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Abstract

The Prokof’ev Svistunov worm algorithm was originally developed for models
with nearest neighbor interactions that in a high temperature expansion are
mapped to systems of closed loops. In this work we present the surface worm
algorithm (SWA) which is a generalization of the worm algorithm concept
to abelian Gauge-Higgs models on a lattice which can be mapped to systems
of surfaces and loops (dual representation). Using Gauge-Higgs models with
gauge groups Z3 and U(1) we compare the SWA to the conventional approach
and to a local update in the dual representation. For the Z3 case we also
consider finite chemical potential where the conventional representation has a
sign problem which is overcome in the dual representation. For a wide range
of parameters we find that the SWA clearly outperforms the local update.
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1. Introduction

Monte Carlo simulations are a powerful tool for the analysis of spin
systems and lattice field theories and Monte Carlo techniques have seen a
tremendous development over the last decades. An important aspect of this
development is the choice of the representation of a physical system that is
optimal for the Monte Carlo simulation.

A prominent example for the success of a Monte Carlo simulation in an
alternative representation is the Prokof’ev Svistunov worm algorithm [1].
Originally it was proposed for the simulation of spin systems in a loop rep-
resentation. The loop representation (or dual representation) is obtained
from the usual spin language by a high temperature expansion where the
new degrees of freedom are link occupation numbers subject to constraints
at the sites of the lattice, such that admissible configurations correspond to
loops on the lattice. The worm algorithm not only solves the problem of
properly taking into account the constraints in the Monte Carlo update but
turned out to be outperforming many previous simulation approaches in the
conventional formulation [2].

The worm algorithm concept found many interesting applications also for
quantum field theories on a lattice. In this area a strong motivation for dual
representations is the study of quantum field theories with a chemical po-
tential, where in many cases the standard representation has complex action
and a direct Monte Carlo simulation is not possible. Lattice field theories
that were studied with worm-type algorithms comprise scalar field theories
[3, 4, 5], fermion systems in various settings, in particular with four fermi
terms or in the strong coupling limit [6], as well as effective theories for the
QCD phase diagram [7]. All these systems have in common that the interac-
tion on the lattice is either supported on a single site or on nearest neighbors.
The resulting dual representation thus consists of loops.

A genuinely new element appears in the dual representation of gauge
theories. There the interaction is based on the plaquettes of the lattice and
the corresponding dual variables (integers assigned to the plaquettes) form
surfaces. While for the non-abelian case the structure is rather involved
[8], abelian gauge theories have a straightforward representation in terms of
closed surfaces. Nevertheless only a few suggestions and attempts for a dual
simulation of abelian gauge theories can be found in the literature [4, 5, 9]
and the main obstacle for a worm-type algorithm is to efficiently generate
the closed surfaces of the dual representation.
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It is interesting to note that the situation is simplified, when matter is
coupled to abelian gauge fields: The dual variables of matter fields are fluxes
based on the links of the lattice that serve as boundaries of the surfaces rep-
resenting the gauge degrees of freedom. Despite the fact that an additional
field appears, the dual representation and in particular its Monte Carlo sim-
ulation become simpler because the algorithm now also may use plaquettes
bounded by matter flux. A first analysis of a Gauge-Higgs system in the dual
representation with a local Monte Carlo update was presented in [10].

In this article we now present a new Monte Carlo strategy: The surface
worm algorithm (SWA) which is a generalization of the worm algorithm to
a system of surfaces and loops, i.e., dual representations of abelian Gauge-
Higgs models. The SWA uses two main elements: Changing the flux at an
individual link as well as changing a plaquette occupation number and the
flux on two of the links of that plaquette. These steps are used to efficiently
build up filament-like structures where the link and plaquette occupation
numbers are altered. We verify and test the surface worm algorithm for
lattice Gauge-Higgs models with gauge groups U(1) and Z3. The latter case
has a complex action problem in the conventional approach which is overcome
by the dual representation. We find that in both models the surface worm
algorithm outperforms local updates.

2. Two abelian Gauge-Higgs models and their dual representation

We use two different Gauge-Higgs models based on the gauge groups
Z3 and U(1) to test the surface worm algorithm and explore its properties.
This section defines the two models in their conventional representations and
summarizes their dual form in terms of loops of flux and surfaces. For the
actual derivation of the dual representation we refer to the literature, to [10]
for the case of the Z3 model and to [11] for U(1).

2.1. The Z3 Gauge-Higgs model

In the conventional form the degrees of freedom of the Z3 Gauge-Higgs
model are the gauge fields Ux,ν , ν = 1, 2, 3, 4 living on the links of a 4-
dimensional lattice, and the scalar matter fields φx located on the sites. Both
sets of degrees of freedom are in the gauge group Z3 = {1, ei2π/3, e−i2π/3}.
The lattice we consider has size V4 = N3

s ×Nt and we use periodic boundary
conditions for both fields. The action S is a sum of the gauge action SG and
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the action SM for the matter fields. The gauge action is given by

SG = −β
2

∑
x

∑
ν<ρ

[
Ux,νρ + U∗x,νρ

]
, (1)

where Ux,νρ = Ux,νUx+ν̂,ρU
∗
x+ρ̂,νU

∗
x,ρ and β is the inverse gauge coupling. The

action for the matter fields is

SM = −κ
∑
x,ν

[
eµδν,4φ∗x Ux,ν φx+ν̂ + e−µδν,4φx U

∗
x,ν φ

∗
x+ν̂

]
, (2)

where a chemical potential µ is coupled to the terms in the temporal direction
and the hopping parameter κ is a positive real number. The partition sum of
the conventional representation is given by Z =

∑
{U,φ} e

−SG−SM where the
sum is over all possible field configurations. We stress that in the conventional
form the Z3 Gauge-Higgs model has a complex action problem at non-zero
chemical potential, i.e., SM is complex for µ > 0.

