be interpreted as a number of many-
body states, possible for the configuratigrnwith the
fixed projectionM, (if we considerM,-traces) and un-
der the condition that the single-particle state occu-
pied: -

DL = Tr9[alalajal],

D['JQ]

aK

Tr*[aalajagajal, .. (12)

TheseD-structures were callegropagation functionis
[36]. For completeness, we repeat here the recipe used
for calculating them. One can show [36] that

Dg;rz...rs] — Z (_1)t—s Z Duvs

s<t<n ty+--+tg=t

(13)

where allt; are non-negative integers, the configuration

= {K, K5, o s Kg} €CAN be derived from the original con-
figurationk = {k1,ko,... ,kg} by removingt particles
from the single-particle states, r», - - - rs. A formal ex-
pression for the new configuratian can be written as
follows:

ti,
i (riej)

Kj = Kj— (14)

where the sum includes only those valuesfofr which

the corresponding single-particle statdelongs to the
single-particle levej. We also assume that all the oc-
cupation numbers’ must be positive, which imposes
certain restnctlons on the possible values of the ampli-
tudest;. For every new configuratiokf one can easily
define new quantum numbexs, = {n’M,T,z’}, enter-

ing Eq. [13). Examples are the new number of particles
n’ = n -t and the new spin projection,

M; = MZ - tlm1 - tzn]’2 - tsn’\’s’ (15)

wheremy, is theM; projection of the single-particle state
ri. The new isospirT, and paritynr’ are defined simi-
larly.

3. Thealgorithm for the method of momentsin the
proton-neutron formalism

Here we describe some technical features of the algo-
rithm developed for the calculation of the nuclear level



density. We treat protons and neutrons separately, so One more technical detail, which allows a signifi-

that the basis of many-body wave functions is repre-
sented by a product of proton and neutron parts:

v, Mg) = [vp, M) -y, M), (16)

whereM® + M{" = M,. The wave function(16) have
the fixed isospin projectiom;, but do not have a certain
isospinT. As we already mentioned, it is more con-
venient to use the basis of the wave functions with the
fixed spin projectionM;, rather than the one with the
fixed spinJ.

One could gain essential advantages from such a Sep+, one would have to recalcula

aration of the basis. One of them is related to the num-
ber of configurations that appear in the sum of Eg. (1).
Naturally, the number of configurations with fixdd

is much greater than the number of configurations with
fixed isospin. This allows the use of many-cores com-
puters with greaterficiency. In other words, the cal-
culation of the sum in Eq.[11) with a larger number of
configurations can be mordheiently distributed over

a larger number of processors. Fifll 1 presents the
speedup (calculation speed gain) as a function of the

number of used processors. One can see that the case

with the larger number of configuration®¥Se, scales
better than the case with the lower number of configu-
rations,®*Ge. Up to 2000 cores, the speedup is almost
perfect (the dotted line presents an ideal speedup). At
this point the calculation time is about 1-2 minutes and
further improvement is hardly achievable.

Another significant advantage of the proton-neutron
formalism is the new algorithm of calculating the di-
mensionsD,,, D!, DI etc. Because of the proton-

aK? ak

neutron separation one can calculate all proton and neu-

tron dimensions separately. Later, the dimensions we
are interested in can be easily constructed from the pro-
ton and neutron parts using the convolution,

D = Dyw. D

MP s MP =M,

MP e, * DM, (17)

where, instead of the whole set of quantum numbers
a, only the spin projectiomM, was explicitly indicated.
Herex, and«y are the proton and neutron parts of the
configurationk. Eq. [IT) can be easily applied to all
types of dimensionsD.?, needed in the formalism of
section Il. The advantage comes from the fact that one
can calculate and keep in memory all proton and neutron
dimensionsDMgp)Kp and Dyo,.» for all possible projec-
tions M{P andM{", and for all possible configurations
kp andk,. Afterwards, using Eqs[[(17) arid{13), one can

calculate very fast all the dimensionB,,, DI}, DI},
etc... , for allM, andJ.

cant speed up of the algorithm, is that by using the
proton-neutron separation one can avoid multiple com-
putations of the most time consuming structures, such
asD! | et us consider a case when all four single-

particle stategijqgl} are protons. One can then use an

equation similar to Eq[(17),

2,

MP LMD =M,

lijoll _

(ijall
Mz D

o (18)

. DMgn)Kn .

