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Abstract

EKS is a numerical program that predicts differential cross sections for production of single-inclusive
hadronic jets and jet pairs at next-to-leading order (NLO) accuracy in a perturbative QCD calculation.
We describe MEKS 1.0, an upgraded EKS program with increased numerical precision, suitable for
comparisons to the latest experimental data from the Large Hadron Collider and Tevatron. The
program integrates the regularized patron-level matrix elements over the kinematical phase space for
production of two and three partons using the VEGAS algorithm. It stores the generated weighted
events in finely binned two-dimensional histograms for fast offline analysis. A user interface allows
one to customize computation of inclusive jet observables. Results of a benchmark comparison of the
MEKS program and the commonly used FastNLO program are also documented.
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mance in Section 4.

1. Introduction

Production of particle jets in high-energy collisions is a cornerstone process of the physics program
at the CERN Large Hadron Collider (LHC) and Fermilab Tevatron pp̄ collider. Historically, obser-
vation of final-state jets formed by hadrons in e+e− collisions confirmed the asymptotic freedom of
strong interactions. In modern experiments, measurements of inclusive jet production at pp and pp̄
colliders have reached unprecedented precision. They serve both for exacting tests of perturbative
quantum chromodynamics (PQCD) and for searches for hypothetical new interactions at the highest
energy scales attained. Within PQCD, measurements of single-jet production cross sections at the
Tevatron Run-2 constrain the QCD coupling constant [1] and parton distribution functions (PDF) in
the proton [2, 3, 4, 5]. Jet production has unique sensitivity to the momentum distribution of gluons
with large momentum fractions x, which is not available in other scattering processes [6]. Invariant
mass distributions of dijets [7], dijet angular distributions [8, 9], and other jet observables at the
LHC [10, 11, 12] are examined to search for quark compositeness and heavy particle resonances. All
these analyses depend on reliable theoretical computations that continue to evolve to stay on par with
experimental developments.

From the experimental point of view, jet production has an advantage of very high statistics
and a drawback of sizable systematic errors associated with the complexities of jet reconstruction.
On the theory side, predictions for jet observables remain known to next-to-leading order (NLO)
only [13, 14, 15, 16]. Theoretical uncertainties due to the QCD scale dependence and the fixed-
order model for the jet algorithm are comparable to the experimental errors. Some phenomenological
studies also include partial next-to-next-to-leading order contributions to jet cross sections obtained
by threshold resummation [17].

This paper describes MEKS, a program for predicting probabilities of observation of a single jet or

of jet pairs that are accompanied by arbitrary final states, p+p
(−) → jet+X and p+p

(−) → jet+jet+X .
An early numerical code (EKS) for the NLO calculation of single inclusive jet and dijet distributions
was developed by S. D. Ellis, Z. Kunszt and D. E. Soper in the 1990’s [13] based on the subtraction
method. The MEKS program is based on the original EKS calculation that has been augmented
by new elements to boost its stability, flexibility, and efficiency. Two other widely used numerical
programs are NLOJET++ [15, 16] – a complete calculation of inclusive one and two jet cross sections
at NLO, – and FastNLO [18, 19], which provides a fast interpolation of NLOJET++ cross sections
in the kinematical bins of already published experimental measurements.1 Besides these fixed-order

calculations, POWHEG combines the NLO jet production cross sections with leading-logarithm QCD
showering effects [20].

Precision calculations for these processes are challenging because of the rapid falloff of the cross
sections with the jet’s pT and rapidity. In a typical experimental data set, jet cross sections vary by up
to 6-9 orders of magnitude. In addition, large numerical cancelations occur between some 2 → 2 and
2 → 3 contributions due to the presence of QCD singularities. MEKS undertakes several measures to
handle these issues and to achieve relative accuracy of order one percent in the numerical simulations.
The MEKS output is produced in the form of two-dimensional differential cross sections (d2σ/(dpT dy),
d2σ/(dmjj dy), ...) after integration over the unobserved momentum components using the VEGAS
method from the CUBA2.1 library [21]. The Monte-Carlo integration is automatically optimized
to improve the speed of the calculation. The generated events are written into finely binned two-
dimensional histograms that can be rebinned into any set of coarse bins of a given experiment at the
stage of the user’s final analysis. This format is different from the FastNLO format, which provides the
cross sections in the coarse bins that are taken from pre-existing experimental publications. Residual
theoretical uncertainties in such an NLO calculation are currently comparable to typical experimental
errors. Thus, together with the MEKS code, we present a detailed benchmark comparison with the

1NLOJET++ can also be used to calculate three jet inclusive cross sections, but that feature is not relevant for this
paper.
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independent FastNLO code and comment on the stability of the NLO jet calculations with respect to
the choice of QCD scales.

This document is structured as follows. Section 2 reviews theoretical prerequisites for the cal-
culation of single inclusive jet and dijet cross sections at NLO. Section 3 describes the structure of
the program, its inputs and outputs, installation, and running. Section 4 considers the performance
of the program and summarizes its benchmark comparison against FastNLO. Section 5 contains the
conclusion.