The partition sum can be rewritten exactly [10] into a dual representation
where the new degrees of freedom are link variables lx,ν ∈ {−1, 0,+1} and
plaquette variables px,ρν ∈ {−1, 0,+1}. The partition function is a sum over
all configurations of the link and plaquette variables,

Z = C
∑
{p,l}
W [p, l] CS[l] CL[p, l] . (3)

The configurations {p, l} in (3) come with real and positive weight factors

W [p, l] =
(∏

x

∏
ν<ρ

B |px,νρ|κ

) (∏
x

3∏
i=1

B
|lx,i|
β

) (∏
x

Mlx,4

)
, (4)

with

Bκ =
e2κ − e−κ

e2κ + 2e−κ
, Bβ =

eβ − e−β/2

eβ + 2e−β/2
. (5)

The overall constant C in (3) is given by (3B 3
κ B

6
β )V4 . The last contribution

to the weight (4) contains the chemical potential. It is a product over factors
Mlx,4 with

Ml =
1

3

[
e2κ cosh(µ) + 2e−κ cosh(µ) cos

(
κ
√

3 sinh(µ)− l2π
3

)]
, (6)
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where l = +1, 0,−1. Note that the factors Ml are real and positive also for
µ > 0. Thus the complex action problem is solved in the dual representation.
The configurations {p, l} are subjects to the constraints

CL[p, l] =
∏
x

4∏
ν=1

T

 ∑
ρ:ν<ρ

[px,νρ − px−ρ̂,νρ]−
∑
ρ:ν>ρ

[px,ρν − px−ρ̂,ρν ] + lx,ν

 ,
CS[l] =

∏
x

T

(
4∑

ν=1

[lx−ν̂,ν − lx,ν ]
)
, (7)

that both contain the triality function T (n) which is defined to be 1 if n is a
multiple of 3 and vanishes otherwise. The constraint CS[l] is a product over
sites x of the lattice and enforces that the total flux

∑
ν [lx−ν̂,ν − lx,ν ] at the

site x is a multiple of 3. The constraint CL[p, l] is a product over links of the
lattice and forces the combined flux from the plaquettes attached to the link
and the corresponding link variable to be a multiple of 3.

The admissible configurations of the dual variables p and l have the inter-
pretation of surfaces made of non-zero plaquette variables px,νρ. The surfaces
can either be closed (without boundaries) or they are bounded by loops of link
variables that compensate the flux at the links that constitute the boundary
of the surfaces.

2.2. The U(1) Gauge-Higgs model

In the U(1) Gauge-Higgs model the degrees of freedom are gauge fields
Ux,ν ∈ U(1) at the links of the lattice and a charged scalar Higgs field φx ∈ C,
attached to the sites. Again we consider a 4-dimensional lattice with V4 =
N3
s ×Nt and periodic boundary conditions for both fields. The gauge action

SG has the same form as in (1) – only the link variables are U(1)-valued now.
The action for the matter fields is given by

SM =
∑
x

[
κ|φx|2 + λ|φx|4 −

∑
ν

(
φ∗xUx,νφx+ν̂ + φxU

∗
x,νφ

∗
x+ν̂

)]
. (8)

The parameter κ denotes 8 +m2, where m is the bare mass parameter and λ
is the quartic coupling. The partition sum Z =

∫
D[U ]D[φ]e−SG−SM is given

as an integral over all field configurations.
Again the partition sum can be mapped exactly to a dual representation.

Here we need two sets of link variables, lx,ν ∈ Z, lx,ν ∈ N0, and plaquette
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occupation numbers px,ρν ∈ Z. The dual partition function is a sum over all
configurations of the l, l and p variables,

Z =
∑
{l,l}

∑
{p}
WM [l, l]WG[p] CS[l] CL[p, l] . (9)

The weight factors are

WM [l, l] =
∏
x,ν

1

(|lx,ν |+lx,ν)!lx,ν !
∏
x

P

(∑
ν

[|lx,ν |+|lx−ν̂,ν |+ 2(lx,ν+lx−ν̂,ν)]

)
,

WG[p] =
∏
x,ρ<ν

Ipx,ρν (β) , (10)

where Ip(β) denotes the modified Bessel functions and the P (n) are the
elementary integrals P (n) =

∫∞
0 dx xn+1e−κx

2−λx4 . In a numerical simulation
the P (n) are pre-computed and stored for a sufficient number of values n
so they can be used for determining the Metropolis acceptance probabilities
efficiently. Only the l and the p variables are subject to constraints given by
( δ(n) is here used to denote the Kronecker delta δn,0 )

CL[p, l] =
∏
x

4∏
ν=1

δ

 ∑
ρ:ν<ρ

[px,νρ − px−ρ̂,νρ]−
∑
ρ:ν>ρ

[px,ρν − px−ρ̂,ρν ] + lx,ν

 ,
CS[l] =

∏
x

δ

(
4∑

ν=1

[lx−ν̂,ν − lx,ν ]
)
. (11)

The constraints have the same form as for the Z3 case, i.e, we have constraints
CS[l] that are based at the sites for the variables l and constraints CL[p, l] that
are based on the links and combine p and l variables. The only difference is
that the triality functions of (7) are for the U(1) case replaced by Kronecker
deltas, implying that all fluxes must vanish exactly and not only modulo 3
as in the Z3 case.

3. Monte Carlo simulation

In this section we describe the surface worm algorithm (SWA). We also
discuss a local Metropolis algorithm (LMA) for the dual representation which
will be used for cross-checking the results from the SWA. Since the steps used
in the SWA may be viewed as a decomposition of the local update into smaller
elements we first discuss the local update.
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For the U(1) Gauge-Higgs model in addition to the plaquette variables
p and the constrained flux variables l we also have the unconstrained link
variables l. Due to the absence of a constraint we can update the link vari-
ables l using conventional Metropolis techniques, which are well documented
in textbooks (see, e.g., [12]) and thus are not discussed in this paper. The
update for the constrained variables discussed here is understood in a back-
ground configuration of the l variables and in the numerical tests presented
in Section 4 we simply alternate the update of the constrained variables with
sweeps for the l fluxes.

3.1. Local algorithm for the dual representation

The central aspect of a Monte Carlo simulation in the dual representation
is to generate only admissible configurations, i.e., configurations that obey all
constraints. The strategy which we adopt for the local update is to start from
a configuration where all constraints are obeyed – typically the configuration
where all flux and plaquette variables are set to 0 – and then to offer local
changes of the dual variables that do not violate the constraints.