For all configurationg that have the same proton parts

"4l for each neu-
Mz Kp

tron configuration. Alternatively, one can calculate

DE\'A’(CQ')] only once, and store the results in memory. That
z Kp

strategy, however, would require a large amount of stor-
age. More €iciently, one can only store the contribu-
tions of theD!')¥ structures to the width, Eq_{L1), that
is, one can only store the followinfrstructures,

2
Z [Vig + ViiiVag
(i<)#a<h

Ty, =

~ &gVt Do)

®,

(19)

where all single-particle states are protons. Thus, in-
stead of using Eq.[(18) one can calculate the contribu-
tion to the width directly via the convolution,

2,

MP M =M,

which is very similar to Eqs[{17) an18?

proach avoids multiple calculations DI{'\'A'(%)]
z Kp

the structures Eq[(19), one may significantly speed up
the algorithm for large cases, such®8Se inpf + go)2
model space. The downside is that the calculation of the
T-structuresT o, , Ty, does not always scale well
on a large number of cores, since the number of these
T-structures is much smaller than the total number of
configurations.

(@) T2 — . .
TrH) =... + TMgp)Kp DME )i (20)

. The new ap-
. Storing

4. Description of the program

The program consists of two separate codes. The first
code is called MM, which is the main code in the pro-
gram. MM code performs calculation of the first and
second moments for all the configurations within the
given range of spins and for certain parity. It is the
most complicated and resource demanding part of the
program. MM requires parallel computing. The second
code is very simple and fast. It takes the output of the
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Figure 2: The flowchart of the program. See text for details.
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MM code (the first and second moments) and builds the
nuclear level densities according to Eqsl[11-3). It does
not require parallel computing.

Below we will concentrate only on description of the
MM code. The detailed instructions on how to use the
second code can be found in tteadme.txt file, which
is in the main project directory.

4.1. The structure of the MM code

In the MM code, the calculation of the first and sec-
ond moments for a given nucleus is carried out. To
compile this code simply follow the instructions in the
readme.txt file (or type make) and then run the exe-
cutable filemm.out.

The code contains four fileanm_1.15.f90 (1.15 is

lar matrix elements, for example, to calculate Clebsch-
Gordan co#icients;gsort.f contains quick-sort subrou-
tines.

The flowchart of thanm_1.15.f90 is shown in Fid.R,
and some important subroutines in then_1.15.f90 are
listed below.

The subroutineprepare_interaction calculates the
T-structures according to Eq. (19). This is an important
part of the code which allows to speed up the program
significantly.

The subroutinecc_density_calc contains the main
loop over the configurations (the loop back in Fig. 2),
calculates the first and second moments based on Egs.
(2[8[IT.20), and saves the results. This subroutine uses
the T-structures precalculated in the subroutjore-
pare_interaction.

Both subroutines require parallel computing.
The simplest “Master-Slave” parallel programming
paradigm with Dynamic Load Balancing was used.

4.2. MM input

The input files includénput.dat and the files that de-
fine the single-particle model space as well as the inter-
action in this model space. A typicadput.dat file that
specifies the parameters in the code is listed below. The
parameters are followed by their meaning:

66 1ZN

10222 P 2Jmin 2Jmax 2Jstep
int/sd.spl ! single-particle model space
int/usd.int ! interaction

HereZ andN are the number of protons and neutrons,
respectively, in the valence spade;is parity P = 1
corresponds to positive parity aftl= —1 to negative
parity); 2Jmin, 2Jmax, and sep define the range of to-
tal spin for which the moments are to be calculated: the
spin changes from the minimum valdg, to the maxi-
mum valueJyax With the steplsiep In the example listed
above the total spin changes from 0 to 11 with the step 1.
The single-particle model space and the interaction are
defined by two separate files aitput.dat must have
the names of these two files similar to the shown exam-
ple. Detailed description df.spl and*.int files is given
in thereadme.txt file.

the current version) contains the main subroutines and  The above example describes #8i nucleus in the

calls subroutines from other files to perform the calcu-
lation; interaction.f90 reads the interaction filgngu-
larme.for contains subroutines to work with the angu-

5

sd—model space with the USD interaction. The mo-
ments will be calculated for positive parity and for all
possible spins from 0 to 11.