2. Production of hadronic jets at NLO in perturbative QCD

2.1. Factorized cross sections and measurement functions

A jet reveals itself by tracks and calorimeter energy depositions left by final-state hadrons in
a collider detector. Numerous particles comprise a typical jet, and their detailed distribution is
complicated. Nevertheless the probability for producing the whole jet can be deduced with high
confidence from the cross section for production of the partons (quarks or gluons) that are the jet’s
progenitors. Each contributing parton-level cross section can be computed in PQCD. It is included
into the total cross section for producing the jet according to the jet algorithm, i.e., the convention
adopted to define the jet in terms of the four-momenta of its constituent particles. The parton-level
prediction must be corrected for effects of final-state showering, hadronization, and event pile-up in
order to be compared to the observables recorded by the detector.

PQCD provides a generic cross section for production of N partons in scattering of hadrons H1

and H2 with center-of-mass energy
√
s,

dσ(s)

dΦN
=

∑

a1,a2

ˆ 1

0

dξ1

ˆ 1

0

dξ2fa1/H1
(ξ1, αs, µF ) fa2/H2

(ξ2, αs, µF )

× dσ̂a1a2(ξ1ξ2s; αs, µR, µF )

dΦN
. (1)

Here fa1/H1
(ξ1, αs, µF ) and fa2/H2

(ξ2, αs, µF ) are the parton distribution functions (PDFs) of inter-
mediate partons a1 and a2 in the parent nucleons H1 and H2. The factor σ̂a1a2 is the cross section
for hard scattering of a1 and a2, which is computable as a series in the running coupling strength
αs(µR). The parents’ momentum fractions carried by a1 and a2 are ξ1 and ξ2, while µR and µF are
the renormalization scale and factorization scale that arise in αs(µR) and the PDFs, respectively.

ΦN (p1, p2, ..., pN ) is the phase space for production of N (massless) partons with four-momenta
pi. To relate this parton-level cross section to a jet observable I that can be measured, such as the
cross section in some experimental bins, it must be folded into an integral

I =

∞∑

N=2

∑

f.s.c.

ˆ

dΦN (p1, .., pN)
dσ

dΦN
SN (p1, ..., pN ). (2)

The function SN (p1, ..., pN ) represents constraints on the partons’ momenta imposed by various steps
of the measurement, including the jet algorithm. The right-hand side of Eq. (2) is summed over all
final-state configurations (f.s.c.) and parton types that may contribute. The number N of the final
states is summed from 2 to infinity, but large-N configurations are suppressed by a high power αN

s of
the small parameter αs.

A next-to-leading-order (NLO) calculation of the single-inclusive jet or dijet cross section includes
only 2 → 2 and 2 → 3 parton scattering contributions. At NLO, the jet observable is represented in
the calculation by two functions, S2(p1, p2) and S3(p1, p2, p3). The expectation of the observable is

I =

ˆ

dy1 dp2 dy2 dφ2

dσ

dy1 dp2 dy2 dφ2

S2(p1, p2)

+

ˆ

dy1 dp2 dy2 dφ2 dp3 dy3 dφ3

dσ

dy1 dp2 dy2 dφ2 dp3 dy3 dφ3

S3(p1, p2, p3) .

(3)
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The cross sections σ depend on p1, p2 for the case of two final state partons and on p1, p2, p3 for the
case of three final state partons. The parton momenta are determined by the absolute value of the
transverse momentum, pi, the rapidity, yi, and the azimuthal angle, φi. Momentum conservation has
been applied to reduce the number of independent integration variables. The functions S3 and S2

are symmetric under interchange of the parton labels 1,2,3 and must be related by infrared safety
conditions: S3(p1, p2, p3) must approach S2(p1, p2 + p3) when the parton momenta p2 and p3 become
collinear with each other, or when p3 tends to zero. In Eq. (3), both terms are infrared divergent and
need to be regulated by working in 4−2ǫ space-time dimensions (with ǫ → 0) instead of 4 dimensions.2

For this reason, some manipulation is needed to bring I into a form in which the integrals can be
calculated by Monte Carlo numerical integration.

In this paper, we are concerned with double-differential jet cross sections. That is, there are two
variables A and B that are functions of the parton momenta: A3(p1, p2, p3) and B3(p1, p2, p3), or
A2(p1, p2) and B2(p1, p2). These functions are infrared-safe in the sense defined above. For instance,
A might be the invariant mass of the leading two jets in an event, and B might be the difference in
the rapidities of the two jets, where the jets are defined, for instance, by the kT jet algorithm. Then
the functions S in Eq. (3) specify whether the event contributes to a certain bin in a histogram of the
cross section:

S2(p1, p2) = θ(|A2(p1, p2)− a| < ∆A) θ(|B2(p1, p2)− b| < ∆B) ,

S3(p1, p2, p3) = θ(|A3(p1, p2, p3)− a| < ∆A) θ(|B3(p1, p2, p3)− b| < ∆B) .
(4)

The subtraction method for calculating I is explained in some detail in Ref. [14]. There is no
point in repeating this explanation here. It may be helpful, however, to illustrate the final form of
the Monte Carlo integration in a simplified model calculation that is independent of rapidities. In the
simplified model, we integrate over a single one-dimensional variable p2 in the first term and over two
one-dimensional variables p2 and p3 in the second term. After applying the subtraction method to
tame divergences, the model integral has the form

I =

ˆ

∞

0

dp2 f2(p2) θ(|A2(p2)− a| < ∆A)

+

ˆ

∞

0

dp2

ˆ

∞

0

dp3

[
f3(p2, p3)

p3
θ(|A3(p2, p3)− a| < ∆A)

− f3(p2, 0)θ(p3 < p2)

p3
θ(|A2(p2)− a| < ∆A)

]
.