The simplest local change is to increase or decrease a plaquette occupation
number px,νρ by ±1 and to compensate the violation of the constraint on the
links of the lattice by changing the link fluxes lx,σ by ±1. The two possible
changes (one for increasing px,νρ, one for decreasing) are illustrated in Fig. 1.
The change of px,νρ by ±1 is indicated by the signs + or −, while for the flux
variables we use a dashed line to indicate a decrease by −1 and a full line for
an increase by +1. It is easy to see that the pattern of changes for the flux
variables not only compensates the violation of the link-based constraints
from changing px,νρ but also leaves intact the site-based constraints at all
four corners of the plaquette. We stress that for the case of gauge group Z3

−

ν

ρ

+

Figure 1: Plaquette update: A plaquette occupation number is changed by +1 (lhs. plot)
or −1 (rhs.) and the fluxes at the links of the plaquette are changed simultaneously. We
use a full line for an increase by +1 and a dashed line for a decrease by −1. The directions
1 ≤ ν < ρ ≤ 4 indicate the plane of the plaquette.
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+

ν

ρ

σ

+

+

+
+

−

−

−

−

−

−

+

Figure 2: Cube update: The plaquette occupation numbers of a 3-cube are changed
according to the two patterns we show. The edges of the 3-cube are parallel to the
directions 1 ≤ ν < ρ < σ ≤ 4.

addition of ±1 is understood modulo 3, which is the usual addition, except
for the cases 1 + 1 = −1 and −1− 1 = 1.

A full sweep of these “plaquette updates” consists of visiting all plaquettes
and offering one of the two changes of Fig. 1 with equal probability. The offer
is accepted with the usual Metropolis probability min(1,W ′

loc/Wloc) where
W ′

loc and Wloc are the local weights of the trial configuration and the old
configuration. They can easily be evaluated from the weight factors discussed
in the previous section.

It is easy to see that the plaquette update alone is ergodic. Nevertheless
we found it advantageous to augment the plaquette update with a “cube
update” that involves only changes of plaquette numbers px,νρ. The cube
update helps to decorrelate the system in parameter regions where link flux
has a very small Boltzmann weight. The plaquettes on the faces of 3-cubes
of our 4-D lattice are changed according to one of the two patterns shown in
Fig. 2 (for Z3 addition is again modulo 3). The two possibilities are offered
with equal probability and it is easy to check that the link-based constraints
are not violated, and since no flux variables are involved also the site-based
constraints remain intact. A full sweep of cube updates consists of visiting
all 3-cubes, offering one of the two changes and accepting them with the
Metropolis probability computed from the local weight factors.

3.2. Surface worm algorithm

The surface worm algorithm (SWA) is constructed by breaking up the
plaquette update discussed in the previous subsection into smaller building
blocks used to grow filament-like clusters on which the flux and plaquette
variables are changed. We will first discuss in detail the SWA for the Z3

Gauge-Higgs model and then address the modifications necessary for U(1).
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ν

ρ

− −

+ +

+ +

+ +

− −

−−

Figure 3: 12 of the 24 possible positive (marked with +) and negative segments in the ν-ρ-
plane (ν < ρ). The remaining 12 segments are exactly the same but with the position of the
empty and dotted links exchanged. Segments in other planes are constructed equivalently.
The plaquette occupation numbers are changed as indicated by the signs. The links marked
with full (dashed) lines are changed by +1 (−1). The empty link shows where the segment
is attached to the worm and the dotted link is the new position of the link LV where the
constraints are violated.

As for any worm algorithm, in the SWA the constraints are temporarily
violated at a link LV and the two sites at its endpoints. This is done by
changing the flux at a randomly chosen link by ±1 (addition is again modulo
3 for the Z3 case). The defect at LV is then propagated through the lattice
by offering steps where a plaquette occupation number is changed by ±1
and two flux variables at two of the links of the plaquette. We refer to
these structures as “segments” and show some examples in Fig. 3. Attaching
segments propagates the link LV where the constraint is violated through
the lattice until the worm decides to terminate with the insertion of another
unit of link flux. Each step is accepted with a Metropolis decision.

Fig. 3 shows some examples of segments that are used by the SWA. The
plaquette occupation numbers are changed by ±1 as indicated and also the
fluxes at two of the links of the plaquette (again we use a full line if the flux
at a link is increased by +1 and dashed lines for a decrease by −1). We refer
to a segment as a “positive segment” if the plaquette occupation number
is increased (first and second segment shown in Fig. 3) and use “negative
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segment” otherwise (third and fourth segment). The empty link represents
the link where a segment is attached to the existing filament-like structure
of the SWA and the dotted link is the new (= shifted) position of the link
LV where the constraints are violated (“head of the worm”).

Thus the SWA proceeds as follows (for an example see Figs. 4(a)–4(e)):

• The SWA starts at a randomly chosen link L0 where the flux is changed
by ±1 (in the example Fig. 4(a) the flux is changed by −1). At this
link and at its endpoints the constraints are violated, i.e., LV = L0.

• Subsequently the SWA either moves LV by attaching a suitable segment
(Figs. 4(a)–4(d)) or decides to change the link flux at LV to heal the
violated constraint thus terminating the worm (Fig. 4(e)).

Whenever the worm decides to add a new segment it first randomly deter-
mines a new plane for the segment. This plane has to contain the direction
of the link LV that currently violates the constraint. Subsequently the worm
has to determine whether to insert a positive or a negative segment to create
only admissible configurations. The following steps and Fig. 5 explain how
the worm selects an admissible segment (1 ≤ ν < ρ < σ ≤ 4):

1. Depending on the direction of the link LV (i.e., LV ‖ ν̂, LV ‖ ρ̂ or
LV ‖ σ̂) identify LV as the central link surrounded by four plaquettes
in one of the diagrams of Fig. 5.

2. Identify the “old plane” and the “new plane”:
Old plane: plane of the last successfully updated segment.
New plane: plane of the new trial segment.

3. If the plaquettes in the old and the new plane are marked by different
lines (full versus dashed) keep the same type of segment. Otherwise
change the type of segment from positive to negative or vice-versa.

Note that when the worm attempts to revisit the last updated plaquette (i.e.,
it moves backwards) then the new and old planes coincide. Thus the segment
changes and the last move of the worm is undone.

In addition to the example of Fig. 4, in Fig. 6 we show a short worm
that generates the plaquette update of the local algorithm discussed in the
previous subsection. We have already stressed that the plaquette update is
ergodic and the SWA thus is ergodic too.
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σ +
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(a) The worm starts by decreasing the flux in ν direction. Subsequently
it adds a segment in the ν-ρ plane.

=

ν

ρ

σ
−

+ &
−

+

(b) The worm adds a segment in the ρ-σ plane.

ρ

σ +
−

&
=

+
−

ν

− −

(c) The worm adds a segment in the ν-ρ plane.

−

ν

ρ

σ
+

−

− &

+

=

+

+

+

(d) A segment in the ν-σ plane is added.