4.3. MM output diagonalization impossible. Using the moments method

The main output of the MM code is presented in files and our algorithm we are able to calculate the shapes of
mm_res_#.dat. These files are enumerated by spin num- nuclear densities fot®Se in less then three hours on a
ber #, for examplenm_res.0.dat corresponds to spin 16 cores machine. For a number of processors reaching
J = 0,mm_res_1.dat corresponds to spid = 1/2, and one thousand, it will take only few minutes to complete
so on (for more details see theadmextxt file). Each ~ the calculation.
output file contains the data needed for the density cal-
culation: dimensions, first and second moments. 5.1. %9, sd-model space

Another output filemm_conf.dat contains informa- As a first example we consider the level density for
tion about the configurations. This information is not {he28sj nucleus in thesd-shell model space, where we
used for the density calculation, but could be useful for ;5e the USD interactioh [B7]. Figl 3 presents the com-

checking and testing purposes. parison of the exact shell-model level densities for dif-
] ] ferent spins (solid lines) with those obtained with the
4.4. Density calculation moments methods (dashed lines).

After all the moments are prepared, the density canbe  Egs. [1) and{R) require the knowledge of the ground
calculated with the codden.out. The full description state energ¥Eys and the cut-ff parameter;. While
of density calculation can be found in theadme.txt the ground state energy 61Si can be calculated in this
file. We just repeat once more that there are several ex-case using the standard shell modgjs = -13594
ternal parameters that need to be prepared before theMeV, for the value of the cutfb parameter; we have
calculation. These parameters cannot be defined within only a general idea that it should be around 3 [22, 23].
the method of moments, namely: the cut-df param- For a better description of level densities in the moments
eter,Egs - the ground state energy, and the energy in- method we can adjust theparameter to optimally re-
terval Emin, Emax) for calculating the level density. For  produce the exact shell-model densities. From [Elg. 3
more details see theeadme.txt file. one can see that choosing= 2.8, the level densities
of the moments method reproduce quite well the ex-
act shell-model level densities. The cuf-parameter
plays a role similar to that of the width in a Gaussian
distribution. Indeed, if we increase the cut-param-

5. Examples

- - eter, the density becomes wider and lower, while de-
Element| Space | Total dim | Elapsed time (sec - . .

Br | pf+gep | 10° o7 107 creasing it leads to a narrowing of the density. One
- / c should also mention that the exact spin- and parity-

Se | pf+gen| 10 1.03-10* dependent shell-model densities were calculated with
*Ge | pf +gop 10" 0.76-10* the NuShellX code [38].
60zZn pf 10t 37.4
S2Fe pf 10 13.6 5.2. 54Ge, pf- and pf + g9/2—-model spaces
?°Si = 100 0.7 As mentioned in the Introduction, one could envi-

Table 1: Elansed 1 ¢ nuctear level density calculat ) sion using information from the level densities to extract
T e oy i e e g s e asaWith a good approximation the ground state energies
were done on a 16 cores machine with 2.8 GHz CPU frequency. Using our algorithm and the moments method one can
easily calculate the nuclear level density for any nucleus
that can be described in tipd + gg/2 model space. The
Table[1 presents calculation times foffdrent nuclei Hamiltonian used for this model space was built starting
calculated in dferent shell-model spaces. The calcula- with the GXPF1A interaction for thpf model space, to
tions were done on a 16 cores machine with 2.8 GHz which theG-matrix elements that describe the interac-
CPU frequency. One core ('master’) distributed all the tion between thepf orbits andgg,, orbit were added.
work between other 15 cores ('slaves’). One can em- The single-particle energy for thg,, orbit was fixed
phasize here that the listed times correspond to calcula-at —0.637 MeV. Even for the worst case, the calcula-

tions of the nuclear level densities for dland for pos- tion takes about three hours for sixteen processors and
itive parity. For the case dfSe the largest-scheme only few minutes for one thousand processors. Eig. 4
dimension is about #8. For each] the m-scheme di- presents the results obtained $6Ge, nucleus that is be-

mensions vary from 78 to 104, which makes direct  lieved to be a “waiting-point” along thegp-process path
6
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[39-41]. We only present the densities fbe 0,2 and
positive parity.

The correspondinginput.dat file for %‘Ge in
pf-model space looks like

1212 1ZN

10222 I'P 2Jmin 2Jmax 2Jstep
int/pf.spl I single-particle model space
int/gxla.int !interaction

Here we have twelve protons and twelve neutrons in
the pf-model space. The calculation is done for all
spins betweed = 0 andJ = 11 and positive parity. The
single-particle space is defined in thespl file and the
interaction is igxla.int. For thepf+g9/2 model space
we need to change the single-particle filptg9.spl and
the interaction file tgfg9.int.