(5)

There is a divergence from the first term of the second integral arising from the region p3 → 0.
However, in this model, the infrared safety property of the jet definition is A3(p2, 0) = A2(p2). Then
the divergence is canceled because of the subtraction term. The integral as written is suitable for
calculation by Monte Carlo numerical integration.

The program described here is modified from the original EKS program, which used an elaborate
method to calculate a double differential jet cross section, because the computer power available when
the program was written was quite limited. The method used here is to calculate the jet observables
A and B for each point in the Monte Carlo integration and put them into very small bins. Then
a separate analysis routine can calculate the desired cross section in any larger bin desired. In our
model calculation, this means that we calculate a collection of integrals

Ii =
ˆ

∞

0

dp2 f2(p2) θ(|A2(p2)− ai| < ∆A)

+

ˆ

∞

0

dp2

ˆ

∞

0

dp3

[
f3(p2, p3)

p3
θ(|A3(p2, p3)− ai| < δA)

− f3(p2, 0)θ(p3 < p2)

p3
θ(|A2(p2)− ai| < δA)

]
.

(6)

Here the bin widths δA are very small. From this information, the integral over a larger bin |A− a| <

2The needed modifications to the (4− 2ǫ)-dimensional integration measure are suppressed in Eq. (3).

4



∆A can be calculated later for any a and ∆A desired. In the program described here, the Monte Carlo
points p2 and p3 are chosen using the VEGAS algorithm [22] with some modifications.

2.2. Main theoretical inputs

Theoretical inputs must be selected carefully in the comparisons of NLO cross sections, since they
may cause non-negligible differences in predictions.

• Jet algorithm. When calculating the distribution of jet observables, we need to use the same
jet algorithms as the ones in the experimental measurements. In a PQCD calculation, the ex-
perimental jet algorithm is approximated by a measurement function SN(p1, ..., pN ) that acts on
a small number of partons. (See the previous section.) The cone-based Midpoint algorithm [23]
is most frequently used at the Tevatron, while the cluster-based anti-kT algorithm [24] is in
standard use at the LHC. The only difference between the Midpoint algorithm and modified
Snowmass algorithm [23] used in the original EKS program is that the Midpoint algorithm al-
ways uses the midpoint of the two partons’ directions as one of the possible seeds for a new
protojet. In the NLO theoretical calculations for single-jet or dijet production that include at
most three final-state partons, the cluster-based kT [25, 26], anti-kT , and Cambridge-Aachen
(CA) [27] algorithms are equivalent. The Midpoint algorithm is generally different from these
algorithms.

• The recombination scheme is a procedure for merging two nearby partons into one jet. For
example, the 4D scheme computes the jet’s 4-momentum by adding the 4-momenta of the jet’s
constituents. The ET scheme finds the momentum of the merged jet by adding the scalar ET

values, then averaging over the partons’ directions with the statistical weights given by the
individual ET values [28]. The 4D scheme is often adopted by the recent experiments at both
the Tevatron and LHC. Different choices of the recombination scheme can cause differences in
the NLO predictions, as will be shown later in the benchmark comparison section. Note that,
with the 4D scheme, the jet could be massive, which means that the jet’s pseudorapidity will
not be equal to its rapidity.

• The jet acceptance conditions specify if the jet will be considered in the final observables.
For example, to be taken into account, the total transverse momentum pT of the jet in the
acceptance region must be larger than a threshold value pmin

T of a few tens GeV/c. In NLO
calculations of single-inclusive jet distributions, the jet acceptance conditions practically have
no effects. In dijet production, they may change the cross sections by small amounts by affecting
the selection of two leading jets.

• Renormalization and factorization scales. The scale choice is only related to theory and
has no correspondence in experiment. It is conventional to choose the renormalization and
factorization scales to be of the order of the typical transverse momentum pT of the jet(s):
µR ∼ µF ∼ pT . In contributions with two resolved jets, pT naturally corresponds to the
transverse momentum of either of the final-state jets (which are about equal by momentum
conservation). More ambiguity is present in contributions with three resolved jets, when pT can
correspond to the transverse momentum of either of the jets in each event or to a combination of
three transverse momenta. The conventional choices made by experimentalists are to set both
of the scales to individual jet pT for single inclusive jet production and to the average pT of the
two leading jets for dijet production.

2.3. Typical kinematical variables

For completeness, we provide definitions of typical kinematical variables arising in recent measure-
ments. The leading jet has the largest transverse momentum pTj among all jets in each scattering
event. Single-inclusive jet cross sections may refer either to distributions of the leading jets or indi-
vidual jets (so that all jets hitting a particular kinematic bin in every event are counted). Currently,
MEKS has a built-in mode for computing single-inclusive distributions of individual jets, although
distributions for the leading jets can be easily implemented. The transverse momentum and rapidity
of the individual jet are denoted by pTj and yj, respectively.
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In dijet production, kinematical variables are formed from the four-momenta of the first and
second leading jets, pµ

1j and pµ
2j . Common distributions are given in terms of the dijet’s invariant mass

mjj =
√
(p1j + p2j)2, the maximal absolute rapidity value ymax = max (|y1j | , |y2j|) in the jet pair,

and the angular variable χ = exp(|y1j − y2j |).