ν

ρ

σ =&
+

+

−

−
+

+

−

−

(e) The worm decides to saturate the violated constraint by adding a
unit of flux in the σ direction and terminates.

Figure 4: Example of a surface worm algorithm on an initially empty lattice.
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σ

ρ

ν

(a) LV ‖ ν̂

ν

ρ

σ

(b) LV ‖ ρ̂

ν

 ρ

σ

(c) LV ‖ σ̂

Figure 5: This figure depicts the constraints of the dual partition function. It can be used
to determine whether a positive or negative segment will be inserted by the worm: The
link LV where the constraint is violated at the current step of the worm either points in
ν, ρ or σ direction (plots (a), (b) or (c)), and is marked by a fat link in the corresponding
diagrams. Both the old and the new plaquette are attached to the link and need to be
identified in the corresponding plot. If they both are surrounded by the same type of line
(full versus dashed) the sign of the change of the plaquette variable remains the same,
otherwise an extra factor (−1) is taken into account.

The pseudo-code listed below describes the algorithm. For the coordi-
nates of plaquettes we use P , and L for the coordinates of links. In particu-
lar the link where the constraints are violated (head of the worm) is denoted
by LV . By sP = (pP , l0, l1) we denote the current occupation numbers of a
segment, i.e., the occupation number pP of the plaquette at P and the two
links fluxes l0 and l1 which are changed in the type of segment chosen (in the
examples of segments shown in Fig. 3 l0 and l1 are the link fluxes marked by
full or dashed lines). The variable ∆s = (δp, δl0 , δl1) denotes the change of
the occupation numbers of sP . Note that the sign of the change δp (“positive
segment” versus “negative segment”) has to be chosen according to the rules
stated in the discussion of Fig. 5. By x ⊕ y we denote the addition modulo
3 which is the usual addition operation except in the cases +1 ⊕ +1 = −1
and −1⊕−1 = +1. By weight ratio(b← a) we denote the ratioW ′

loc/Wloc

when changing an element a into b. Here a and b are either a link flux before
and after the change by ±1 or a full segment (a plaquette number pP and
two link fluxes l0, l1) before and after the respective changes. Finally, rand()
is a random number generator for uniformly distributed real numbers in the
interval [0, 1).
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Pseudocode for surface worms:

select a lattice link L0 randomly

select δl ∈ {−1,+1} randomly

l′ ←− lL ⊕ δl
if rand() ≤ weight ratio(l′ ← lL)

lL ←− l′

LV ←− L0

else

terminate worm

end if

repeat until worm is complete:

select a direction ρ ∈ {±1̂,±2̂,±3̂,±4̂}
if ρ̂ ‖ LV then

select δl such that the violated constraint at LV is healed

l′ ←− lLV ⊕ δl
if rand() ≤ weight ratio(l′ ← lLV )
lLV ←− l′

terminate worm

end if

else

the plaquette P for a new segment is spanned by LV and ρ̂
randomly select L′V 6= LV from the links bounding P
choose ∆s such that the constraint at LV is healed

s′ ←− sP ⊕ ∆s

if rand() ≤ weight ratio(s′ ← sP)
sP ←− s′

LV ←− L′V
end if

end repeat until worm is complete

It is straightforward to show detailed balance using the Boltzmann weights
and that the algorithm is ergodic.
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ν

ρ
& =

− −

(a) The worm starts by increasing the flux in the ν-direction and
then adds a segment in the ν-ρ plane.

ν

& =ρ

− −

(b) The worm decides to saturate the violated constraint by
decreasing the flux at LV by one unit and terminates.

Figure 6: Example how the worm generates the local plaquette update discussed in the
previous subsection.

Modifications for the U(1) gauge-Higgs surface worm algorithm

From Eq.(3) and Eq.(9) we observe that the SWA has to be adapted in order
to simulate the U(1) model:

• Due to the extra unconstrained set of link variables lx,ν , for U(1) a full
sweep consists of a worm sweep (V4 = N3

sNt worms) to update the lx,ν
and px,νρ plus a conventional local Metropolis sweep to update all lx,ν .

• To extend the range of the constrained variables to all integer numbers
and enforce the total flux at every link and site to vanish, the operation
x⊕y is replaced by a normal addition x+y. In the pseudo-code: sP ⊕ ∆s

is replaced by sP + ∆s.

4. Assessment of the surface worm algorithm

4.1. Validity of the SWA

To evaluate the validity of the algorithm we will use several thermody-
namical observables and their susceptibilities. For both models we study the
first and second derivatives with respect to the inverse gauge coupling β, i.e.,
the plaquette expectation value and its susceptibility,

〈U〉 =
1

6N3
sNt

∂

∂β
ln Z , χU =

1

6N3
sNt

∂2

∂β2
ln Z . (12)
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For the Z3 case we also consider the particle number density n and its sus-
ceptibility which are the derivatives with respect to the chemical potential,

n =
1

N3
sNt

∂

∂µ
ln Z , χn =

1

N3
sNt

∂2

∂µ2
ln Z . (13)

Finally, for the U(1) model we analyze the derivatives with respect to κ,

〈|φ|2〉 =
1

N3
sNt

∂

∂κ
ln Z , χ|φ|2 =

1

N3
sNt

∂2

∂κ2
ln Z . (14)

The correctness of the flux representation has already been established
in [10, 11]. Thus here we can focus on the SWA. To check for correctness
we compare the SWA results to the data coming from the local Metropolis
algorithm (LMA) in the flux representation and for the cases where there is
no sign problem also to results from a conventional approach in the standard
representation.

For all simulations we used thermalization and decorrelation sweeps (see
below for their numbers). For the SWA one sweep consists of V4 = N3

sNt

worms and for the case of U(1) also of a sweep through all unconstrained
link variables lx,ν . For the LMA a sweep is defined as a sequence of plaque-
tte updates for all 6V4 plaquettes plus cube updates for all 4V4 cubes. For
the U(1) model and the Z3 case at µ = 0 we can also compare to the con-
ventional approach where as usual a sweep is defined as applying one local
Metropolis update to all degrees of freedom. All error bars we show were de-
termined using a Jackknife analysis and are corrected with the factors from
the respective autocorrelation times (see below).