It is important to notice that in thef model space
the shell-model calculations of the ground state energies
can be done. Fo¥*Ge in thepf-shell we obtain the
following ground state energy:

Egs(pf) = —30425 MeV. (21)

Using this ground state energy and the cfitgarame-
tern = 2.6, we are able to calculate the level densities
according to Eqs.[{1) andl(2). The solid lines in Hig. 4
represent the density in thef -shell.

To calculate the same level density in thé + gg/2
model space we have to adjust the ground state energ
and the cut-f parameter for this space. For the ctif-o
parameter we use the same valpe, 2.6, but it is prac-
tically impossible to calculate by shell-model diagonal-
ization the ground state energy since the dimension is
too large. The ground state energy for the larger model
space, that ipf + go/2, must be lower compared to the
ground state energy for the smaller model space, that is
pf. Let us introduce this energyfterenceAE, as

Egs(pf + doj2) = Egs(pf) — AE.

The dotted lines in Fid.14 show the level densities if we
keep the ground state energy fof + go;» model space

as it was in thepf case keeping\E = 0. It is natural

to expect only small dierences between the level den-
sities calculated in those two model spaces at low exci-
tation energy since in thef + gg;> model space we use
the same GXPF1A interaction for thf subspace. By
decreasing the ground state energies forlier gg/»
model space (introducing non-zend), one gets the
dashed lines on Fidl] 4. The dash-dotted lines there cor-
respond to ground state eneifys (pf +0g2) = —3058
MeV of $4Ge, which was obtained by a truncated shell

8

(22)

model calculation with up to 6 particles excited from
the f7/, orbits andor into thegy, orbit. Them-scheme
dimension in this calculation, 13x 10 is at the up-

per limit of the state of the art shell-model calculation.
As one can see, this value does not describe satisfactory
the level densities at low excitation energy. In order to
make the low-lying part of the two densities very close
(dashed and solid lines on Fig. 4), one has to adjust the
ground state energy for thef + go;2 model space to the
following value:

Egs(pf +goj2) = —3067 MeV for ** Ge  (23)

The “low-lying part of the density” should be chosen
such that the excitations to tlgg,, orbit do not give

a significant contribution. For these cases we use the
interval 3-6 MeV in excitation energy. We conclude that
the adjustment of Eq.[{23) can be treated as a method
for estimating the ground state energies in larger spaces;
for more details seé [25].

6. Summary

In summary, we have developed affi@ent Fortran
code for calculating the centroids and widths of the
shell-model spin- and parity-dependent configurations,
which can be used for calculating the nuclear level den-
sities. The code is parallelized using the Message Pass-
ing Interface (MPI)[[34] and a master-slaves dynamical

yIoad—balancing approach. The parallel code was thor-

oughly tested on the massively parallel computers at
NERSC [35], and it shows very good scaling when us-
ing up to 4000 cores. The algorithm used takes advan-
tage of the separation of the model space in neutron and
proton subspaces. This separation provides two impor-
tant advantages: (i) the exponentially exploding dimen-
sions and propagators can be calculated mfirgently

in proton and neutron subspaces, and the full results can
be recovered via simple convolutions; (ii) the number of
configurations is significantly increased in the proton-
neutron formalism, considerably improving the scala-
bility of the algorithm on massively parallel computers.
Our tests indicate almost perfect scaling for up to 4000
cores. The new algorithm is so fast that the bottleneck
of the calculation is now that of the ground state en-
ergy. That is why we could not test our algorithm for
cases that take more than one minute on 4000 cores.
Therefore, we investigated the possibility of using the
calculated shapes of the nuclear level densities to ex-
tract the ground state energy. We showed that by incre-
menting the model space and thieetive interaction,
and imposing the condition that the level density does



not change at low expectation energy, one can reliably [21]
predict the ground state energy, and further the full level
density. This new method of extracting the shell model 22]
ground state energy for model spaces whose dimensions
are unmanageable for direct diagonalization opens new[23]
opportunities for calculating shell model level densities
of heavier nuclei of interest for nuclear astrophysics, nu- Eg]
clear energy and medical physics applications. [26]
A further development of the application of statisti-
cal spectroscopy to nuclear level density is the removal
of center-of-mass spurious states from the level density
for shell model spaces that allow complete factorization [29]
of the center-of-mass and intrinsic wave functions. A
new algorithm implementing this idea was recently pre-
sented|[42], and a high performance code was devel- 131]
oped. This new code could be made available upon re-
quest.

[27]
(28]

(30]

[32]
(33]

[34]
[35]
[36]
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