3. Description of the program

3.1. Algorithm

The goal of the MEKS program is to calculate double-differential cross sections for single-inclusive
jet or dijet production at hadron colliders up to NLO in QCD. Its basic algorithm is shown in Fig. 1. All
executables, input files, and output files are stored in the subdirectory data/. The main computation is
carried out in an executable jetbin, which performs Monte-Carlo integration of fully differential NLO
cross sections using the VEGAS algorithm provided by the CUBA library [21]. The input parameters
are read from several .card files. In view of the rapid falloff of the cross section across the available
phase space region, the integration volume is divided into subregions which are handled separately,
and additional optimization is performed to achieve percent-level accuracy in each subregion. The
integration runs in a sequence of three steps. First, it scans over entire kinematic regions of the jet
observables and calculates Monte Carlo sampling weights for different regions in order to improve
the efficiency of the sampling. In step 2, the program generates and optimizes the VEGAS grids
for MC samplings using the above weights. In the final step, it performs Monte Carlo sampling
based on the corresponding VEGAS grids and generates the weighted events. For each sampling
event, the program generates independent components of partonic momenta (4 components in 2 → 2
subprocesses and 7 components in 2 → 3 subprocesses). It then computes the cross section weight
for the event as described in Sec. 2, using the parton-level cross sections, PDFs, and measurement
functions. Parametrizations of the PDFs are provided by the LHAPDF library [29], which requires
PDF table files (.LHgrid) as an input for interpolation. The momentum components and final weight
of each event are written into auxiliary two-dimensional histograms in an ASCII file. The bin sizes
are chosen to be substantially smaller than in a typical experiment, of order 1 GeV for momentum
variables, and 0.1 for rapidity variables. Finally, when the computation is finished, the auxiliary
histograms can be rebinned into the bins of a selected experiment using the jetana program.

3.2. Installation

The MEKS code is installed by unpacking the archive (.zip) file and running make in the main
directory. An external LHAPDF library is required and the path of the LHAPDF library should be set
in the makefile before running make. The compilation requires gcc, g++, and gfortran compilers.
The compiler will generate two executables in the subdirectory data: jetbin for generating the
intermediate histogram files, and jetana for calculating the final differential cross sections. Running
make clean will delete all the compiled libraries and executables.

3.3. The source

The main directory contains 8 source files together with 3 subdirectories. jetbin.f contains the
main program for the Monte Carlo sampling. The EKS function RENO() that returns the integral for
the jet cross sections is stored in ekscode.f. The module modsub.f contains subroutines for reading
the inputs, clustering and selection of jets, recording of the events, generation of the histograms, and
interface to the CUBA library. lha_interface.f is the interface to the LHAPDF library. user.inc
and var.inc are header files with definitions of variables and common blocks. jetana.cxx is a C++
source file for the offline rebinning of the histogram files into the final double-differential cross sections.
These files are not supposed to be changed by the user. Customization of inputs and outputs can be
done by editing the module userfunction.f, as described in Sec. 3.6.

Besides the subdirectory data/ described above, the subdirectory lib/ contains a simplified CUBA
library. It is written in C and includes only VEGAS algorithm. Examples in the subdirectory example/

show how to set the input files for representative Tevatron and LHC measurements.
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Input parameters from
data/*.card files

VEGAS
in CUBA library

Generate a sample event (4-momenta of
partons) using the optimized grids

Compute the matrix elements
and event weight

data/sample.datOffline analysis by
data/jetana

User-defined distributions
in experimental bins:

d(sigma)/(dpT dy), etc.

Fill the event into a histogram
with small bins

LHAPDF library

PDF table files 
(.LHgrid)

MEKS
algorithm

Optimize VEGAS grids to uniformly
sample phase space

Fix the grids and event
numbers per iteration

Monte Carlo integration by data/jetbin

  

          

Do it N timessam.

For each subregion
repeat for maxeval iterations

Figure 1: The algorithm of the computation.

3.4. Input parameters

The input parameters are specified in the files with the extension .card. Each line contains a
record for one input variable: a character tag with the name of the variable, followed by the variable’s
value.

proinput.card specifies overall controls for the computation

• pdfname is the name of the PDF file to be used in the calculation, e.g., cteq66.LHgrid if
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promode Observable Distribution

1 Single-inclusive d2σ/(d |yj| dpTj)
2 Dijet d2σ/(dymaxdmjj)
3 Dijet d2σ/(dχdmjj)
4 User-specified d2σ/(dv1dv2)

Table 1: Implemented computational modes.

CTEQ6.6 central PDFs are used.

• pdfmem specifies which member of the PDF set from the LHAPDF library is to be invoked. For
example, set pdfmem=0 to access the central PDF set or another integer to access an error PDF
according to the definition provided by LHAPDF.

• promode specifies the double-differential distribution. Set promode=1,2, or 3 to produce com-
mon distributions listed in Table 1, where the kinematical variables are defined in Sec. 2.3.
Alternatively, choose promode=4 to compute a user-defined distribution that is specified in
userfunction.f.