For the Z3 model we compared simulations for several parameter sets and
found very good agreement of the results from the different approaches. As
examples we show results for two parameter sets: 1) The behavior across a
crossover transition as a function of β at κ = 0.5 and µ = 0 (no complex
action problem) on a 104 lattice (Fig. 7). 2) The behavior across a first order
transition as a function of µ at κ = 0.1 and β = 0.6 on a 83 × 50 lattice
(Fig. 8). In the latter case the standard representation has a complex action
problem and we only can compare the results from SWA and LMA. For both
tests we used 106 equilibration sweeps and 106 measurements separated by
10 sweeps for decorrelation.

Similarly we also confirmed the correctness of the SWA in the U(1) model
checking the agreement of all three approaches at different parameters and
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Figure 7: Z3 model: 〈U〉 and χU at κ = 0.5 and µ = 0 as a function of β on a 104 lattice.
We compare the results of the SWA (asterisks) to the LMA (circles) and the conventional
approach (crosses).

lattice sizes. As an example, Fig. 9 shows the results obtained with the
LMA (crosses), with the SWA (circles) and the conventional approach (as-
terisks) at λ = 1 and κ = 5, 8 and 9 on a 104 lattice. For this test we used
105 equilibration sweeps and 105 measurements separated by 10 sweeps for
decorrelation. As for the Z3 case we find very good agreement among the
different approaches thus establishing the correctness of the SWA also for
the U(1) model.

4.2. Characteristic quantities of the algorithms

For a meaningful comparison of the performance and autocorrelation
times of the SWA and LMA algorithms we study suitable characteristic quan-
tities in order to describe the behavior of both algorithms in different regions
of the parameter space. The definitions are patterned after related quantities
introduced for the analysis of worm algorithms with open ends [7].

• Plaquette changes P :

P = average number of plaquettes changed per update

• Starting fraction S:

S =
number of successful update starts

number of all start attempts
≤ 1
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Figure 8: Z3 model: The observables 〈U〉, χU , n and χn as a function of µ at κ = 0.1 and
β = 0.6 on a 83 × 50 lattice. We compare the results from the SWA (asterisks) and the
LMA (circles).

• Cost ratio C:

C =
number of attempted changes (plaquettes and links)

number of accepted changes
≥ 1

In these definitions ”update” refers to one surface worm for the SWA case.
For the LMA it is the average of a plaquette and a cube update which we
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Figure 9: U(1) model: Observables as a function of β at λ = 1.0 for κ = 5, 8 and 9 on a 104

lattice. We compare results from three algorithms: The conventional approach (asterisks),
the SWA (circles) and the LMA (crosses).

consider in a mix of 6V4 plaquette updates and 4V4 cube updates per LMA
sweep (see above). From the definition of these characteristic quantities it is
obvious that an optimal algorithm is characterized by a large value of P and
values of S and R close to 1.

In Table 1 we show the characteristic quantities for the SWA and LMA
algorithms in the Z3 case. We compare three different sets of parameters
denoted by Z-1, Z-2 and Z-3 (see the first column for the corresponding pa-
rameter values) and four different volumes (second column). The parameters
of Z-1 are located below the condensation transition shown in Fig. 8, the set
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Z-2 is in the condensed phase (compare Fig. 11 from [10]) and the set Z-3 is
inside the crossover region of Fig. 7.

Table 1 demonstrates that the SWA has a larger probability for starting
an update than the LMA (SSWA > SLMA for all data sets and volumes).
Furthermore the cost ratio R of the SWA is smaller or equal (equal only
for the set Z-2) to the LMA case. These two quantities indicate that the
SWA is more effective than the LMA. The observation that P is larger for
the LMA is mainly due to the fact that an accepted cube update of the
LMA changes 6 plaquettes (although at the cost of a low acceptance rate).
It is interesting to note that the values for the characteristic quantities are
essentially independent of the volume.

Table 2 collects the data for the U(1) case. Here we consider three differ-
ent sets of parameters U-1, U-2, U-3 (first column) on four different volumes
(second column). The set U-2 is located very close to the transition shown
in Fig. 9, the set U-1 is below and the set U-3 above the transition.

The general behavior for the characteristic quantities is essentially the
same as in the Z3 case: For all sets the starting probability of the SWA
is larger than that of the LMA, and also the cost efficiency is considerably
better for the SWA. As in the Z3 case we find that the average number of
updated plaquettes P is larger for the LMA, which also here is due to the cube
updates, which, however, have a much lower acceptance rate as is obvious
from S and C. The difference in the characteristic quantities between the 44

and larger volumes for the set U-2 is due to finite-size effects: In the smallest
volume the transition is rounded and slightly shifted towards smaller values
of β, such that for the smallest volume the parameters we work at are further
remote from the transition and both algorithms are more efficient.

Finally, comparing RSWA and SSWA for both the Z3 and U(1) cases,
we observe that even though many worms start successfully, not all of them
create non-trivial changes, i.e., there is a sizable probability that in the second
step a worm reverts its initial step. This is also reflected in Fig. 10 where we
show the abundance distribution of the worms as a function of their length
l defined as the number of segments of a worm. The distribution decreases
roughly exponentially with l. However, as we shall see in the next subsection,
a few long worms are enough to have a very efficient sampling.

4.3. Autocorrelation times

In this subsection we analyze the integrated autocorrelation time τOint of
several observables O in both models. Since we are comparing two different
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Parameters V SSWA PSWA CSWA SLMA PLMA CLMA

Set: Z-1 43 × 50 0.203 0.095 6.892 2.9e-3 4.456 320.7
κ = 0.1, 83 × 50 0.203 0.095 6.892 2.9e-3 4.455 320.7
β = 0.6, 123 × 50 0.203 0.095 6.892 2.9e-3 4.455 320.7
µ = 2.0 163 × 50 0.203 0.095 6.892 2.9e-3 4.455 320.7
Set: Z-2 43 × 50 0.245 1.196 5.319 0.172 5.384 5.346
κ = 0.1, 83 × 50 0.244 1.186 5.431 0.172 5.384 5.346
β = 0.8, 123 × 50 0.245 1.199 5.320 0.172 5.384 5.346
µ = 1.6 163 × 50 0.244 1.187 5.425 0.172 5.384 5.346
Set: Z-3 44 0.697 0.802 3.081 0.098 1.286 10.88
κ = 0.5, 84 0.698 0.802 3.081 0.098 1.286 10.88
β = 0.28, 124 0.698 0.802 3.081 0.098 1.286 10.88
µ = 0.0 164 0.697 0.802 3.081 0.098 1.286 10.88

Table 1: Characteristic quantities for the Z3 model (see the text for their definitions). We
used 106 steps for equilibration and 106 measurements separated by 2 steps for decorrela-
tion. The errors are smaller than the last digit we show.

algorithms we normalize the autocorrelation times as in [7]: define one sweep
as τ0 = 6V4/P configurations, i.e., the average number of attempts needed to
change every plaquette of the lattice as the unit for the integrated autocor-
relation times τOint. In units of updates we have τ0 = 6V4/(P Nupdates), where
Nupdates is defined as either V4 worms for the SWA or 6V4 plaquette updates
plus 4V4 cube updates for the LMA, i.e., a total of 10V4 local updates.