• smode specifies the choice of the hard momentum scale µ0 that defines the central value of the
factorization and renormalization scales: µF = κFµ0 and µR = κRµ0, where κF and κR are
the prefactors of order unity that are input as fscale and rscale later in the card. Currently
smode = 1 sets the central scale to the individual jet pT for single-inclusive jet production and
to the average pT of two leading jets for dijet production. smode = 2 sets the central scales equal
to the leading jet’s pT for both single-inclusive jet and dijet production. For the user-specified
calculation mode (promode=4), the central scale should be set directly in userfunction.f by
the user.

• loop specifies the order of the QCD coupling: 0 for a LO calculation and 1 for a full NLO
calculation (LO + NLO corrections).

• ppcollider represents the type of the collider: 0 for a pp̄ machine and 1 for a pp machine.

• sqrtSS gives the center-of-mass energy
√
s of the collider in GeV.

• fscale and rscale are the prefactors for µF and µR, cf. the discussion above.

• iseed specifies the random-number seed used by the VEGAS subroutine. If iseed = 0 (recom-
mended), the seeds are generated randomly from the internal clock readings. The results from
different runs will be statistically independent and can be combined to improve the numerical
accuracy. Or, the user can specify iseed 6= 0 to reproduce the same pseudorandom numbers
in subsequent runs.

• maxeval specifies the total number of iterations carried out in the calculation as shown in Fig. 1.
maxeval controls both the CPU time cost and numerical accuracy of each job. Note that for
all the calculation modes except the user-specified one, the numbers (Nsam) of Monte Carlo
sampling points for each iteration and subregion are determined automatically, and are not
supposed to be specified by the user. They may differ for different subregions. For example,
more sampling points can be placed into a subregion with a large volume or close to the edges
of the phase space. Since the offline analysis code can combine results from several independent
jobs to improve the numerical accuracy, we suggest that the user runs multiple jobs on a cluster
or multi-core machine with maxeval<5, rather than a single job with a large maxeval value.

kininput.card contains parameters for clustering and selection of jets, in the same format as in
proinput.card.

• jetalgo specifies the jet algorithm used in the calculation: 1 for the anti-kT jet algorithm, 2 for
the modified Snowmass algorithm, in which the Midpoint algorithm is a special case of Rsep =

2 at NLO.
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• recscheme sets the recombination scheme used in jet clustering: 1 for the 4D scheme and 2 for
the ET scheme.

• Rcone sets the cone size or distance parameter for the jet algorithm used.

• Rsep sets the separation parameter used in the modified Snowmass algorithm. Note that in the
theoretical calculations here, the modified Snowmass algorithm with Rsep = 2 is equivalent to
the Midpoint algorithm.

• ptcut and ycut specify conditions for jet acceptance, i.e., the lowest value of pTj and largest
absolute value |yj | of the rapidity that a jet can have in order to be taken into account in jet
observables.

• yboost is only active for promode = 3. It specifies the upper limit on the rapidity of the dijet
system yb = |y1 + y2|/2.

user.card contains additional parameters that are needed by the user-specified mode, which means
it is only necessary for promode = 4. See Sec. 3.6 for additional details.

In order to balance the numerical accuracy in different kinematic regions, thus improve the effi-
ciency, the program can divide the entire integration volume into several (at most 10) subvolumes,
which will be calculated separately. Boundaries of each volume are set in liminput.card, which
starts with a comment region in the first line, followed by the lower and upper limits for the first
(dimensionless) jet observable (rapidity or χ) in the next line, and then by the limits for the second
jet observable (pTj or mjj in GeV) in the third line.

The last input file bins.in specifies the settings for the offline rebinning of the final two-dimensional
differential cross sections in jetana. It is different from liminput.card,which only specifies the opti-
mal subvolumes at the integration stage. Consider the following example, in which the single-inclusive
cross sections are redistributed into 2 bins of rapidity, 0 ≤ yj ≤ 1 and 1 ≤ yj ≤ 2, with the 0 ≤ yj ≤ 1
bin containing 3 pTj bins (30-50, 50-80, 80-100 GeV), and the 1 ≤ yj ≤ 2 bin containing 2 pT bins
(40-80 and 80-100 GeV). This is achieved with the following bins.in:

1 ## User’s comments
2 ## User’s comments
3 ## User’s comments
4 1 #promode
5 2 #number of bins of variable 1
6 0.0 1.0 2.0 #boundaries of bins of variable 1
7 #Specify bins of variable 2, in bin 1 of variable 1
8 3 #number of bins
9 30.0 #boundaries of bins

10 50.0
11 80.0
12 100.0
13 #Specify bins of variable 2, in bin 2 of variable 1
14 2 #number of bins
15 40.0 #boundaries of bins
16 80.0
17 100.0

Line 1-3 and 4 contain the user’s comments and value of promode. The rest of the file contains the
number and boundaries of the yj bins (lines 5-6), then of the pTj bins in the first rapidity bin (lines
8-12), and finally of the pTj bins in the second rapidity bin (lines 14-17).

To match the format of the experimental data, for promode = 3, the order of the two jet variable
in bins.in is opposite to the one in the histogram generation, i.e., mjj is in the first variable, and χ
is in the second one. The subdirectory example contains sample files of liminput.card and bins.in

for various distributions at the LHC and Tevatron.

3.5. Execution

To run the program, first enter the subdirectory data, then run ./jetbin $(name). $name specifies
the name of the running job that distinguishes the outputs of different jobs. The program will run the
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3-steps sequence for each kinematic subregion mentioned before. The output file sample$(name).dat

stores a histogram with the cross sections and integration errors, which is updated after each iteration.
Below are the first few lines of the output file from a test run.

1 LHC 7000 user specified anti-kt rec(4D) LO(pb)
2 PDF used: CT10.LHgrid member: 0
3 muf(mur): 0.1000E+01 (0.1000E+01) *user_defined dR: 0.6000E+00 Rsep: 0.2000E+01
4 jet acceptance: |eta|<4.40 pt> 15.00 GeV dijet boost (only for chi): |yb|<1.00
5 2Dbins: rap/chi/v1 vs. pt/mass/v2
6 0.10 1.00
7 2 0 3.4
8 6
9 0.0000E+00 0.1000E+01 0.7000E+02 0.3310E+04

10 0.1000E+01 0.2000E+01 0.1600E+03 0.3930E+04
11 0.2000E+01 0.3000E+01 0.3700E+03 0.4640E+04
12 0.3000E+01 0.3500E+01 0.1180E+04 0.5040E+04
13 0.3500E+01 0.4000E+01 0.1760E+04 0.5470E+04
14 0.4000E+01 0.4400E+01 0.2550E+04 0.4270E+04
15 101036.549705923 17786.8878510429
16 76281.7571472343 14782.5878433955
17 90096.2647871803 17148.2526023941
18 64693.6882833766 12677.7540684543
19 70691.2937015596 13201.9918739291
20 87217.4486225131 15296.3531357402
21 58842.6156645410 10017.7794593842
22 58440.4567807920 9565.31015305604
23 43218.4690333846 7188.36482488373
24 36809.3489243188 6839.88584958308
25 53239.8950061995 8663.33778921252
26 42076.4229811524 6838.48396473720
27 53591.3648097391 7698.18602397479
28 45424.7820507153 6697.38457240572
29 33785.8434883951 5971.33017051214
30 33129.2531779327 6132.28492415771

...

Lines 1-6 is a header describing the calculation. As we can see, it is for a user-specified double-
differential cross section (promode=4) at the LHC with

√
s = 7 TeV, at the LO using the anti-kT jet

algorithm and 4D recombination scheme. The widths of the two jet observables (|yj1 − yj2|/2 and
mjj) in the fine histograms are 0.1 and 1 GeV, respectively. Line 7 contains the number of iterations
that are finished (2), the iseed value (0), and the elapsed CPU time in minutes (3.4). Lines 8-14
shows the number of subregions (6) and the boundaries of the first and second jet observables in each
subregion. The remaining lines contain the finely-binned histogram, which lists the cross sections (left
column) and their integration errors (right column) in picobarns. They are sorted in the ascending
order by the subregions’ ID, then by the first jet observable, and then by the second jet observable.
Here the integration errors are estimated by the standard procedure of Monte Carlo samplings as

δ = (
∑

ω2
i − [

∑
ωi]

2/Nsam)1/2, (7)

where the sum is taken over all the sample points i with contribution ωi to the cross sections in the
corresponding histogram, and Nsam is the total number of sample points.

From this output histogram file, the final differential cross sections are computed simply by running
./jetana sample$(name).dat and using bins.in as the input. The jetana code prints the final
cross sections to both the screen and output file xsec.out. Remember that the generation of the
histograms and their final analysis are done in two separate steps: one can obtain the results for a
different binning simply by changing bins.in, without regenerating the histograms. Below, we show
the first few lines of xsec.out from the same test run as above.

LHC 7000 user specified anti-kt rec(4D) LO(pb)
PDF used: CT10.LHgrid member: 0

muf(mur): 0.1000E+01 (0.1000E+01) *user_defined dR: 0.6000E+00 Rsep: 0.2000E+01
jet acceptance: |eta|<4.40 pt> 15.00 GeV dijet boost(only for chi): |yb|<1.00
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all energy in GeV and Xsecs in pb

v2 min v2 max Xsec/dv1/dv2 Error
--------------------------------------------
0 < v1 < 0.5
--------------------------------------------
70.00 110.00 3.858290e+05 7.372963e+03
110.00 160.00 5.187682e+04 7.097831e+02
160.00 210.00 9.767103e+03 1.363626e+02
210.00 260.00 2.716344e+03 3.836675e+01
260.00 310.00 9.441967e+02 1.350540e+01
310.00 370.00 3.744642e+02 4.957253e+00
370.00 440.00 1.378121e+02 1.750501e+00
440.00 510.00 5.512034e+01 7.158074e-01
510.00 590.00 2.281043e+01 2.850772e-01
590.00 670.00 9.896396e+00 1.283644e-01
670.00 760.00 4.507472e+00 5.775927e-02
760.00 850.00 2.141786e+00 2.761155e-02
850.00 950.00 1.043917e+00 1.314810e-02
950.00 1060.00 5.053051e-01 6.317605e-03
1060.00 1180.00 2.409892e-01 3.000414e-03
1180.00 1310.00 1.155737e-01 1.420040e-03
1310.00 1450.00 5.407524e-02 6.718418e-04
1450.00 1600.00 2.512264e-02 3.128897e-04
1600.00 1940.00 8.453138e-03 7.948315e-05
1940.00 2780.00 9.715742e-04 7.791561e-06
...