In order to obtain a measure for the computational effort, the results
are multiplied by the cost ratio C. In other words we show τ int = C τint/τ0,
where τint simply is the unnormalized autocorrelation time in units of up-
dates. The statistical errors of autocorrelation times were estimated with a
jackknife analysis and were found at the 10 percent level for the statistics
at our disposal. This is sufficient for the subsequent comparison of the two
algorithms.

For the autocorrelation analysis we use the same sets and volumes as for
the discussion of the characteristic quantities of the SWA and the LMA in
the previous subsection. Table 3 shows the autocorrelation times in the Z3

case for the SWA and Table 4 is for the LMA. Similarly, Tables 5 and 6
correspond to the U(1) case.

First, we observe that the autocorrelation times for the set close to the
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Parameters V SSWA PSWA CSWA SLMA PLMA CLMA

Set : U-1 44 0.201 0.085 6.899 1.2e-3 1.277 904.6
κ = 5, 84 0.201 0.085 6.902 1.2e-3 1.278 909.2
λ = 1, 124 0.201 0.085 6.902 1.2e-3 1.278 909.4
β = 0.40 164 0.201 0.085 6.902 1.2e-3 1.278 909.4
Set: U-2 44 0.681 1.275 3.310 0.167 1.813 6.263
κ = 5, 84 0.220 0.199 6.124 4.6e-3 2.243 224.3
λ = 1, 124 0.220 0.198 6.124 4.6e-3 2.243 224.3
β = 0.65 164 0.220 0.198 6.124 4.6e-3 2.243 224.3
Set: U-3 44 0.107 0.100 8.775 0.061 5.962 14.82
κ = 8, 84 0.107 0.100 8.773 0.061 5.962 14.92
λ = 1, 124 0.107 0.100 8.774 0.060 5.962 14.91
β = 1.10 164 0.107 0.101 8.766 0.060 5.962 14.91

Table 2: Characteristic quantities for the U(1) model (see the text for their definitions).
We used 106 steps for equilibration and 106 measurements separated by 2 steps for decor-
relation. The errors are smaller than the last digit we show.

first order transition (set U-2) increase with the volume, while the others are
essentially volume independent. It is also interesting to look at the sets Z-2
and U-3, where PLMA approaches 6 (see Tables 1 and 2), i.e., the configura-
tion space is dominated by closed surfaces, since boundary flux is costly for
these parameter sets. On the one hand, τUint and τχUint are larger for the worm
algorithm, which is due to the fact that the worm updates links in every
move, so if the Boltzmann weight of the link variables is very low then most
of the worms have only a few segments (see Fig. 10). On the other hand τ int
of the observables that depend only on the link occupation number is much
smaller for the SWA, a fact which reflects the very low acceptance rate of
the plaquette update of the LMA.

In general, comparing the results of both algorithms for the two different
models, we can conclude that the SWA outperforms the LMA for a large
range of parameters. Only in the region of the space of couplings where the
link weight is very large the worm algorithm has difficulties to sample the
system efficiently, a problem which can easily be overcome with extra cube
sweeps or by adding a worm with only plaquettes suggested in [4].
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Figure 10: Normalized histograms of the worm length for the Z3 model (upper plot) and
the U(1) model (lower plot).

5. Summary

In this article we present a generalization of the worm algorithm to sys-
tems that are described by surfaces with boundaries of flux, i.e., abelian
Gauge-Higgs systems. Rewriting the standard form of abelian Gauge-Higgs
systems in terms of surfaces and fluxes (dual representation) overcomes the
complex action problem at finite chemical potential. We study Gauge-Higgs
systems with two gauge groups Z3 and U(1). For the Z3 case a chemical
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Parameters V τUint τχUint τnint τχnint
Set: Z-1 43 × 50 180 97 0.9 0.6
κ = 0.1, 83 × 50 200 90 1.0 0.6
β = 0.6, 123 × 50 200 92 1.0 0.6
µ = 2.0 163 × 50 200 88 1.3 0.8
Set: Z-2 43 × 50 81 36 25 13
κ = 0.1, 83 × 50 84 32 25 14
β = 0.8, 123 × 50 > 83 38 27 12
µ = 1.6 163 × 50 > 90 37 30 13
Set: Z-3 44 2.5 1.3 0.3 0.2
κ = 0.5, 84 5.4 2.9 0.6 0.4
β = 0.28, 124 6.0 3.1 0.6 0.5
µ = 0.0 164 7.7 3.2 0.7 0.5

Table 3: Z3 model: SWA autocorrelation times for different parameter sets.

Parameters V τUint τχUint τnint τχnint
Set: Z-1 43 × 50 5400 2900 5600 3100
κ = 0.1, 83 × 50 5800 3000 5900 3200
β = 0.6, 123 × 50 5400 3000 6100 4200
µ = 2.0 163 × 50 5400 3000 >7800 4300
Set: Z-2 43 × 50 67 48 750 310
κ = 0.1, 83 × 50 68 51 760 300
β = 0.8, 123 × 50 70 49 600 350
µ = 1.6 163 × 50 71 46 600 340
Set: Z-3 44 110 55 59 23
κ = 0.5, 84 110 66 65 24
β = 0.28, 124 120 69 67 25
µ = 0.0 164 130 73 67 27

Table 4: Z3 model: LMA autocorrelation times for different parameter sets.

potential can be coupled and the system has a complex action problem.
The key idea of our newly developed surface worm algorithm (SWA) is

to build up filament-like structures where the dual degrees of freedom are
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Parameters V τUint τχUint τ
|φ|2
int τ

χ|φ|2
int

Set: U-1 44 2.2 3.1 0.6 0.3
κ = 5, 84 2.3 1.6 0.5 0.3
λ = 1, 124 2.4 1.5 0.6 0.3
β = 0.40 164 2.6 1.1 0.5 0.4
Set: U-2 44 5.7 3.5 9.5 3.9
κ = 5, 84 12 6.9 2.9 1.2
λ = 1, 124 19 7.8 3.3 1.4
β = 0.65 164 21 7.9 3.1 1.6
Set: U-3 44 1600 870 1.1 0.9
κ = 8, 84 1700 840 1.2 1.0
λ = 1, 124 >1600 740 1.8 0.9
β = 1.10 164 >1700 800 2.2 1.1

Table 5: U(1) model: SWA autocorrelation times for different parameters. We attribute
the V = 44 value τχU

int = 3.1, which is slightly higher than naively expected, to a finite
volume effect caused by closed surfaces that wind around the rather short (4 lattice points)
compact directions.