As we mentioned earlier, the user can run multiple parallel jobs and combine the results using the
analysis code (remember to set iseed = 0). The combination can be carried out in two ways. The
user can just run ./jetana sample$(name1).dat ... sample$(nameN).dat to get the combined
results, or, alternatively, run ./jetana combine sample$(name1).dat ... sample$(nameN).dat

to merge the histograms sample$(name1).dat ... sample$(nameN).dat into a new histogram file
combine.dat. In the latter case, run ./jetana combine.dat afterwards to get the combined results
just as for a single job run. Note that when combining results from different jobs, the program uses
the number of iterations as the default weight for each job. It is equivalent to the standard optimized
procedure of using 1/δ2 as weights for large number of sampling points, since then the numerical error
δ of each job is proportional to the inverse of the square root of the iteration numbers. We choose this
simple combination procedure because it works best in the presence of statistical fluctuations that
may occur in small-sized bins.

3.6. Customization

The module userfunction.f is called with the promode=4 option. It contains two short subrou-
tines that control the input of the integration parameters (readuser) and generation of the output
histograms (userselect). By modifying these subroutines, the format of the input and output from
the jetbin code can be customized. In particular, readuser reads several input parameters from
data/user.card that are passed into the main code through a double-precision array duser(10).
The first 5 lines of user.card explain what the inputs do, and they are followed by at most ten
values, with a single entry per line. These values are kept throughout the calculation in the array
duser(10). The first four values are mandatory. They represent the widths of the histogram bins
for the first and second jet observable, a typical pT scale µjet (in GeV), and the number of sampling
points in each iteration (user can adjust it according to the required numerical accuracy). µjet must
be set to be of the order of average jet pT to optimize Monte Carlo sampling. Other parameters can
be optionally defined to pass additional elements for the array duser(5:10). Instructions for the
customization are included as comments in userfunction.f.

4. Performance and benchmark comparison

Figs. 2-7 compare our representative numerical results with the ones provided by FastNLO 1.0 [18]
for the pT distributions of single-inclusive jets, the invariant mass distributions of dijets, and (in
the case of D0 Run-2) the angular distributions (χ) of dijets. Kinematical bins of the Tevatron
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Figure 2: Comparison of pT distributions for single-inclusive jet production from MEKS and FastNLO for D0 Tevatron
Run II measurement [30].

(
√
s = 1.96 TeV) [30, 31, 32, 33] and LHC (

√
s = 7 TeV) [11, 12] measurements, and CTEQ6.6 central

PDFs [34] were used. For this benchmark comparison, we use the Midpoint algorithm at the Tevatron
and anti-kT algorithm at the LHC. The cone size R is indicated in the figures. The central µF,R scales
are set to the individual jet pT in the single-inclusive jet production and the average pT of the two
leading jets in dijet production, in accordance with the experimental measurements. We use the 4D
recombination scheme. The comparison to the ET recombination scheme is included at the end of
this section.

In Table. 2, we summarize the performance of the program for these representative calculations
at NLO as well as LO (shown by values in parentheses). The elapsed CPU time and the achieved
numerical accuracy are shown for a single job with one iteration run on a 2.5-GHz Intel Xeon processor.
Npts is the total number of experimental bins for each calculation. The integration errors are averaged
over all the bins. As was mentioned, the user can run parallel jobs and combine the results at the
end, in which case the numerical errors go down proportionally to 1/

√
Ntot, where Ntot is the total

number of iterations in all jobs.

Table 2: Performance of the program for different calculations with one iteration.

Exp. ID Descriptions Npts CPU time (in mins.) Numerical errors
1 CDF inclusive jet 72 75(2.5) ∼8(2)%
2 D0 inclusive jet 110 114(3.8) ∼6(2)%
3 D0 dijet mass 71 146(3.8) ∼5(2)%
4 D0 dijet angular 120 197(3.4) ∼5(1)%
5 CMS inclusive jet 176 477(15.0) ∼8(1)%
6 CMS dijet mass 125 357(10.7) ∼6(1)%

In Figs. 2-7, left panels show ratios of MEKS to FastNLO cross sections, σEKS/σFastNLO, at LO (red
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Figure 3: Comparison of pT distributions for single-inclusive jet production from MEKS and FastNLO for CDF Tevatron
Run II measurement [31].

points with error bars) and NLO = LO + NLO-correction (blue points with error bars), in kinematical
bins provided by the experiments. The horizontal axis indicates the ID of each bin, which are arranged
in the order of increasing jet rapidity yj and then the jet’s pTj or mjj for the single-inclusive jet and
dijet mass measurements, or mjj then χ for the dijet angular measurement. Vertical lines indicate
the boundaries of each rapidity or invariant mass interval. For example, Fig. 2 shows σEKS/σFastNLO

in 6 bins of jet rapidity, with bins 1...23 corresponding to the first rapidity bin (|y| < 0.4), bins 24...45
corresponding to the second rapidity bin (0.4 < |y| < 0.8), and so on. The left panel includes, from
top to bottom, three plots obtained with the renormalization and factorization scales equal to 1/2,
1, and 2 times the central scale. We can see a good overall agreement between MEKS and FastNLO
both at LO and NLO. The only significant discrepancies are found in the highest pTj bins for both the
Tevatron and LHC single-inclusive jet production, which are due to the difference in the scale choices
used in MEKS and FastNLO 1.0. [These differences reduce when going to NLO]. In the MEKS single-
inclusive jet calculation, we use the actual pT of the partonic jet filled into the bin as the scale input.
FastNLO 1.0 sets the scale according to a fixed pT value in each experimental bin, which tends to
be different from the actual pT of the jet in the highest pT bins, which have large widths. The same
reason causes a small normalization shift in other pT bins. For dijet production, we only observe
random fluctuations at highest mjj that are mainly due to numerical integration errors. There is a
new version of FastNLO, FastNLO 2.0 [35], in which the scale is no longer set to a fixed value in
each bin. The tables for this version are not available for the Tevatron jet cross sections, but they are
available for the ATLAS and CMS single-inclusive jet cross sections. When we used FastNLO 2.0 for
the cross sections in Fig. 6, we find much better agreement with our MEKS results.

As a practical application, we wish to examine the sensitivity of the NLO cross section to the
choice of the QCD scales µF and µR. In the right panels of Figs. 2-7, for each distribution, we present
plots using MEKS of the NLO K factor, defined as the ratio of the NLO differential cross section to
the LO one. The value of the K factor and its stability with respect to the scale choice may provide
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Figure 4: Comparison of invariant mass distributions for dijet production from MEKS and FastNLO for D0 Tevatron
Run II measurement [32].

an indication of the magnitude of yet higher-order corrections. To minimize the potential effect of
higher-order terms, one might opt to choose the renormalization and factorization scales that bring
the K factor close to unity in most of the kinematical region. An alternative approach for setting
the scale is based on the minimal sensitivity method, which suggests to choose the µR and µF values
(taken to be equal and designated as µ in the following) at the point where the scale dependence of
the NLO cross section is the smallest.

In (di)jet production at central rapidities at the Tevatron, both requirements (K ≈ 1
and dσNLO(µ)/dµ ≈ 0) could be satisfied by choosing µ ≈ 0.5 pT ; see, e.g., the appendix in Ref. [36].
However, the point of the minimal sensitivity shifts to higher values (close to pT or even higher) at
forward rapidities at the Tevatron or at all rapidities at the LHC. For such higher scales, however,
it is hard to satisfy the requirement that K remains close to unity at the same time. This point
is illustrated by our plots of the K factors. At the central rapidities and µR = µF = 0.5 pT at the
Tevatron (the lowest 3 rapidity bins in Figs. 2-5), K ≈ 1 and is relatively independent of pT , as seen in
the top subpanels. However, with this scale choice the K factor deviates significantly from unity and
has strong kinematic dependence if the rapidity and pT are large. If one chooses the scale that is equal
to pT or even 2 pT (the middle and bottom figures), in accord with the minimal sensitivity method
for the forward bins, the kinematical dependence of the K factor reduces, but its value increases to
1.3-1.6 in most of the bins.

For CMS kinematics (Figs. 6-7), the K factor has significant kinematical dependence for all central
scale choices, however, the choice µR = µF = pT (the middle subpanels) results in a comparatively
flatter K factor that is also closer to unity. We can see that it is hard to find a fixed scale (or a scale
of the type pT × (a function of y) [13]) that would simultaneously reduce the magnitude of the NLO
correction and stabilize its scale dependence and kinematical dependence. The scale 0.5 pT may be
slightly more optimal at the Tevatron, and the scale pT may be slightly better at the LHC.
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Figure 5: Comparison of angular (χ) distributions for dijet production from MEKS and FastNLO for D0 Tevatron Run
II measurement [33].

As a final comparison, in Figs. 8 and 9, we plot the ratios of the NLO distributions calculated
using different recombination schemes, where σ4D is obtained with the 4D scheme, and σET

is with
the ET scheme. For single-inclusive jet production at both the Tevatron and LHC, σET

is larger than
σ4D. An opposite trend is observed in dijet production. Differences of the predictions based on the
two schemes are larger with the Midpoint algorithm (used at the Tevatron) than with the anti-kT
algorithm (used at the LHC). In a NLO calculation, the Midpoint algorithm allows a larger maximal
angular separation (2R) between the two partons forming a jet, compared to the anti-kT algorithm
that only allows the angular separation up to R. This produces the observed different behaviors of
the two jet algorithms.

5. Conclusion

In conclusion, this document describes the upgraded EKS program (MEKS) that provides a fast
and stable NLO calculation of double-differential cross sections for single-inclusive jet and dijet pro-
duction at hadron colliders. The new program uses the VEGAS Monte Carlo sampling and the EKS
function to generate weighted events and fill them into finely binned two-dimensional histograms for
a later analysis. It also includes a user interface to add new jet observables, which is advantageous
compared to the popular FastNLO code [18, 19] that provides only the cross sections in the bins of the
already completed measurements. Distributions of sample events are tuned automatically to speed up
convergence of the integration of steep differential distributions. The program allows parallelization of
the Monte-Carlo integration. In order to facilitate the precision comparison of the MEKS code with
other existing codes for computations of NLO cross sections, we document a benchmark comparison
of the MEKS and FastNLO, and find good agreement. The MEKS code is available at the webpage
http://www.hepforge.org/downloads/meks.
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Figure 6: Comparison of pT distributions for single-inclusive jet production from MEKS and FastNLO for CMS LHC
(7 TeV) measurement [12].
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