Parameters V τUint τχUint τ
|φ|2
int τ

χ|φ|2
int

Set: U-1 44 5800 2900 8100 4500
κ = 5, 84 5800 3000 8600 4500
λ = 1.0, 124 6100 4100 7400 5000
β = 0.4 164 6200 4200 9100 5000
Set: U-2 44 71 48 180 93
κ = 5, 84 4700 2600 7100 4100
λ = 1.0, 124 7200 2800 8700 4300
β = 0.65 164 7300 2800 9400 5000
Set: U-3 44 460 280 440 300
κ = 8, 84 430 300 480 300
λ = 1, 124 690 290 450 270
β = 1.10 164 710 280 490 270

Table 6: U(1) model: LMA autocorrelation times for different parameters.
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changed by adding segments built from plaquette variables and two lines of
matter flux. We compare the SWA to a local Metropolis algorithm (LMA)
for the dual representation and in the cases without a sign problem also to
a conventional Monte Carlo simulation in the standard approach. The com-
parison is used to establish the correctness of the SWA in several simulations
at different parameter values.

To study the performance of the SWA we analyze characteristic quan-
tities: the starting probability, the number of updated plaquettes and the
cost efficiency. Based on these characteristic quantities we conclude that for
both gauge groups and most parameter values the SWA is considerably more
efficient than the LMA. This finding is confirmed by an analysis of autocor-
relation times where again the SWA is found to decorrelate faster (partly
considerably faster) than the LMA.

We expect that the generalization of the worm concept to surface-type
degrees of freedom will contribute to developing new tools for systems with
gauge interactions in a dual language. Another important aspect is that
models where the complex action problem is solved may serve as reference
systems for testing other approaches such as various reweighting and expan-
sion techniques.
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Appendix: Dual representation for the U(1) Gauge-Higgs system

In this appendix we summarize a brief derivation of the dual representation
of the U(1) Gauge-Higgs system we use in this article. The gauge action SG
is given by (1) with U(1) valued link variables Ux,ν . The action SM for the
matter field is (8). The partition sum Z is obtained by integrating the Boltz-
mann factor e−SG−SM over all field configurations, Z =

∫
D[U ]D[φ]e−SG−SM .

For the Higgs field the measure is a product over all lattice points x, and
we use polar coordinates φx = rxe

iθx for integrating each φx in the complex
plane. The U(1) gauge variables Ux,ν = eiϕx,ν at each link are integrated over
the unit circle such that the path integral reads

Z =
∫
D[U ]D[φ] e−SG−SM =

(∏
x,ν

∫ π

−π

dϕx,ν
2π

)(∏
x

∫ π

−π

dθx,ν
2π

∫ ∞
0
drx rx

)
e−SG−SH .

(15)
The normalization with 2π will be useful later.

The first step to obtain the representation of the full partition sum in
terms of loops is to consider the Higgs part of the problem. For that purpose
we define the partition sum of the Higgs system in a gauge background as

ZH =
∫
D[φ]e−SM =

∫
D[φ]

(∏
x,ν

e
φ?xUx,νφx+ν̂e

φxU?x,νφ
?

x+ν̂

)(∏
x

B(|φx|2)
)
, (16)

where we have slightly reorganized the nearest neighbor terms and write the
corresponding sums in the exponent as a product of exponentials. The mass-
and φ4-terms are taken into account in B(r2) = exp(−κr2 − λr4).

The next step is an expansion of the Boltzmann factors for the nearest
neighbor terms (use U ?

x,ν = U −1
x,ν ):

∏
x,ν

exp
(
φ?xUx,νφx+ν̂

)
exp

(
φxU

?
x,νφ

?
x+ν̂

)
= (17)

∑
{n,n}

(∏
x,ν

U nx,ν
x,ν U?

x,ν
nx,ν

nx,ν !nx,ν !

)(∏
x,ν

(
φ?xφx+ν̂

)nx,ν (
φxφ

?
x+ν̂

)nx,ν)
=

∑
{n,n}

(∏
x,ν

U nx,ν−nx,ν
x,ν

nx,ν !nx,ν !

)(
φ ?x

∑
ν
[nx,ν+n

x−ν̂,ν
]
φx

∑
ν
[nx,ν+n

x−ν̂,ν
]
)
,

where the expansion variables nx,ν and nx,ν are non-negative integers at-
tached to the links of the lattice. By

∑
{n,n} we denote the sum over all
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configurations of the expansion variables nx,ν , nx,ν ∈ [0,∞). The partition
sum of the Higgs field now reads

ZH =
∑
{n,n}

(∏
x,ν

U nx,ν−nx,ν
x,ν

nx,ν !nx,ν !

)(∏
x

∫ π

−π

dθx
2π

e
−iθx

∑
ν
[nx,ν−nx,ν−(n

x−ν̂,ν
−n

x−ν̂,ν
)]

)

×
(∏

x

∫ ∞
0
drx r

1+
∑

ν
[nx,ν+n

x−ν̂,ν
+nx,ν+n

x−ν̂,ν
]

x B(r2x)

)
. (18)

The integrals over the phase give rise to Kronecker deltas, which for nota-
tional convenience here we write as δ(n). The integrals over the modulus we
abbreviate as

P (n) =
∫ ∞
0

dr rn+1B(r2) =
∫ ∞
0

dr rn+1 e−κr
2−λr4 . (19)

They can easily be computed numerically. The Higgs field partition sum now
reads:

ZH =
∑
{n,n}

(∏
x,ν

U nx,ν−nx,ν
x,ν

nx,ν !nx,ν !

)(∏
x

δ

(∑
ν

[nx,ν − nx,ν − (nx−ν̂,ν − nx−ν̂,ν)]
))

×
(∏
x

P

(∑
ν

[nx,ν + nx,ν + nx−ν̂,ν + nx−ν̂,ν ]

))
. (20)

In this form the Higgs fields are completely eliminated and the partition sum
is a sum over configurations of the n and n. The allowed configurations of
the n and n are subject to local constraints at each site x enforced by the
Kronecker deltas, i.e., at each site x the variables must obey

∑
ν [nx,ν−nx,ν−

(nx−ν̂,ν − nx−ν̂,ν)] = 0.
In the current representation the constraints mix both the n and the n

variables. The structure of the constraints can be simplified by introducing
new variables lx,ν ∈ (−∞,∞) and lx,ν ∈ [0,∞). They are related to the old
variables by

nx,ν − nx,ν = lx,ν and nx,ν + nx,ν = |lx,ν |+ 2lx,ν , (21)

and the sum over all configurations of the n, n variables can be replaced by
a sum over l- and l-configurations. The partition sum turns into

ZH =
∑
{l,l}

(∏
x,ν

U lx,ν
x,ν

(|lx,ν |+ lx,ν)! lx,ν !

)(∏
x

δ

(∑
ν

[lx,ν − lx−ν̂,ν ]
))

×
(∏
x

P

(∑
ν

[|lx,ν |+ |lx−ν̂,ν |+ 2(lx,ν + lx−ν̂,ν)]

))
. (22)
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In the final form (22) of the Higgs field partition sum, which we now refer to
as dual representation, the constraints no longer mix the two types of flux
variables. Obviously only the l-fluxes are subject to conservation of flux at
each site x, i.e., only they must obey

∑
ν [lx,ν − lx−ν̂,ν ] = 0 for all x.

Having mapped the Higgs field partition sum to the flux form (22) we now
apply similar steps to the gauge fields to obtain the dual representation of the
full partition sum (15). We write the full partition sum as Z =

∫
D[U ]e−SGZH

and find

Z =
∑
{l,l}

(∏
x,ν

1

(|lx,ν |+ lx,ν)! lx,ν !

)(∏
x

δ

(∑
ν

[lx,ν − lx−ν̂,ν ]
))

×
(∏
x

P

(∑
ν

[|lx,ν |+ |lx−ν̂,ν |+ 2(lx,ν + lx−ν̂,ν)]

))
ZG[l] , (23)

where we have interchanged the sum over the flux configurations and the in-
tegral over the gauge fields. The gauge field partition sum with link insertions
according to a flux configuration l is defined as

ZG[l] =
∫
D[U ]e−SG

∏
x,ν

U lx,ν
x,ν . (24)

The gauge action SG as defined in (1) is a sum over plaquettes. We thus may
write the Boltzmann factor e−SG as a product over plaquettes and, as done
for the Higgs field, we expand the corresponding exponentials into power
series:

∏
x,σ<τ

e
β
2
Ux,στ e

β
2
U?x,στ =

∑
{m,m}

 ∏
x,σ<τ

(β
2
)mx,στ+mx,στ

mx,στ !mx,στ !
Ux,στ

mx,στ U?
x,στ

mx,στ


=

∑
{m,m}

 ∏
x,σ<τ

(β
2
)mx,στ+mx,στ

mx,στ !mx,στ !

 (25)

×
(∏
x,ν

Ux,ν

∑
ν<α

[px,να−p
x−α̂,να

]−
∑

α<ν
[px,αν−p

x−α̂,αν
]
)
.

We introduced the expansion variables mx,στ ,mx,στ ∈ [0,∞) attached to
the plaquettes, and by

∑
{m,m} we denote the sum over all configurations

of the expansion variables. In the second step we inserted the explicit
expressions for the plaquettes in terms of the link variables, i.e., Ux,στ =
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Ux,σUx+σ̂,τU
?
x+τ̂ ,σ

U?
x,τ , and reorganized the product over powers of links vari-

ables. Here we already introduced mx,να − mx,να = px,να. This combina-
tion of the expansion variables plays the same role as the transformutation
(21) used in the Higgs case for the simplification of the constraints. Ex-
actly the same step is now implemented here: We promote px,να ∈ (−∞,∞)
into new dynamical variables, which together with another set of variables,
qx,να ∈ [0,∞), gives the final set of variables we use for the gauge fields. The
p and q variables are related to the m and m variables via (compare (21))

mx,να −mx,να = px,να and mx,να +mx,να = |px,να|+ 2qx,να . (26)

We will refer to the variables p as plaquette occupation numbers or simply
plaquette variables. Using the new variables (26) and inserting the expanded
Boltzmann factor (25) back into (24) we find

ZG[l] =
∑
{p,q}

 ∏
x,σ<τ

(β
2
)|px,στ |+2qx,στ

(|px,στ |+ qx,στ )! qx,στ !

 (27)

×
(∏
x,ν

∫ π

−π

dϕx,ν
2π

e
iϕx,ν

(∑
ν<α

[px,να−p
x−α̂,να

]−
∑

α<ν
[px,αν−p

x−α̂,αν
]+lx,ν

))
.

The integrals in the last product are again representations of Kronecker deltas
and give rise to constraints that are located at the links of the lattice. The
summations over the variables qx,στ can be done in closed form using the well
known series representation of the modified Bessel functions

∞∑
q=0

(β
2
)|p|+2q

(|p|+ q)! q!
= I|p|(β) = Ip(β) , (28)

where in the last step we used the fact that the modified Bessel functions
In(z) are even in their index n. Thus we finally end up with the following
representation for the gauge field partition sum

ZG[l] =
∑
{p}

 ∏
x,σ<τ

Ipx,στ (β)

 (29)

×
(∏
x,ν

δ

(∑
ν<α

[px,να − px−α̂,να]−
∑
α<ν

[px,αν − px−α̂,αν ] + lx,ν

))
.

Putting this back into the full partition sum (23) we obtain the final result
for the dual representation of the partition sum for the U(1) Gauge-Higgs
model as given in Eqs. (9), (10) and (11).
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Let us finally comment on the possibility to couple chemical potential
µ: The derivation of the dual representation remains essentially the same,
with additional factors e±µ for the temporal links. In the final expression
these factors give different (real and positive) weight for positive and nega-
tive temporal l-flux. In this paper we only consider one flavor of the Higgs
field, and Gauss law does not allow to construct configurations that obey
all constraints at µ > 0. In an upcoming study [11] we will present results
for two flavors of oppositely charged Higgs fields, where non-zero chemical
potential is possible and interesting condensation phenomena can be studied.
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